3的倍数特征
- 格式:doc
- 大小:39.00 KB
- 文档页数:2
《3的倍数的特征》说课稿一、教材分析《3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。
因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。
教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。
因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。
而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定如下教学目标:1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。
以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。
3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
根据以上的目标,我确定了本课的教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
教学难点:3的倍数的数的特征的归纳过程。
二、说教法和学法。
根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:1、创设情景,激趣导入。
2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。
3、采用让学生自主发现的学习方法。
苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。
这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。
本课的设计旨在摒弃“满堂灌输,填鸭式”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。
《3的倍数特征》教学反思《3的倍数特征》教学反思「篇一」2、5、3的倍数特征是分为两节课完成的,上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,2、5的倍数的特征这节课,概念比较多,学生很容易混淆。
怎样才能把抽象的概念转化为形象直观的知识让学生们接受呢?一、互动、质疑,激发学生的探究兴趣。
好的开始等于成功了一半。
课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。
几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。
你们想知道是什么吗?”由此引出课题。
这样大大的调动了学生学习的积极性,激发了其探究的欲望。
二、鼓励学生独立思考,经历猜测验证的过程。
数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。
由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。
首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5的倍数。
”而这只是猜测,结论还需要进一步的验证。
我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1―100这个小范围。
是不是在所有不等于0的自然数中都适用呢?还需要研究。
在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的倍数是不是也是个位上的数字是5或0。
在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。
这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
三、小组合作,发挥团体的作用。
动手实践、合作交流是学生学习数学的重要方式。
与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。
3的倍数的特征教学内容分析3的倍数的特征是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。
因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。
教材是先教学2、5的倍数的特征,再教学3的倍数的特征。
因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。
而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判断,学生理解起来有一定的困难,因此,把它放在2、5的倍数的特征后面教学。
教学对象分析苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。
这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。
本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。
教学目标:1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:是3的倍数的数的特征。
教学流程图教学过程:一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
(揭示课题)师:先请在下表中找出3的倍数,并做上记号。
(教师出示百以内数表,学生人手一张。
小学数学《3的倍数的特征》教案三篇学校数学《3的倍数的特征》教案【篇一】教学内容:教材19页内容,能被3整除的数的特征。
教学要求使同学初步把握能被3整除的数的特征,能正确推断一个数能被3整除的数的特征,培育同学抽象、概括的力量。
教学重点:能被3整除的数的特征。
教学难点:会推断一个数能否被3整除教学方法:三疑三探教学模式教具学具:课件等。
教学过程一、设疑自探(10分钟)(一)基本练习1、能被2、5整除的数有什么特征?2、能同时被2 和5整除的数有什么特征?(二)揭示课题我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来讨论能被3整除的数的特征(板书课题)(三)让同学依据课题提问题。
老师:看到这个课题,你想提出什么问题?(老师对同学提出的问题进行评价、规范、整理后说明:老师依据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能依据自探提示仔细探究,就能弄明白这些问题。
)(四)出示自探提示,组织同学自探。
自探提示:自学课本19页内容,思索以下问题:1、观看3的倍数,你发觉能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?3、能被2、3、5整除的数有什么特征?二、解疑合探(15分钟)1、检查自探效果。
根据学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织同学合探解决。
依据同学回答随机板书主要内容。
2、着重强调;一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)1、同学质疑。
老师:对于本节学习的学问,你还有什么不明白的地方,请说出来让大家帮你解决?2、解决同学提出的问题。
(先由其他同学释疑,同学解决不了的,可依据状况或组织同学争论或老师释疑。
)四、运用拓展(11分钟)(一)同学自编习题。
1、让同学依据本节所学学问,编一道习题。
2、展现同学高质量的自编习题,沟通解答。
是3的倍数的特征
3的倍数的特征有以下几个方面:
1.整除性质:3的倍数具有整除3的性质,即一个数能够被3整除,那么它就是3的倍数。
例如,6除以3的结果是2,说明6是3的倍数。
2.数位和:一个数的各个位数之和如果能够被3整除,那么这个数也是3的倍数。
例如,123的各个位数之和是6,因为6能被3整除,所以123是3的倍数。
3.末尾为0:为0、3、6、9的数字都能被3整除,因此如果一个数的末尾是0、3、6、9中的一个,那么它就是3的倍数。
4.各位数字之和为3的倍数:如果一个数的各位数字之和能够被3整除,那么这个数也是3的倍数。
例如,624的各位数字之和是12,因为12能被3整除,所以624是3的倍数。
5.间隔为3的倍数:如果一个数的个位数和十位数的差能被3整除,那么这个数也是3的倍数。
例如,27的个位数为7,十位数为2,它们的差为5,5不能被3整除,所以27不是3的倍数;而30的个位数为0,十位数为3,它们的差为3,3能被3整除,所以30是3的倍数。
即个位数与十位数之差能被3整除。
6.整数规律:3的倍数的个位数如果是0、3、6、9,那么这个数还是3的倍数。
如果一个数的个位数是0、3、6、9,那么它一定能被3整除,并且这个规律也可以递归应用于数的每一位。
例如,231的个位数为1,因此它不是3的倍数;而234的个位数为4,因此可以通过判断234除以10后的结果是否是3的倍数来判断234是否是3的倍数。
这些都是3的倍数的特征,根据这些特征可以判断一个数是否是3的倍数。
同时,这些特征也可以用于解决一些与3的倍数有关的问题,例如编写算法求解3的倍数的个数或者求给定范围内3的倍数之和等。
《3的倍数特征》教学反思《3的倍数特征》教学反思《3的倍数特征》教学反思1【初次理论】课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的料想。
“老师,我知道其中的机密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。
”……又有几个学生偷偷地翻开了数学书。
“怎么办?”谜底都被学生揭开了。
面对这一生成,我没有死守教案,而是果断地调整了预设,变“探究”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进展一系列稳固练习……[反思]课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提早把要探究的新知识和盘托出。
我们的习惯做法就是变“探究”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的开展?假如经常进展这样的教学,还容易使学生形成急躁浅薄,不求甚解,甚至只要结论的不良学习风气。
怎么办,置之不理吗?假如这样,不仅没有尊重学生已有的知识经历,而且在已经揭开“谜底”的情况下,再试图引导学生进展猜测、实验、发现,体验遭受挫折后获得成功的那种冲动,也只能是一种奢望。
那么又该如何激发学生探究的热情,促使学生进展深化探究呢?【再次理论】〔与第一次教学情况根本一样,有些学生可以正确地判断一个数是不是3的倍数,这时一些学生却仍然感到困惑,我设法将这一困惑激发出来。
〕师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的特征只和什么有关?生:只和一个数的个位有关。
师:与今天学习的知识比拟一下,你有什么疑问吗?生1:为什么判断一个数是不是3的倍数只看个位不行?生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?……师:同学们考虑问题确实比拟深化,提出了非常有研究价值的问题。
《3的倍数特征》教材解析一、教材的地位、作用及前后联系《3的倍数的特征》是人教版小学数学五年级下册的内容,属于“数与代数”领域,从知识体系上分析,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。
因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。
二教材的编写意图更加突出学生的自主探索,使学生在观察——猜想——推翻猜想——再观察——再猜想——验证的过程中,概括出3的倍数的特征。
教材上通过逐步增加提示的方式,减缓学生在概括时的思考难度。
三、学情分析学生是在学完2、5的倍数的特征后再学3的倍数的特征。
因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。
而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,所以学生理解起来有一定的困难。
四教学目标及重、难点1.使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。
以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。
3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
根据以上的目标,我确定了本课的教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
教学难点:3的倍数的数的特征的归纳过程。
五、教学实施的思考。
基于以上的教材解析及学情分析,我认为在教学实施的过程中应该这样做1.师生互动,自由对话,激发生命的活力。
教师与学生是课堂生态系统中的两个主体因素。
教师是学生的知心朋友,是学生的学习伙伴,学生是学习的主人。
本节课在教学过程的每一个环节都应通过平等对话实现了师生互动,生生互动,使得课堂教学不只是学生学习知识的过程,而且是师生共同建构知识意义的过程,实现了师生知识共识。
《3的倍数特征》教学反思《3的倍数特征》教学反思1《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。
而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。
我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。
由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。
但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学习中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,而我从孩子们的学号为入重点,让孩子们判断自己的学号是否是3的倍数,并再次探究3的倍数特征,并且发现3的倍数和数字排列顺序的有关系。
但和这个数的个位上的数字有关。
使之所探究的问题是渐渐完整而清晰,而后我又组织孩子们用摆小棒的方法来探究和验证,这种层层递进环环相扣的方法,促使探究活动走向深入,让学生获得更大的发展。
3、课后反思使之完美。
这节课结束后,我感觉最大的缺憾之处,最后点选了的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。
而老练习题方面,也应形式面多样化,如用卡片练习判断,或通过打手势的方法或先听老师——这样效率更高,课堂氛围好,课堂不是同步,学生的发展始终是教学的落脚点。
4、“三倍数特征”教案一等奖一、学习目标(一)学习内容《义务教育教科书数学》(人民教育版)五年级第二册第10页的例子2。
例子2是探索3的倍数特征。
教科书仍然使用百数表,让学生先圈数,然后观察和思考。
(二)核心能力在探索三倍特征的过程中,学会从不同的角度观察和思考,进一步积累观察、猜测、验证和归纳的思维活动经验。
(三)学习目标1.借助百数表,通过探索三倍数特征的过程,了解三倍数特征,可以正确判断一个数是否为三倍数,解决生活中的实际问题。
2.在探索三倍数特征的过程中,学会从不同的角度观察和思考,发展合理推理的能力,积累数学思维活动的经验。
(四)学习重点探索三倍数的特征。
(五)学习难点总结证据3倍数的特征(六)配套资源百数表,计算器二、教学设计(一)课前设计(1)回忆我们研究过的2、五倍数的特点是什么?并且可以向学生解释如何探索。
(2)自制百数表。
(二)课堂设计1.复习引入老师:谁来介绍给大家?2、5的倍数特征是什么?我们是怎么研究出来的?学生自由发言,重点引导学生回忆知识形成的过程。
总结:我们先用百数表找数,然后观察猜测,最后验证归纳,得到2、5倍数的特征。
老师:本课我们来研究一下“三倍数特征”。
(板书题目)[设计意图:通过复习2、5倍数特征和探索方法唤醒学生的记忆,为探索3倍数特征铺平道路。
]2.问题探究(1)找3倍数老师:你打算如何研究“三倍数特征”?自由发言。
老师:你要用百数表,用研究2、研究三倍数特征的方法是五倍数特征,现在拿出你准备的百数表。
先找出同桌合作的三倍数,然后观察圈数,看看发现了什么。
(2)全班交流讨论①发现问题学生展示圈好的百数表。
老师:谈谈你的发现?预设:不能只看个位。
老师:为什么不呢?横着看:个位上有0-9个数字,竖着看:个位上也有0-9个数字。
②分析问题老师:学生们发现,在百数表(课件显示)中,水平和垂直观察是三倍,只看位置上的数量,没有规则可循。
水平和垂直观察,看不到规则,从另一个角度思考,我们还能看到什么?我们还能看到什么?学生可以自由发言,引导学生斜视。