湖北省武汉市部分重点中学2013-2014学年高二上学期期末考试 数学文试题 Word版含答案
- 格式:doc
- 大小:591.00 KB
- 文档页数:8
2013-2014学年度上学期期末考试高二数学(文)试题【新课标】一、选择题:(每题5分,共60分)1. 若复数是虚数单位)是纯虚数,则实数a 的值为( )A .-3B .3C .-6D .62. 用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数3. 分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0”,求证 “b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<04.4. 给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b =c +d ⇒a =c ,b =d ”;③若“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”. 其中类比结论正确的个数是( )A .0B .1C .2D .35.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②6.复数 ( )A .B .C .D .7. 函数的单调递增区间是( )A. B. (0,3) C. (1,4) D.8. 抛物线的焦点坐标是( )A .B .C .D .9. 设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为( )A. B. C. D.10. 设函数在区间[1,3]上是单调函数,则实数a 的取值范围是( )A .B .C .D .11. 为了表示个点与相应直线在整体上的接近程度,我们常用( )表示A. B. C. D.12. 过双曲线的左焦点作圆的切线,切点为E ,延长FE 交抛物线于点P ,若E 为线段FP 的中点,则双曲线的离心率为( )A .B .C .D .二、填空题:(每题5分,共20分)13.双曲线的一个焦点是,则m 的值是_________.14.曲线在点(1,3)处的切线方程为___________________.15. 已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),则回归直线的方程是________________.16. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为_______________________________.三、解答题:17.(本题满分12分)在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.(1)求抛物线C的标准方程;(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.18.(本题满分12分)某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分):(1)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;(2)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分;(3)完成下面2×2列联表,你认为在犯错误的概率不超过0.025的前提下,“这两个班19.(本题满分12分)已知函数,其图象在点(1,)处的切线方程为(1)求a,b的值;(2)求函数的单调区间,并求出在区间[—2,4]上的最大值。
2014-2015学年湖北省武汉市部分重点中学联考高二(上)期中数学试卷(文科)一、选择题(50分)1.(5分)直线x+y+3=0的倾斜角是()A.B. C.D.2.(5分)以圆x2﹣2x+y2=0的圆心为圆心,半径为2的圆的方程()A.(x+1)2+y2=2 B.(x﹣1)2+y2=2 C.(x+1)2+y2=4 D.(x﹣1)2+y2=4 3.(5分)若P(A∪B)=P(A)+P(B)=1,事件A与事件B的关系是()A.互斥不对立B.对立不互斥C.互斥且对立D.以上答案都不对4.(5分)已知x、y取值如表:画散点图分析可知:y与x线性相关,且求得回归方程为=bx+a中a=50,猜想x=4时,y的值为()A.40 B.42 C.44 D.465.(5分)执行如图所示的程序框图,则输出的结果是()A.5 B.7 C.9 D.116.(5分)在区间[0,2]上随机取两个数x,y其中满足y≥2x的概率是()A.B.C.D.7.(5分)在下列各数中,最大的数是()A.85(9)B.200(6)C.68(11)D.708.(5分)用随机模拟方法,近似计算由曲线y=x2及直线y=1所围成部分的面积S.利用计算机产生N组数,每组数由区间[0,1]上的两个均匀随机数a 1=RAND,b=RAND组成,然后对a1进行变换a=2(a1﹣0.5),由此得到N个点(x i,y i)(i=1,2,…,N).再数出其中满足x i2≤y i≤1(i=1,2,…,N)的点数N1,那么由随机模拟方法可得到的近似值为()A.B.C.D.9.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则x0的取值范围是()A.[﹣,]B.[﹣,]C.[﹣2,2]D.[﹣,]10.(5分)平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,命题:①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果k与b都是无理数,则直线y=kx+b不经过任何整点;③如果k与b都是有理数,则直线y=kx+b必经过无穷多个整点;④如果直线l经过两个不同的整点,则l必经过无穷多个整点;⑤存在恰经过一个整点的直线;其中的真命题的个数是()A.2 B.3 C.4 D.5二、填空题(25分)11.(5分)在空间直角坐标系中,已知两点P1(﹣1,3,5),P2(2,4,﹣3),|P1P2|=.12.(5分)为研究某药物的疗效,选取若干志愿者进行临床研究所有志愿者舒张压数据(单位:kPa)的分组区[12,13),[13,14),[14,15﹚,[15,16﹚,[16,17﹚,将其从左到右的顺序分别编号为第一组,第二组,…第五组,如图是根据试验数据组成的频率分布直方图,已知第一组与第二组共20人,第三组中没有疗效的有6人,则第三组的人数为.13.(5分)执行如图程序,输入时a=42,b=31,输出的结果是.14.(5分)在长为3的一条直绳上任意剪两剪刀,得到三条线段,其中有两条长度大于1的概率为.15.(5分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C 的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为.三、解答题16.(12分)将两颗正方体型骰子投掷一次,求:(1)列举向上的点数之和是8的基本事件,并求向上的点数之和是8概率;(2)求向上的点数之和小于11的概率.17.(12分)已知两条直线l1:3x+4y﹣2=0与l2:2x+y+2=0的交点P,(1)求过点P且平行于直线l3:x﹣y﹣1=0的直线l4的方程;(2)若直线l5:ax﹣2y+1=0与直线l2垂直,求a.18.(12分)某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.(Ⅰ)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差S12、S22,并根据结果,你认为应该选派哪一个班的学生参加决赛?(Ⅱ)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.19.(12分)一次学科测试成绩的频率分布直方图都受到不同程度的污损,可见部分如图.已知50~60分的有两个数,60~70分的有7个数,70~80分的有10个数,(1)求参加测试的总人数及分数在[80,90)之间的人数,补齐频率分布直方图;(2)请由频率分布直方图估计平均成绩和该组数据的中位数.20.(13分)已知⊙C的圆心C(3,1),被x轴截得的弦长为4.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.21.(14分)如图,圆O:x2+y2=4与坐标轴交于点A,B,C.(1)求与直线AC垂直的圆的切线方程;(2)设点M是圆上任意一点(不在坐标轴上),直线CM交x轴于点D,直线BM交直线AC于点N,①若D点坐标为(2,0),求弦CM的长;②求证:2k ND﹣k MB为定值.2014-2015学年湖北省武汉市部分重点中学联考高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(50分)1.(5分)直线x+y+3=0的倾斜角是()A.B. C.D.【解答】解:直线x+y+3=0的斜率为:﹣,倾斜角为α,所以tan,∴α=.故选:D.2.(5分)以圆x2﹣2x+y2=0的圆心为圆心,半径为2的圆的方程()A.(x+1)2+y2=2 B.(x﹣1)2+y2=2 C.(x+1)2+y2=4 D.(x﹣1)2+y2=4【解答】解:∵圆x2﹣2x+y2=0的圆心为(1,0),∴以圆x2﹣2x+y2=0的圆心为圆心,半径为2的圆的方程为(x﹣1)2+y2=4.故选:D.3.(5分)若P(A∪B)=P(A)+P(B)=1,事件A与事件B的关系是()A.互斥不对立B.对立不互斥C.互斥且对立D.以上答案都不对【解答】解:若是在同一试验下,由P(A∪B)=P(A)+P(B)=1,说明事件A 与事件B一定是对立事件,但若在不同试验下,虽然有P(A∪B)=P(A)+P(B)=1,但事件A和B也不见得对立,所以事件A与B的关系是不确定的.故选:D.4.(5分)已知x、y取值如表:画散点图分析可知:y与x线性相关,且求得回归方程为=bx+a中a=50,猜想x=4时,y的值为()A.40 B.42 C.44 D.46【解答】解:因为回归直线方程经过样本中心,所以==10.==30.=bx+a中a=50,可得30=10b+50,b=﹣2,∴回归直线方程为:=﹣2x+50,x=4时,y=42.故选:B.5.(5分)执行如图所示的程序框图,则输出的结果是()A.5 B.7 C.9 D.11【解答】解:由程序框图知:第一次运行S=1+2=3,k=1+2=3;第二次运行S=1+2+6=9.k=3+2=5;第三次运行S=1+2+6+10=19,k=5+2=7;第四次运行S=1+2+6+10+14=33,k=7+2=9;此时不满足条件S<20,程序运行终止,输出k=9.故选:C.6.(5分)在区间[0,2]上随机取两个数x,y其中满足y≥2x的概率是()A.B.C.D.【解答】解:在区间[0,2]上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为=1,∴所求的概率为.故选:B.7.(5分)在下列各数中,最大的数是()A.85(9)B.200(6)C.68(11)D.70【解答】解:85=8×91+5=77;(9)200(6)=2×62=72;68(11)=6×111+8×110=74;70;最大,故85(9)故选:A.8.(5分)用随机模拟方法,近似计算由曲线y=x2及直线y=1所围成部分的面积S.利用计算机产生N组数,每组数由区间[0,1]上的两个均匀随机数a1=RAND,b=RAND组成,然后对a1进行变换a=2(a1﹣0.5),由此得到N个点(x i,y i)(i=1,2,…,N).再数出其中满足x i2≤y i≤1(i=1,2,…,N)的点数N1,那么由随机模拟方法可得到的近似值为()A.B.C.D.【解答】解:由题意,对a1进行变换a=2(a1﹣0.5),由此得到N个点(x i,y i)(i=1,2,…,N).再数出其中满足x i2≤y i≤1(i=1,2,…,N)的点数N1,所以由随机模拟方法可得到的近似值为,故选:A.9.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则x0的取值范围是()A.[﹣,]B.[﹣,]C.[﹣2,2]D.[﹣,]【解答】解:易知M(x0,1)在直线y=1上,设圆x2+y2=1与直线y=1的交点为T,显然假设存在点N,使得∠OMN=30°,则必有∠OMN≤∠OMT,所以要是圆上存在点N,使得∠OMN=30°,只需∠OMT≥30°,因为T(0,1),所以只需在Rt△OMT中,tan∠OMT==≥tan30°=,解得,当x 0=0时,显然满足题意,故x 0∈[].故选:A.10.(5分)平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,命题:①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果k与b都是无理数,则直线y=kx+b不经过任何整点;③如果k与b都是有理数,则直线y=kx+b必经过无穷多个整点;④如果直线l经过两个不同的整点,则l必经过无穷多个整点;⑤存在恰经过一个整点的直线;其中的真命题的个数是()A.2 B.3 C.4 D.5【解答】解:对于①,令y=x+,既不与坐标轴平行又不经过任何整点,所以本命题正确;对于②,若k=,b=,则直线y=x+经过(﹣1,0),所以本命题错误;对于③,k=,b=,则直线y=x+不经过任何整点,所以本命题错误;对于④,设y=kx为过原点的直线,若此直线l过不同的整点(x1,y1)和(x2,y2),把两点代入直线l方程得:y1=kx1,y2=kx2,两式相减得:y1﹣y2=k(x1﹣x2),则(x1﹣x2,y1﹣y2)也在直线y=kx上且为整点,通过这种方法得到直线l经过无穷多个整点,所以本命题正确;对于⑤,令直线y=x恰经过整点(0,0),所以本命题正确.综上,命题正确的序号有:①④⑤.故选:B.二、填空题(25分)11.(5分)在空间直角坐标系中,已知两点P1(﹣1,3,5),P2(2,4,﹣3),|P1P2|=.【解答】解:在空间直角坐标系中,已知两点P 1(﹣1,3,5),P2(2,4,﹣3),|P1P2|==.故答案为:.12.(5分)为研究某药物的疗效,选取若干志愿者进行临床研究所有志愿者舒张压数据(单位:kPa)的分组区[12,13),[13,14),[14,15﹚,[15,16﹚,[16,17﹚,将其从左到右的顺序分别编号为第一组,第二组,…第五组,如图是根据试验数据组成的频率分布直方图,已知第一组与第二组共20人,第三组中没有疗效的有6人,则第三组的人数为18.【解答】解:根据频率分布直方图,得;第一组与第二组的频率和是0.24+0.16=0.40,∴样本容量为=50,∴第三组的人数为50×0.36=18.故答案为:18.13.(5分)执行如图程序,输入时a=42,b=31,输出的结果是29.【解答】解:由算法语句知:第一次循环c=42﹣31=11,a=31,b=11;第二次循环c=31﹣11=20,a=11,b=20;第三次循环c=11﹣20=﹣9,a=20,b=﹣9;第四次循环c=20+9=29,a=﹣9,b=29;第五次循环c=﹣9﹣29=﹣38,a=29,b=﹣38<0,满足条件b<0,输出a=29.故答案为:29.14.(5分)在长为3的一条直绳上任意剪两剪刀,得到三条线段,其中有两条长度大于1的概率为.【解答】解:设三段长分别为x,y,3﹣x﹣y,则总样本空间为,其面积为,恰有两条线段的长大于1的事件的空间为或或其面积为,则所求概率为=.故答案为:.15.(5分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为[0,] .【解答】解:设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,化简可得0≤a≤,故答案为:[0,].三、解答题16.(12分)将两颗正方体型骰子投掷一次,求:(1)列举向上的点数之和是8的基本事件,并求向上的点数之和是8概率;(2)求向上的点数之和小于11的概率.【解答】解:将两骰子投掷一次,共有36种情况,向上的点数之和的不同值共11种.(1)设事件A={两骰子向上的点数和为8};事件A1={两骰子向上的点数分别为4和4};事件A2={两骰子向上的点数分别为3和5};事件A3={两骰子向上的点数分别为2和6},则A1与A2、A3互为互斥事件,且A=A1+A2+A3故P(A)=P(A1)+P(A2)+P(A3)=+=,即向上的点数之和是8的概率为;(2)设事件S={两骰子向上的点数之和小于11},(5,6),其对立事件A={两骰子向上的点数和大于等于11},其包含的基本事件为:(6,5)和(6,6),故P(S)=1﹣p(a)=1﹣=,∴向上的点数之和小于11的概率.17.(12分)已知两条直线l1:3x+4y﹣2=0与l2:2x+y+2=0的交点P,(1)求过点P且平行于直线l3:x﹣y﹣1=0的直线l4的方程;(2)若直线l5:ax﹣2y+1=0与直线l2垂直,求a.【解答】解:(1)联立,解得,由平行关系可设直线l4的方程为x﹣y+c=0,代点(﹣2,2)可得c=4,∴直线l4的方程为x﹣y+4=0(2)∵直线l5:ax﹣2y+1=0与直线l2垂直,∴直线l2的斜率为•(﹣2)=﹣1,解得a=118.(12分)某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.(Ⅰ)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差S12、S22,并根据结果,你认为应该选派哪一个班的学生参加决赛?(Ⅱ)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.【解答】解:(Ⅰ)由题意知,解得x=5,y=6.乙班学生的平均数==83,S12=[(74﹣83)2+(82﹣83)2+(84﹣83)2+(85﹣83)2+(90﹣83)2]=35.2,S22=[(73﹣83)2+(75﹣83)2+(86﹣83)2+(90﹣83)2+(91﹣83)2]=73.2,∵甲、乙两班的平均数相等,甲班的方差小,∴应该选派甲班的学生参加决赛.(Ⅱ)成绩在85分及以上的学生一共有5名,其中甲班有2名,乙班有3名,随机抽取2名,至少有1名来自甲班的概率:P=1﹣=0.7.19.(12分)一次学科测试成绩的频率分布直方图都受到不同程度的污损,可见部分如图.已知50~60分的有两个数,60~70分的有7个数,70~80分的有10个数,(1)求参加测试的总人数及分数在[80,90)之间的人数,补齐频率分布直方图;(2)请由频率分布直方图估计平均成绩和该组数据的中位数.【解答】解:(1)成绩在[50,60)内的频数为2,由频率分布直方图可以看出,成绩在[90,100]内同样有2人;由=10×0.008,解得n=25;…(2分)成绩在[80,90)之间的人数为25﹣(2+7+10+2)=4人;∴参加测试人数n=25,分数在[80,90)的人数为4;…(5分)补齐频率分布直方图如图所示;(2)成绩在[60,70)内的频率为=0.28,在[70,80)内的频率为=0.4;…(7分)平均成绩为0.08×55+0.28×65+0.4×75+0.16×85+0.08×95=73.8;…(9分)数据的中位数为x:0.008+0.28+(x﹣70)×0.04=0.5=73.5 (73或者74也算对)…11分即平均成绩为73.8,中位数为73.5(73或者74也算对).…12分20.(13分)已知⊙C的圆心C(3,1),被x轴截得的弦长为4.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.【解答】解:(Ⅰ)设⊙C的半径为r,由题意可知,得r=3.所以⊙C的方程为(x﹣3)2+(y﹣1)2=9.…(4分)(Ⅱ)设A(x1,y1),B(x2,y2),联立,得2x2+(2a﹣8)x+a2﹣2a+1=0.…(6分)x1+x2=4﹣a,x1x2=由于OA⊥OB,可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以2x1x2+a(x1+x2)+a2=0所以2•=0解得a=﹣1,…(10分)判别式△=56﹣16a﹣4a2>0.…(12分)所以a=﹣1.…(13分)21.(14分)如图,圆O:x2+y2=4与坐标轴交于点A,B,C.(1)求与直线AC垂直的圆的切线方程;(2)设点M是圆上任意一点(不在坐标轴上),直线CM交x轴于点D,直线BM交直线AC于点N,①若D点坐标为(2,0),求弦CM的长;②求证:2k ND﹣k MB为定值.【解答】解:(1)由题意,A(﹣2,0),B(2,0),C(0,2),∴直线AC:,即x﹣y+2=0,…(2分)设l:x+y+b=0,∴=2,则b=±2,∴l:x+y±2=0;…(5分)(2)①CM:x+y﹣2=0,圆心到直线CM的距离d==,∴弦CM的长为2=2 …(9分)②设M(x0,y0),则,直线,则,,直线,又l AC:y=x+2AC与BM交点,将,代入得,…(13分)所以,得为定值.…(16分)。
湖北省武汉市第二中学2014-2015学年高二上学期期末考试数学(文)试题考试时间:2015年2月4日 上午9:00—11:00 试卷满分:150分一、选择题:本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1. 下列说法中正确的是 ( ) A. 若事件A 与事件B 是互斥事件, 则()()1P A P B +=; B. 若事件A 与事件B 满足条件: ()()()1P A B P A P B ⋃=+=, 则事件A 与事件B 是 对立事件;C. 一个人打靶时连续射击两次, 则事件 “至少有一次中靶”与事件 “至多有一次中靶”是对立事件;D. 把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁 4人, 每人分得1张, 则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件.2. 用反证法证明命题: “a , b ∈N , 若ab 不能被5整除, 则 a 与b 都不能被5整除”时, 假设的内 容应为 ( ) A. a , b 都能被5整除 B. a , b 不都能被5整除 C. a , b 至少有一个能被5整除 D. a , b 至多有一个能被5整除3. (是虚数单位)则实数a =( )A. B. 2 C. -1 D. -2 4. 下列框图属于流程图的是( )A.B.C.D.5. 若双曲线1522=-mx y 的渐近线方程为35±=y , 则双曲线焦点F 到渐近线的距离为( ) A.2 B.3C.4D. 56. 已知x ,y 之间的一组数据:则y 与x 的线性回归方程ˆybx a =+必过点( )A. (20,16)B. (16,20)C. (4,5)D. (5,4)直线的斜率的取值范围是( )8. 已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点, 则l 的方程是( )A. x +2y +8=0B. x +2y -8=0C. x -2y -8=0D. x -2y +8=0 9. 下列说法中不正确的个数是( )①命题“∀x ∈R ,123+-xx ≤0”的否定是“∃0x ∈R , 12030+-x x >0”;②若“p ∧q ”为假命题, 则p 、q 均为假命题;③“三个互不相等的数a , b , c 成等比数列”是“b =ac ”的既不充分也不必要条件A. 0B. 1C. 2D. 310. 已知12,F F 是椭圆和双曲线的公共焦点, P 是他们的一个公共点, 则椭圆和双曲线的离心率的倒数之和的最大值为( )A.B.C. 3D. 2二、填空题(本大题共 7个小题 ,每小题 5分,共35分)11. 已知高一年级有学生450人, 高二年级有学生750人, 高三年级有学生600人.用分层抽样从该校的这三个年级中抽取一个容量为n 的样本, 且每个学生被抽到的概率为0.02, 则应从高二年级抽取的学生人数为 . 12. 在空间直角坐标系O -xyz 中,y 轴上有一点M 到已知点(4,3,2)A 和点(2,5,4)B 的距离相等, 则点M 的坐标是 . 13. 某学生5天的生活费(单位:元)分别为: x , y , 8, 9, 6. 已知这组数据的平均数为8, 方差为2,14. 如图所示的算法中, 3a e =, 3b π=,c e π=, 其中π是圆周率,2.71828e = 是自然对数的底数, 则输出的结果是 .15. 双曲线2288kx ky -=的一个焦点为(0,3), 则k 的值为___________, 双曲线的渐近线方程 为___________.16. 集合{1,2,3,,}(3)n n ≥中, 每两个相异数作乘积, 将所有这些乘积35++⨯+17. . 如图是双曲线:;②若ac b=2, 则该双曲线是黄金双曲线;③若21,F F 为左右焦点, 21,A A 为左右顶点, 1B (0, b),2B (0,﹣b )且021190=∠A B F , 则该双曲线是黄金双曲线;④若MN 经过右焦点2F 且21F F MN⊥, 090=∠MON ,则该双曲线是黄金双曲线.其中正确命题的序号为 .三、解答题(共5大题,共65分) 18. (12分)命题p :“0],2,1[2≥-∈∀a xx ”, 命题q :“022,0200=-++∈∃a ax x R x ”, 若“p 且q ”为假命题, 求实数a 的取值范围.19. (13分)已知三点P (5, 2)、F 1(-6, 0)、F 2(6, 0).(1) 求以F 1、F 2为焦点且过点P 的椭圆的标准方程;(2) 设点P 、F 1、F 2关于直线y =x 的对称点分别为12',','P FF , 求以12','F F 为焦点且过'P 点的双曲线的标准方程.20. (13分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏, 但可见部分如下,据此解答如下问题.(1) 求全班人数及分数在[)90,80之间的频数;(2) 估计该班的平均分数, 并计算频率分布直方图中[)90,80间的矩形的高;(3) 若要从分数在[80, 100]之间的试卷中任取两份分析学生失分情况, 在抽取的试卷中, 求至少有一份分数在[90, 100]之间的概率.21. (13分)如图, 在三棱柱111C B A ABC -中, 侧棱⊥1AA 底面ABC,AB BC⊥, D 为AC的中点,1 2.A A AB ==(1) 求证://1AB 平面D BC 1;(2) 过点B 作AC BE ⊥于点E ,求证: 直线⊥BE平面CC AA 11;(3) 若四棱锥D C AA B 11-的体积为3, 求BC 的长度.22. (14分)在平面直角坐标系xOy 中, 已知点A (-1, 1), P 是动点, 且△POA 的三边所在直线的斜率满足k OP +k OA =k P A .(1) 求点P 的轨迹C 的方程;(2) 若Q 是轨迹C 上异于点P 的一个点, 且PQ =λOA , 直线OP 与QA 交于点M , 问: 是否存在点P , 使得△PQA 和△P AM 的面积满足S △PQA =2S △P AM ? 若存在, 求出点P 的坐标; 若不存在, 说明理由.武汉二中2014——2015学年上学期高二年级期末考试数学(文科)试卷参考答案11. 1512. (0,4,0)M 13. 3 14. 3π15. -1; 16. 32217. ①②③④18. ),1()1,2(+∞-∈ a∴⊿=4a 2-4(2-a )≥0,即,a ≥1或a ≤-2, p 真q 也真时 ∴a ≤-2,或a =1 若“p 且q ”为假命题 , 即),1()1,2(+∞-∈ a . 考点: 全称命题与特称命题; 简易逻辑.19. (12【解析】试题分析: (1)根据椭圆的定义, 又6c =, 利用222ab c =+, 可求出c , 从而得出椭圆的标准方程, 本题要充分利用椭圆的定义.(2)由于F 1、F 2关于直线y x =的对称点在y 轴上, 且关于原点对称, 故所求双曲线方程为标准方程, 同样利用双曲线的定义有又6c =, 要注意的是双曲线中有222ab c +=, 故也能很快求出结论.试题解析:6c =,2a a ==3b =(2)点P (5, 2)、(-6, 0)、(6, 0)关于直线y =x 的对称点分别为:'(2,5)P , 1'(0,6)F -, 2'(0,6)F , 设2a a ==4b =,考点: (1)椭圆的标准方程; (2)双曲线的标准方程.20. 解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯全班人数为.2508.02=所以分数在[)90,80之间的频数为42107225=----(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分 为60×7+2+3+3+5+6+8+9=456;分数在[)80,70之间的总分数为70×10+1+2+3+3+4+5+6+7+8+9=747;分数在[)90,80 之间的总分约为85×4=340;分数在]100,90[之间的总分数为95+98=193;所以,该班的平均分数为.7425193340747456114=++++估计平均分时,以下解法也给分:分数在[)60,50之间的频率为2/25=0.08;分数在[)70,60之间的频率为7/25=0.28;分数在 [)80,70之间的频率为10/25=0.40;分数在[)90,80之间的频率为4/25=0.16分数在 ]100,90[之间的频率为2/25=0.08; 所以,该班的平均分约为8.7308.09516.08540.07528.06508.055=⨯+⨯+⨯+⨯+⨯频率分布直方图中[)90,80间的矩形的高为.016.010254=÷(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6, 在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6);(2,3),(2,4),(2,5),(2,6);(3,4),(3,5),(3,6),(4,5),(4,6);(5,6)共15个,其中,至少有一个在[90,100]之间的基本事件有9个,故至少有一份分数在[90,1000]之间的频率是6.0159=21. (1)证明:连接,1C B 设O BC C B =⋂11,连接,OD ………1分 11B BCC 是平行四边形, ∴点O 是C B 1的中点,D 是AC 的中点, ∴OD 是C AB 1∆的中位线,∴OD AB //1…………………………………………3分 又D BC D,BC 111平面平面⊂⊄OD AB∴ AB 1//平面BC 1D …………………………………………5分 (2) ABC,BE ABC,1平面平面⊂⊥A A∴BE,A 1⊥A ………………………………………7分,又A A A AC AC,BE 1=⋂⊥……………………9分∴直线BE ⊥平面C C AA 11………………………………………10分 (2)的解法2:ABC C C AA C,C AA A A ABC,111111平面平面平面平面⊥∴⊂⊥A A ……7分 ABC,BE AC,BE AC,ABC C C AA 11平面平面又平面⊂⊥=⋂ ∴直线BE ⊥平面C C AA 11………………………………………10分 (3) 3【解析】(1)连接B 1C ,设O BC C B =⋂11,连接,OD 证明OD AB //1即可. (2) 因为BE AC ⊥,再证1A BE A ⊥即可.(3) 再根据311AA C DV=建立关于x 的方程, 解出x 值.由(2)知BE 的长度是四棱锥B —AA 1C 1D 的体高1 2.A A AB ==分………………13分3BC 3,x =∴=∴ …………………………………………………14分 22. (1)y =x 2(x ≠0且x ≠-1)(2)(1, 1)【解析】(1)设点P (x , y )为所求轨迹上的任意一点, 则由k OP +k OA =k P A整理得轨迹C 的方程为y =x 2(x ≠0且x ≠-1).(2)设P (x 1,21x ), Q (x 2,22x , M (x 0, y 0),由PQ =λOA 可知直线PQ ∥OA , 则k PQ =k OA , 即x 2+x 1=-1, 由O 、M 、P 三点共线可知,OM=(x 0, y 0)与OP =(x 1,21x )共线,∴x 021x -x 1y 0=0, 由(1)知x 1≠0, 故y 0=x 0x 1,同理, 由AM =(x 0+1, y 0-1)与AQ =(x 2+1,22x -1)共线可知(x 0+1)(22x -1)-(x 2+1)(y 0-1)=0, 即(x 2+1)[(x 0+1)·(x 2-1)-(y 0-1)]=0,由(1)知x 2≠-1, 故(x 0+1)(x 2-1)-(y 0-1)=0,将y 0=x 0x 1, x 2=-1-x 1代入上式得(x 0+1)(-2-x 1)-(x 0x 1-1)=0,整理得-2x 0(x 1+1)=x 1+1, 由x 1≠-1得x 0由S △PQA =2S △P AM , 得到QA =2AM ,∵PQ ∥OA , ∴OP =2OM , ∴PO =2OM , ∴x 1=1, ∴P 的坐标为(1, 1)。
湖北省部分重点中学2013-2014学年高二下学期期中考试文科数学试卷(解析版)一、选择题1( )A【答案】B【解析】试题分析:根据题意可知条件中表示的是焦点在y轴上抛物线,2p=4,p=2,而焦点坐标为B.考点:抛物线的焦点坐标.2()AC【答案】D【解析】试题分析:∵,∴考点:常见基本函数的导函数.3)A BC D【答案】D【解析】试题分析:.∵-1<b<0,a<0,∴ab(1-b)>0,a(b+1)(b-1)>0即ab>ab2>a.考点:作差法证明不等式.4p的值为()A【答案】C【解析】试题分析:双曲线的右焦点坐标为(2,0),而抛物线的焦点坐标为,p=4.考点:抛物线与双曲线的焦点坐标.5R上可导)【答案】A【解析】试题分析:∵f(x)=x2x=2可得∴f(x)=x2-8x+3考点:导数的运用.6则这一定点的坐标是()A.(2,0) C.(4,0) D【答案】B【解析】F坐标为(2,0),准线方程为直线x=-2,根据抛物线的定义,取抛物线上任意一点P,则R=PH=PF,因此所画的圆必过焦点(2,0).考点:抛物线的定义.7,为( )【答案】D【解析】试题分析:根据f(x)的示意图,可得f(x)而f(x)对照四个选项,只有D符合.考点:导数的运用.8P到y P( )A【答案】C【解析】试题分析:如图,可知抛物线焦点F(2,0),准线为x=-1,根据抛物线的定义,∴d1+d2=PM+PN-1=PM+PF-1≥FM-1≥d-1,d为F到l的距离,d1+d2考点:抛物线的定义求线段和差最值问题.9.椭圆22221x y a b+=(0)a b >>的一个焦点为短轴为直径的圆与线段1PF 相切于该线段的中点,则椭圆的离心率为( )A .53 B.23 C.59D 【答案】A 【解析】 试题分析:画出如下示意图.可知0M 为△PF 1F 2的中位线,∴PF 2=2OM=2b ,∴PF 1=2a-PF 2=2a-2b ,又∵M 为PF 1的中点,∴MF 1=a-b ,∴在Rt △OMF 1中,由OM 2+MF 12=OF 12,可得(a-b)2+b 2=c 2=a 2-b 2.可得2a=3b ,进而可得离心率考点:椭圆与圆综合问题.10.设三次函数()f x 的导函数为f 则( )ABCD【答案】D 【解析】试题分析:从图中可以看出函数-3,0,3,∴-3,3零点,且当x<-3,同理可得,当x>3,∴f(x)有极大值f(3),极小值f(-3).考点:利用导数判断函数单调性.二、填空题11的值为 .【答案】-32【解析】试题分析:由题意可得,a=2,又∵,∴c=3a=6,∴b 2=c 2-a 2=36-4=32,而k=-b 2,∴k=-32考点:双曲线离心率的计算.12为 . 【答案】3 【解析】试题分析:∵P 抛物线焦点坐标为(1,0),准线方程为x=-1,∴PF=x+1=4,x=3.考点:抛物线的定义.13ab的最大值为.【答案】9【解析】∵f(x)在x=1处取极值,即a+b=6ab的最小值为9.考点:导数的运用,基本不等式求最值.14集是.【答案】(-1,2)【解析】试题分析:ax-b<0,ax<b,∵原不等式的解集是,∴a<0,a=b,(x+1)(x-2)<0,∴不等式的解集是(-1,2).考点:解不等式.15_______.【答案】9【解析】试题分析:∵a+b=ab,∴,∴“=”成立,∴最小值为9.考点:基本不等式求最值.16标为2长为.【解析】试题分析:∵A(x 1,y 1),B(x 2,y 2),因为AB 中点M 的纵坐标为2,∴y 1+y 2=4,而AB=AF+BF=y 121+y 2考点:抛物线的定义.17_______. 【答案】 【解析】∴f(x)在上单调递增,由题意f(x)在其定义域的一个子区间(k-1,k+1)考点:利用导数判断函数的单调性.三、解答题18(1(2【答案】(1(2)-1<m<2.【解析】 试题分析:(1)利用分类讨论将原不等式中的绝对值号去掉,可得原不等式等价于(2f(x)的最小值后,解关于m 的一元二次不等式即可.(1分;(2分.考点:1、解绝对值不等式;2、恒成立问题的处理方法.19(1(2【答案】(1)f(x)最小值是1;(2)a【解析】试题分析:(1)可以对f(x)求导,从而得到f(x)的单调性,即可求得f(x)的最小值;(2)根据条件“若f(x)单调减函数”,说明f”(x)<0成立,而f’a的取a的取值范围即a(1∴f(x)在(0,1)1 6分(29分分考点:1、利用函数的导函数讨论函数的单调性;2、恒成立问题的处理方法.20.(1(2.【答案】(1(2)直线PQ的方程:x+y-6=0,【解析】试题分析:(1)设圆心C的坐标为(x,y),根据题意可以得到关于x,y的方程组,消去参数以后即可得到x,y所满足的关系式,即圆心C的轨迹M的方程;(2)设点P根据题意可以把l’用含x0的代数式表示出,由经过点A(0,6)可以求得点P的坐标与l’的方程,再联立(1)中M的轨迹方程,即可求出Q的坐标,从而得到|PQ|d的长.(1)设动圆圆心C的坐标为(x,y),动圆半径为R,则|y+1|=R 2由于圆C1在直线l的上方,所以动圆C的圆心C应该在直线l的上方,所以有y+1>0,从而即为动圆圆心C的轨迹M的方程. 5分(2)如图示,设点P可得直线PQ所以直线PQA(0,6),所以有P P坐标为(4,2),直线PQ的方程为x+y-6=0. 9分把直线PQ的方程与轨迹M x=-12或4分21x为B A,B为焦点,其顶点均为坐标原点OP.(1)求椭圆C(2OP垂直,且与椭圆C交于不同的两点M,N【答案】(1)椭圆抛物线C1C2(2【解析】试题分析:(1)由题意可得A(a,0),B(0,而抛物线C1,C2分别是以A、B为焦点,∴可求得C2C1C1与C2的交点在直线(2)直线OP设M、N,将直线方程与椭圆方程联立,利用解析几何中处理直线与圆锥曲线中常用的“设而不求”思想,可以得到结合韦达定理,.(1)由题意可得A (a ,0),B (0,故抛物线C 1C 2的方程分分∴椭圆,抛物线C 1物线C 2:分; (2)由(1)知,直线OP设M、N分C分∴分分考点:1、圆锥曲线解析式的求解;2、直线与椭圆相交综合.22(1)的切线方程;(2)若函数既有极大值,又有极小值,且当时,.【答案】(1)函数的单调递增区间是:(1,3);(2【解析】试题分析:(1)①:当m=2时,可以得到f(x)f(x)的单调区间;②:的值,即切线方程的斜率,在由过(0,0)即可求得f(x)在(0,0)处的切线方程;(2) f(x)即有极大值,又有极小值,说有两个不同的零点,时,恒成立,[0,4m]上的单调性,即可求把m的代数式表示出,从而建立关于m的不等式.(1)当m=2分x=1或x=3 2分∴函数的单调递增区间是:(1,3) 4分y=f(x)的图象在点(0,0)处的切线方程为y=3x 6分;(2)因为函数f(x)根,则有分可.,分∴g(x)分分∴m分..考点:1、利用导数求函数的单调区间和切线方程;2、恒成立问题的处理方法.。
湖北省部分重点中学2013-2014学年高二下学期期中考试 数学文试题 本试卷满分150分 答题时间 120分钟★祝考试顺利★ 注意事项:1.答卷前考生务必将自己的姓名、准考证号填写在试卷和答题卡上。
2.选择题作答:每小题选出答案后,将答案填在答题卡上的对应题号后,答在其他位置无效。
3.填空题和解答题作答:直接答在答题卡上对应的区域内,答在其他位置一律无效,答在对应区域外、填错答题区域均无效。
一.选择题:共10小题,每题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛物线y x 42=的焦点坐标是( ) A. )1,0(- B. )1,0( C. )0,1( D. )0,1(-2.若x x x y cos 33++=错误!未找到引用源。
,则'y 错误!未找到引用源。
等于 ( )A. 错误!未找到引用源。
B .错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
3.已知:10b -<<,0<a ,那么下列不等式成立的是( ) A .2ab ab a >> B .a ab ab >>2C .2ab a ab >> D .a ab ab >>24.若抛物线px y 22=的焦点与双曲线1322=-y x 的右焦点重合,则p 的值为( )A.4-B. 2-C. 4D.25.若)(x f 在R 上可导,3)2('2)(2++=x f x x f ,则=')3(f ( ) A.2- B.2 C.12- D.126.以抛物线x y 82=上的任意一点为圆心作圆与直线02=+x 相切,这些圆必过一定点,则这一定点的坐标是( )A .)2,0(B .(2,0)C .(4,0)D . )4,0(7.设函数)(x f 在定义域内可导,)(x f y =的图象如下右图所示,则导函数)(x f y '=可能为( )8.已知抛物线方程为24y x =,直线l 的方程为40x y -+=,在抛物线上有一动点P 到y 轴的距离为1d ,P 到直线l 的距离为2d ,则12d d +的最小值为( )A2+B1+1- D2-9.椭圆22221x y ab +=(0)a b >>的一个焦点为1F ,若椭圆上存在一个点P ,满足以椭圆短轴为直径的圆与线段1PF 相切于该线段的中点,则椭圆的离心率为( )A. B.23 C.59D.10.设三次函数()f x 的导函数为)(x f ',函数)(x f x y '⋅=的图象的一部分如下图所示,则( )A .()f x极大值为f,极小值为(f B .()f x极大值为(f,极小值为fC .()f x 极大值为(3)f -,极小值为(3)fD .()f x 极大值为(3)f ,极小值为(3)f -二.填空题:本大题共7个小题,每小题5分,共35分11.双曲线24x +k y 2=1的离心率3e =,则k 的值为12.点P 是抛物线24y x =上一点,P 到该抛物线焦点的距离为4,则点P 的横坐标为13.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则 ab 的最大值为14.已知关于x 的不等式0<-b ax 的解集是(1,)+∞,则关于x 的不等式02ax bx +>-的解集是 .15. 已知,a b R +∈,且a b ab +=,则4a b +的最小值是_______16.过抛物线218x y=的焦点作直线交抛物线于A B 、两点,线段AB 的中点M 的纵坐标为2,则线段AB 长为 .17. 若函数x x x f ln 2)(2-= 在其定义域的一个子区间()1,1+-k k 上不是单调函数,则实数k 的取值范围_______三.解答题:本大题共5个小题,共65分,解答写出文字说明、证明过程或演算步骤。
湖北省部分重点中学2013-2014学年度上学期高二期末考试数 学 试 卷(含答案)一、 选择题(每小题5分,共50分)1. 两个三角形全等是这两个三角形相似的( )(A )充分但不必要条件 (B )必要但不充分条件 (C )充要条件 (D )既不充分又不必要条件 2. 命题“所有实数的平方是非负实数”的否定是( ) (A )所有实数的平方是负实数(B )不存在一个实数,它的平方是负实数 (C )存在一个实数,它的平方是负实数 (D )不存在一个实数它的平方是非负实数3. 若椭圆经过原点,且焦点分别为12(0,1),(0,3)F F ,则其离心率为( )3211()()()()4324A B C D4. 若双曲线2214y x k +=的离心率(1,2)e ∈,则k 的取值范围是( ) ()(,0)()(3,0)()(12,0)()(60,12)A B C D -∞----5. 已知7270127(12)x a a x a x a x -=++++,那么127a a a +++=( )()2()0()2()1A B C D -6. 三名学生与两名老师并排站成一排。
如果老师甲必须排在老师乙的左边,且两名老师必须相邻,那么不同的排法共有( )种。
()60()48()36()24A B C D7. 若X 是离散型随机变量,1221(),()33P x x P x x ====,且12x x <,又已知42(),()39E x D x ==,则12x x +=( ) 5711()()()3()333A B C D8. 如果方程221(0,0)x y p q p q+=<<-表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是( )2222()1()122x y x y A B q p q q p p+=+=-++2222()1()122x y x y C D p q q p q p+=+=-++9. 在平面直角坐标系中,若方程222(21)(23)m x y y x y +++=-+表示的曲线为椭圆,则m 的取值范围是( )()(0,1)()(1,)()(0,5)()(5,)A B C D +∞+∞10. 若椭圆22143x y +=上有n 个不同的点123,,,,n P P P P F 为右焦点,{}iPF 组成公差1100d >的等差数列,则n 的最大值为( ) ()199()200()99()100A B C D二、 填空题(每小题5分,共25分)11. 与双曲线2244x y -=有共同的渐近线,并且经过点(2,3)的双曲线是 。
湖北省部分重点中学2013—2014学年度上学期高二期末考试 数 学 试 卷(文科)命题人:武汉中学 杨银舟 审题人:洪山高中 高珺 2014.1.16一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是“集合”的知识结构图,如果要加入“子集”,则应该放在( )A.“集合的概念”的下位B.“集合的表示”的下位C.“基本关系”的下位D.“基本运算”的下位2.已知(12)43i z i +=+,则zz =A .543i -B .543i +C .534i +D .534i -3.为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做100次和150次试验,并且利用线性回归方法,求得回归直线分别为1t和2t ,已知两人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( ) A .1t和2t 有交点(),s t B .1t 与2t 相交,但交点不一定是(),s tC .1t与2t 必定平行 D .1t 与2t 必定重合4.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的。
下列说法中正确的是( )A .100个心脏病患者中至少有99人打酣B ..1个人患心脏病,那么这个人有99%的概率打酣C .在100个心脏病患者中一定有打酣的人D .在100个心脏病患者中可能一个打酣的人都没有5.设a R ∈,则1>a 是11<a的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件6.命题:p 若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件;命题:q函数y =的定义域是(][),13,-∞-+∞,则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真7.过椭圆1422=+y x 右焦点且斜率为1的直线被椭圆截得的弦MN 的长为( )A .58B .528C .538D .5168.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若Q PF 1∆是钝角三角形,则双曲线的离心率e 范围是( ) A .()12,1+ B .()22,1+ C .()+∞+,12 D .(),,22+∞+9.右图1是一个水平摆放的小正方体木块,图2、图3是由这样的小正方体木块叠放而成,按照这样的规律继续逐个叠放下去,那么在第七个叠放的图形中小正方体木块数应是( )A .25B .66C .91D .12010.我们把离心率为e =5+12的双曲线22221x y a b -=(a>0,b>0)称为黄金双曲线.如图,21,A A 是双曲线 的实轴顶点,21,B B 是虚轴的顶点,21,F F N M ,在双曲线上且过右焦点2F ,并且x MN ⊥轴,给出以下几个说法:①双曲线x2=1是黄金双曲线;②若b2=ac ,则该双曲线是黄金双曲线;③如图,若∠F1B1A2=90°,则该双曲线是黄金双曲线; ④如图,若∠MON =90°,则该双曲线是黄金双曲线. 其中正确的是( )A .①②④B .①②③C .②③④D .①②③④二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11. 若命题p :∀x ,y ∈R ,x2+y2-1>0,则该命题p 的否定是 .y12.在复平面内,复数2i1i z =+(i 为虚数单位)的共轭复数对应的点位于第 象限.13.椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是 .14.已知()f x =,分别求(0)(1)f f +,(1)(2)f f -+,(2)(3)f f -+,然后归纳猜想一般性结论()()=++-x f x f 1 .15.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量L /mg P 与时间t h间的关系为kte P P -=0.如果在前5个小时消除了10%的污染物,则10小时后还剩__________%的污染物.16.甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人. 根据以上数据建立一个22⨯的列联表如下:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++;n a b c d =+++根据以上信息,在答题卡上填写以上表格,通过计算对照参考数据,有_____的把握认为“成绩与班级有关系” .17.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1(-c,0)、F2(c,0).若双曲线上存在点P ,使sin ∠PF1F2sin ∠PF2F1=ac,则该双曲线的离心率的取值范围是________.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)已知0208:2≤--x x p ;)0(012:22>≤-+-m m x x q ,若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围. 19.(本小题满分13分)下面的(a)、(b)、(c)、(d)为四个平面图.(1)数一数,每个平面图各有多少个顶点?多少条边?它们分别围成了多少个区域?请将结果填入下表(按填好的例子做).(2)(3)现已知某个平面图有2014个顶点,且围成了2014个区域,试根据以上关系确定这个平面图的边数. 20.(本小题满分13分) 平面内与两定点()0,1a A -、()0,2a A(0a >)连线的斜率之积等于非零常数m 的点的轨迹,加上A 、2A 两点所成的曲线C 可以是圆、椭圆或双曲线.求曲线C 的方程,并讨论C 的形状与m 值得关系. 21.(本小题满分13分)若0>>>>d c b a ,且c b d a +=+,求证:c b a d +<+22.(本小题满分14分)已知椭圆C 的中心在坐标原点,焦点在x 轴上且过点1)2P . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)直线l 过点(1,0)E -且与椭圆C 交于A ,B 两点,若2EA EB=,求直线l 的方程.湖北省部分重点中学2013—2014学年度上学期高二期末考试数学(文科)试题参考答案及评分标准一、选择题1.C 2.B 3.A 4.D 5.C 6.D 7.A 8.C 9.C 10.D 二、填空题11.∃x ∈R ,x 2+y 2-1≤0 12.四(或者4,Ⅳ) 13.⎪⎪⎭⎫⎝⎛-553,553 14.3315. ()12,1+ 三、解答题 16.(本小题满分12分)解析:0208:2>--⌝x x p ,所以10,2>-<x x , 令{}10,2>-<=x x x A ………………………4分012:22>-+-⌝m x x q ,即m x m x +>-<1,1,令{}m x m x x B +>-<=1,1………………………8分p ⌝是q ⌝的必要非充分条件,B∴A ,即129,9110m m m m -<-⎧⇒>∴>⎨+>⎩.……………………12分 当21-=-m 即3=m 成立,当101=+m ,即9=m 成立,所以9≥m ……12分 17.(本小题满分12分)(2)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由此可得:2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………12分18.(本小题满分12分) 解析:(1)填表如下:(2)由上表可以看出,所给的四个平面图的顶点数、边数及区域数之间有下述关系: 4+3-6=1;8+5-12=1;6+4-9=1;10+6-15=1由此,我们可以推断:任何平面图的顶点数、边数及区域数之间,都有下述关系: 顶点数+区域数-边数=1. ………………………………8分(3)由(2)中所得出的关系,可知所求平面图的边数为:边数=顶点数+区域数-1=2014+2014-1=4027. …………12分 19.(本小题满分13分)解析:设动点为M ,其坐标为()y x ,,当a x ±≠时,由条件可得m a x y a x y a x y k k MA MA =-=+⋅-=⋅22221 即222may mx =-()a x ±≠, 又()()0,,0,21a A a A -的坐标满足222ma y mx =-,故依题意,曲线C 的方程为222ma y mx =-.………4分 当1-<m 时,曲线C 的方程为12222=-+ma y a x ,C 是焦点在y 轴上的椭圆; ……………………6分 当1-=m 时,曲线C 的方程为222a y x =+,C 是圆心在原点的圆; ……………………8分当01<<-m 时,曲线C 的方程为12222=-+ma y a x ,C 是焦点在x 轴上的椭圆; …………………10分当0>m 时,曲线C 的方程为12222=-may a x ,C 是焦点在x 轴上的双曲线. ……………………12分 20.(本小题满分13分) 若0>>>>d c b a 且c b d a +=+,求证:c b a d +<+【证明】要证c b a d +<+,只需证22)()(c b a d +<+即bc c b ad d a 22++<++,因c b d a +=+, 只需证bc ad <即bc ad <, ………………6分因为a c b d -+=,则=-bc ad ()bc a c b a --+bc a ac ab --+=2()()c a a b c a ---=()()a b c a --= ………………10分因为0>>>>d c b a ,所以0>-c a ,0<-a d 从而0<-bc ad 所以c b a d +<+. ………………13分22.(本小题满分14分)解:(Ⅰ)设椭圆C 的方程为22221x y a b+=(0)a b >>.由已知可得222223114.c a a b a b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,………………………………3分解得24a =,21b =.故椭圆C 的方程为2214x y +=.…………………………………………6分 (Ⅱ)由已知,若直线l 的斜率不存在,则过点(1,0)E -的直线l 的方程为1x =-,此时(1(1A B --,,,显然2EA EB =不成立.……………7分若直线l 的斜率存在,则设直线l 的方程为(1)y k x =+.则2214(1).x y y k x ⎧+=⎪⎨⎪=+⎩, 整理得2222(41)8440k x k x k +++-=.………………………………9分 由2222(8)4(41)(44)k k k ∆=-+- 248160k =+>. 设1122()()A x y B x y ,,,.故2122841k x x k +=-+,① 21224441k x x k -=+. ②…………………10分因为2EA EB =,即1223x x +=-.③①②③联立解得k =. ……………………13分 所以直线l60y +=60y -=.………14分。
湖北省武汉市部分重点中学2012-2013学年度上学期高二期末考试数 学 试 卷 (文)全卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数12z i=+对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限2.“2<a ”是“022<-a a ”的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件3. 如果椭圆13610022=+y x 上一点P 到焦点1F 的距离等于6,那么点P 到另一焦点2F 的距离是A. 14B. 16C.4 D 64.与命题“能被6整除的整数,一定能被3整除”等价的命题是 A .能被3整除的整数,一定能被6整除 B .不能被3整除的整数,一定不能被6整除 C .不能被6整除的整数,一定不能被3整除 D .不能被6整除的整数,不一定能被3整除5. 已知ABC ∆中, 30=∠A ,60=∠B ,求证b a <.证明:B A B A ∠<∠∴=∠=∠,60,30,b a <∴,画线部分是演绎推理的A .大前提B .结论C .小前提D .三段论 6.有如下四个命题:①命题“若2320x x -+=,则1x =“的逆否命题为“若21,320x x x ≠-+≠则”②若命题2:R,10p x x x ∃∈++=,则10p x R x x ⌝∀∈++≠2为:, ③若p q ∧为假命题,则p ,q 均为假命题 ④“2x >”是“2320x x -+>”的充分不必要条件其中错误..命题的个数是 A .0个 B. 1个 C.2个 D.3个7.甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:A .甲B .乙C .丙D .丁 8.设x y R ∈、则“x ≥2且y ≥2”是“22x y +≥4”的A. 充分不必要条件B.必要不充分条件C. 充要条件D.即不充分也不必要条件9.若三角形内切圆半径为r ,三边长分别为c b a ,,,则三角形的面积为)(21c b a r s ++=,根据类比思想,若四面体内切球半径为R ,四个面的面积分别为4321,,,S S S S ,则这个四面体的体积为A.)(614321S S S S R v +++=B.)(414321S S S S R v +++= C.)(314321S S S S R v +++=D.)(214321S S S S R v +++= 10.已知椭圆22221(0)x y a b a b+=>>,,M N 是椭圆上关于原点对称的两点,P 是椭圆上任意一点,且直线PM PN 、的斜率分别为12k k 、,若1214k k =,则椭圆的离心率为A.12 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分.11.z 1=m (m -1)+(m -1)i 是纯虚数.则实数m 的值 。
湖北省部分重点中学2014——2015学年度上学期高二期末考试文科数学参考答案一、选择题11. 1 12.8 14.71 15.6174 16. (,1)-∞- 17.三、解答题:18. 解:(1)若p 为真,则:02124)1(2≥⨯⨯--=∆m 解得:1-≤m 或3≥m若q 为真,则:⎩⎨⎧>++>082822m m m解得:24-<<-m 或4>m ……………………4分“p ∨q ”为真命题,“p∧q ”为假命题,p q ∴一真一假…………………6分 若p 真q 假,则:13244m m m m ≤-≥⎧⎨-≤≤≤-⎩或或解得:341m m ≤≤≤≤-或-2或4m ≤-若p 假q 真,则:13424m m m -<<⎧⎨-<<->⎩或解集为φ ………………………10分 综上,实数m 的取值范围为:341m m ≤≤≤≤-或-2或4m ≤-……………12分 19.解:(1)画出坐标系,把所给的五组点的坐标描到坐标系中,作出散点图如图所示:从散点图中发现宣传费支出与销售额近似成线性相关关系. ………………4分 (2)x = 5525= ,y =5250=50, 51()()130i i i x x y y =--=∑, 521()20i i x x =-=∑51521()()ˆˆˆ6.5,17.5()iii ii x x y y bay bx x x ==--∴===-=-∑∑ …………………………9分 ∴所求回归直线方程ˆ 6.517.5yx =+ ……………………10分 (3)由上面求得的回归直线方程可知,当10x =万元时,ˆ 6.51017.582.5y=⋅+=(万元). 即这种产品的销售额大约为82.5万元。
…………………12分 20.解:(1)∵平面ABCD ⊥平面ABE ,面ABCD面ABE AB =,BC AB ⊥,BC ⊂面ABCD ,∴BC ⊥面ABE . 又∵AE ⊂面ABE ,∴BC AE ⊥. ∵E 在以AB 为直径的半圆上, ∴AE BE ⊥, 又∵BEBC B =,BC BE ⊂、面BCE ,∴AE ⊥面BCE . 又∵CE ⊂面BCE ,∴EA EC ⊥. ……………………… 5分(2)① ∵//AB CD ,AB ⊄面CED ,CD ⊂面CED ,∴//AB 平面CED . 又∵AB ⊂面ABE ,平面ABE平面CED EF =,∴//AB EF . ……………… 8分 ②取AB 中点O ,EF 的中点'O , 在'RT OO F ∆中,1OF =,1'2O F =,∴'OO = 由(1)得:BC ⊥面ABE ,又已知//AD BC ,∴AD ⊥平面ABE .故13E ADF D AEF AEF V V S AD --∆==⋅⋅11'32EF OO AD =⋅⋅⋅⋅=. … 13分 21.解:(1) 若1212,,,,1n n a a a R a a a ∈+++=.求证:222121n a a a n+++≥. 6分(2) 构造函数2222222121212()()()()2()n n n f x x a x a x a nx a a a x a a a =-+-++-=-+++++++∵对一切x R ∈,恒有()0f x ≥, ∴22212124()4()0n n a a a n a a a ∆=+++-+++≤.从而得22212121nn a a a a a a nn++++++≥=. 14分22.解 (1)解:由||||,//2121B F A F B F A F =,得21||||||||1212==A F B F EF EF ,从而2122=+-c ca cc a ,整理得223c a =,故离心率33==a c e …………4分 (2)解:由(1)知,22222c c a b =-=,所以椭圆的方程可以写为222632c y x =+设直线AB 的方程为)(2ca x k y -=即)3(c x k y -= 设),(),(2211y x B y x A ,则它们的坐标满足方程组⎩⎨⎧=+-=222632)3(c y x c x k y 消去y 整理,得062718)32(222222=-+-+c c k cx k x k 依题意,3333,0)31(4822<<->-=∆k k c 而212218,23k c x x k +=+①,22212227623k c c x x k -=+②由题设知,点B 为线段AE 的中点,所以2123x c x =+ ③联立①③式,解得2212229292,2323k c c k c cx x k k -+==++,将结果代入②中解得32±=k …………………………………9分另解:2221122222236(1)236(2)x y c x y c ⎧+=⎪⎨+=⎪⎩,1224(2)(1)y y =∴⨯-又得:1222222211211149,32(3)90,x x c x c x x c x c x y -=+=∴+-=∴==又所以,32±=k (3)由(2)知,23,021c x x ==,当32-=k 时,得A )2,0(c .由已知得)2,0(c C - 线段1AF 的垂直平分线l 的方程为),2(2222cx c y +-=-直线l 与x 轴的交点)0,2(c 是C AF 1∆的外接圆的圆心,因此外接圆的方程为222)2()2(c cy c x +=+- 直线B F 2的方程为)(2c x y -=,于是点),(n m H 满足方程组⎪⎩⎪⎨⎧-==+-)(249)2(222c m n c n c m 由0≠m,解得5,33c m n ==,故522=m n .(另外:由两式消去c 也可得到nm 的值)当32=k 时,同理可得522=m n ……………………………14分。
-baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**百度文库baiduwenku**百度文库-baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**推荐下载推荐下载**百度文库2014-2015学年湖北省普通高中联考高二(上)期末数学试卷(文科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是()A.归纳推理B.演绎推理C.类比推理D.其它推理2.(5分)已知a是实数,是实数,则z=(2+i)(a﹣i)的共轭复数是()A.﹣3﹣i B.3+i C.1﹣3i D.﹣1+3i3.(5分)如图是某人按打中国联通客服热线10010,准备借助人工台咨询本手机的收费情况,他参照以下流程,拨完10010后,需按的键应该是()A.1B.7C.8D.04.(5分)要从编号为01~50的50枚最新研制的某型号导弹中随机抽出5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,在选取的5枚导弹的编号可能是()A.05,10,15,20,25B.03,13,23,33,43C.01,02,03,04,05D.02,04,08,16,325.(5分)下面的程序运行的功能是()A.求1+++…+的值B.求1+++…+的值C.求1+1+++…+的值D.求1+1+++…+的值6.(5分)甲、乙两人在一次射击比赛中各射靶5次.两人成绩的统计表如甲表、乙表所示,则:()甲表:环数45678频数11111乙表:环数569频数311A.甲成绩的平均数小于乙成绩的平均数B.甲成绩的中位数小于乙成绩的中位数C.甲成绩的方差小于乙成绩的方差D.甲成绩的极差小于乙成绩的极差7.(5分)记曲线y=与x轴所围成的区域为D,若直线y=ax﹣a把D的面积分为1:2的两部分,则a的值为()A.±B.C.±D.8.(5分)在区间[3,5]上任取一个数m,则“函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点”的概率是()A.B.C.D.9.(5分)执行如图程序框图.若输入n=20,则输出的S值是()A.B.C.D.10.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.4二、填空题:本大题共7小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5分)某地区有600家商店,其中大型商店有60家,中型商店有150家.为了掌握各商店的营业情况.要从中抽取一个容量为40的样本.若采用分层抽样的方法,抽取的中型商店数是.12.(5分)若复数z=,则|z|=.13.(5分)下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y 与月份x之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则=.月份x1234用水量y 4.543 2.514.(5分)执行如图所示的程序框图,输出的S值为.15.(5分)△ABC中,A(1,1),B(5,﹣5),C(0,﹣1).则AB边上的中线所在直线与AC边上的高所在直线的交点坐标为.16.(5分)从集合A={1,2,4,5,10}中任取两个不同的元素a,b,则(1)lga+lgb=1的概率为(2)b>2a的概率为.17.(5分)已知a n=()n,把数列{a n}的各项排列如图的三角形状,记A(m,n)表示第m行的第n个数,则(1)A(4,5)=(2)A(m,n)=.三、解答题:本大题共5小题,满分65分,解答应写出文字说明、证明过程或演算步骤18.(12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?19.(12分)已知圆C的圆心在直线y=x﹣1上,且A(2,0),B(,)在圆C上.(1)求圆C的方程;(2)若圆M:x2+(y﹣2)2=r2(r>0)与圆C相切.求直线y=x截圆M所得弦长.20.(13分)设x2+2ax+b2=0是关于x的一元二次方程.(1)若a是从0,1,2,3四个数个中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,3]上任取一个数,b是从区间[0,2]上任取一个数,求方程有实根的概率.21.(14分)先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R,a1+a2=1,求证:a12+a22≥;证明:构造函数f(x)=(x﹣a1)2+(x﹣a2)2,f(x)=2x2﹣2(a1+a2)x+a12+a22=2x2﹣2x+a12+a22,因为对一切x∈R,恒有f(x)≥0,所以△=4﹣8(a12+a22)≤0,从而a12+a22≥.(1)已知a1,a2,…,a n∈R,a1+a2+…+a n=1,请写出上述结论的推广式;(2)参考上述证法,对你的推广的结论进行证明;(3)若++=1,求x+y+z的最大值.22.(14分)如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x﹣3)2+(y﹣4)2=1(1)若过点(﹣2,0)的直线l与圆C1交于A,B两点,且?=,求直线l的方程;(2)设动圆C同时平分圆C1的周长,圆C2的周长,①证明动圆圆心C在一条直线上运动;②动圆C是否过定点?若经过,求出定点的坐标;若不经过,请说明理由.2014-2015学年湖北省普通高中联考高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是()A.归纳推理B.演绎推理C.类比推理D.其它推理【解答】解:从直线类比到平面,从圆类比到球,即从平面类比到空间.用的是类比推理.故选:C.2.(5分)已知a是实数,是实数,则z=(2+i)(a﹣i)的共轭复数是()A.﹣3﹣i B.3+i C.1﹣3i D.﹣1+3i【解答】解:∵a是实数,==是实数,则1+a=0,解得a=﹣1.∴z=(2+i)(a﹣i)=﹣(2+i)(1+i)=﹣(1+3i)=﹣1﹣3i的共轭复数是﹣1+3i.故选:D.3.(5分)如图是某人按打中国联通客服热线10010,准备借助人工台咨询本手机的收费情况,他参照以下流程,拨完10010后,需按的键应该是()A.1B.7C.8D.0【解答】解:根据流程图,因为准备借助人工台咨询本手机的收费情况,所以按0.故选:D.4.(5分)要从编号为01~50的50枚最新研制的某型号导弹中随机抽出5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,在选取的5枚导弹的编号可能是()A.05,10,15,20,25B.03,13,23,33,43C.01,02,03,04,05D.02,04,08,16,32【解答】解:若采用系统抽样,则抽样间隔为50÷5=10,故只有B满足条件,故选:B.5.(5分)下面的程序运行的功能是()A.求1+++…+的值B.求1+++…+的值C.求1+1+++…+的值D.求1+1+++…+的值【解答】解:模拟执行程序语句可得:i=1,S=1,控制循环的条件为i≤2014,按照算法最后得到的结果应该为计算并输出S的值.S=1+1+….故选:D.6.(5分)甲、乙两人在一次射击比赛中各射靶5次.两人成绩的统计表如甲表、乙表所示,则:()甲表:环数45678频数11111乙表:环数569频数311A.甲成绩的平均数小于乙成绩的平均数B.甲成绩的中位数小于乙成绩的中位数C.甲成绩的方差小于乙成绩的方差D.甲成绩的极差小于乙成绩的极差【解答】解:根据表中数据,得;甲的平均数是==6,乙的平均数是==6;甲的中位数是6,乙的中位数是5;甲的方差是=[(﹣2)2+(﹣1)2+02+12+22]=2,乙的方差是=[3×(﹣1)2+02+32]=2.4;甲的极差是8﹣4=4,乙的极差是9﹣5=4;由以上数据分析,符合题意的选项是C.故选:C.7.(5分)记曲线y=与x轴所围成的区域为D,若直线y=ax﹣a把D的面积分为1:2的两部分,则a的值为()A.±B.C.±D.【解答】解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而y=ax﹣a=a(x﹣1),过定点(1,0),即过圆心,若直线y=ax﹣a把D的面积分为1:2的两部分,则直线的倾斜角为60°或120°,∴当a=tan60°或a=tan120°,即a=±时,直线y=ax﹣a把D的面积分为1:2的两部分,故选:A.8.(5分)在区间[3,5]上任取一个数m,则“函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点”的概率是()A.B.C.D.【解答】解:f(x)=x2﹣4x﹣m+4=(x﹣2)2﹣m,设g(x)=(x﹣2)2(﹣1≤x<4),∵函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点,∴y=g(x)的图象与直线y=m有两个交点,∴m∈(0,4),∴在区间[3,5]上任取一个数m,“函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点”的概率是=.故选:B.9.(5分)执行如图程序框图.若输入n=20,则输出的S值是()A.B.C.D.【解答】解:模拟执行程序框图,可知该算法的功能是计算并输出数列{}的求10项和.S=+++…+=+++…+=(1﹣+…﹣)=.故选:A.10.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.4【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.二、填空题:本大题共7小题,每小题5分,共25分,把答案填在答题卷的横线上..11.(5分)某地区有600家商店,其中大型商店有60家,中型商店有150家.为了掌握各商店的营业情况.要从中抽取一个容量为40的样本.若采用分层抽样的方法,抽取的中型商店数是10.【解答】解:设抽取的中型商店数为x,则,解得x=10,故答案为:1012.(5分)若复数z=,则|z|=.【解答】解:z===﹣1+2i,∴|z|==,故答案为:.13.(5分)下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y 与月份x之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= 5.25.月份x1234用水量y 4.543 2.5【解答】解:∵=3.5∴=﹣=3.5+0.7×2.5=5.25.故答案为:5.2514.(5分)执行如图所示的程序框图,输出的S值为10.【解答】解:由已知可得该程序的功能是计算并输出S=﹣12+22﹣32+42的值∵S=﹣12+22﹣32+42=10故答案为:1015.(5分)△ABC中,A(1,1),B(5,﹣5),C(0,﹣1).则AB边上的中线所在直线与AC边上的高所在直线的交点坐标为(﹣9,2).【解答】解:线段AB的中点为(3,﹣2),∴AB边上的中线所在直线方程为y+1=,化为x+3y+3=0.∵k AC==2,∴AC边上的高所在直线的方程为,化为x+2y+5=0.联立,解得.∴AB边上的中线所在直线与AC边上的高所在直线的交点坐标为(﹣9,2).故答案为:(﹣9,2).16.(5分)从集合A={1,2,4,5,10}中任取两个不同的元素a,b,则(1)lga+lgb=1的概率为(2)b>2a的概率为.【解答】解:从集合A={1,2,4,5,10}中任取两个不同的元素a,b,所有的基本事件为(1,2),(1,4),(1,5),(1,10),(2,1),(2.4),(2,5),(2,10),(4,1),(4,2),(4,5),(4,10),(5,1),(5,2),(5,4),(5,10),(10,1),(10,2),(10,4),(10,5),共20种,(1)∵lga+lgb=1,∴ab=10,∴满足lga+lgb=1的有(1,10),(10,1),(2,5),(5,2)共4种,∴lga+lgb=1的概率为=(2)b>2a的基本事件有(1,4),(1,5),(1,10),(2,5),(2,10),(4,10),共6种,∴b>2a的概率为=故答案为:,17.(5分)已知a n=()n,把数列{a n}的各项排列如图的三角形状,记A(m,n)表示第m行的第n个数,则(1)A(4,5)=()14(2)A(m,n)=.【解答】解:由三角形状图可知,图中的第一行、第二行、第三行、…分别占了数列{a n}的1项、3项、5项、…,每一行的项数构成了以1为首项,以2为公差的等差数列,设A(m,n)是数列{a n}的第k项,则(1)A(4,5)是数列{a n}的第1+3+5+5=14项,所以A(4,5)=()14,(2)A(m,n)是数列{a n}的第1+3+5+…+(2m﹣3)+n=(m﹣1)2+n项,故A(m,n)=.故答案为:()14,三、解答题:本大题共5小题,满分65分,解答应写出文字说明、证明过程或演算步骤18.(12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?【解答】解:(1)因为所以本次活动共有60件作品参加评比.(4分)(2)因为所以第四组上交的作品数量最多,共有18件.(8分)(3)因为所以,所以第六组获奖率高.19.(12分)已知圆C的圆心在直线y=x﹣1上,且A(2,0),B(,)在圆C上.(1)求圆C的方程;(2)若圆M:x2+(y﹣2)2=r2(r>0)与圆C相切.求直线y=x截圆M所得弦长.【解答】解:(1)设圆的一般方程为x2+y2+Dx+Ey+F=0,∵圆心在直线y=x﹣1上,且A(2,0),B(,)在圆C上,∴,解得,即圆C的方程为x2+y2﹣2x=0;(2)∵圆M:x2+(y﹣2)2=r2(r>0)与圆C相切.∴圆心M坐标为(0,2),圆C的标准方程为(x﹣1)2+y2=1,圆心C坐标为(1,0),半径R=1,当两圆外切时,|CM|=3=1+r,解得r=2,当两圆内切时,|CM|=3=r﹣1,解得r=4,∵M当直线y=x的距离d=,∴当r=2时,直线y=x截圆M所得弦长l=,∴当r=4时,直线y=x截圆M所得弦长l=.20.(13分)设x2+2ax+b2=0是关于x的一元二次方程.(1)若a是从0,1,2,3四个数个中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,3]上任取一个数,b是从区间[0,2]上任取一个数,求方程有实根的概率.【解答】解:方程有实根的充要条件为:△=(2a)2﹣4b2≥0,即a2≥b2.(1)基本事件共有12个,其中(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)满足条件,则.(2 )试验的全部结果构成的区域为{(a,b)|0≤a≤3,0≤b≤2},满足题意的区域为:{(a,b)|0≤a≤3,0≤b≤2,a≥b},所以,所求概率为.…(12分)21.(14分)先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R,a1+a2=1,求证:a12+a22≥;证明:构造函数f(x)=(x﹣a1)2+(x﹣a2)2,f(x)=2x2﹣2(a1+a2)x+a12+a22=2x2﹣2x+a12+a22,因为对一切x∈R,恒有f(x)≥0,所以△=4﹣8(a12+a22)≤0,从而a12+a22≥.(1)已知a1,a2,…,a n∈R,a1+a2+…+a n=1,请写出上述结论的推广式;(2)参考上述证法,对你的推广的结论进行证明;(3)若++=1,求x+y+z的最大值.【解答】解:(1)若a1,a2,…,a n∈R,a1+a2+…+a n=1,求证:a12+a22+…+a n2≥(2)证明:构造函数f(x)=(x﹣a1)2+(x﹣a2)2+…+(x﹣a n)2=nx2﹣2(a1+a2+…+a n)x+a12+a22+…+a n2=nx2﹣2x+a12+a22+…+a n2因为对一切x∈R,都有f(x)≥0,所以△=4﹣4n(a12+a22+…+a n2)≤0从而证得:a12+a22+…+a n2≥;(3)由(2)知,a1+a2+a3=1,a12+a22+a32≥,令a1=,a2=,a3=,则1﹣x+2﹣y+3﹣z≥,∴x+y+z≤,当且仅当x=,y=,z=时,x+y+z的最大值为.22.(14分)如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x﹣3)2+(y﹣4)2=1(1)若过点(﹣2,0)的直线l与圆C1交于A,B两点,且?=,求直线l的方程;(2)设动圆C同时平分圆C1的周长,圆C2的周长,①证明动圆圆心C在一条直线上运动;②动圆C是否过定点?若经过,求出定点的坐标;若不经过,请说明理由.【解答】解:(1)设直线l的方程为y=k(x+2),代入(x+1)2+y2=1,得(1+k2)x2+(4k2+2)x+4k2=0;设A(x1,y1),B(x2,y2),则x1x2=;∵点(﹣2,0)在C1上,不妨设A(﹣2,0),则?=x1x2+y1y2=x1x2==;解得k2=2k=±;∴l的方程为y=±(x+2);(2)①设圆心C(x,y),由题意,得CC1=CC2;即=;化简得x+y﹣3=0;即动圆圆心C在定直线x+y﹣3=0上运动;②圆C过定点,设C(m,3﹣m),则动圆C的半径为CM(或CN),即=,∴动圆C的方程为(x﹣m)2+(y﹣3+m)2=1+(m+1)2+(3﹣m)2,整理,得x2+y2﹣6y﹣2﹣2m(x﹣y+1)=0;由直线x﹣y+1=0和圆x2+y2﹣6y﹣2=0组成方程组,解得,或;∴定点的坐标为(1﹣,2﹣),(1+,2+).画出图形,如图所示-baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**-baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**推荐下载推荐下载**百度文库绝对精品--推荐下载推荐下载**百度文库绝对精品---baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**百度文库baiduwenku**百度文库-baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**推荐下载推荐下载**百度文库-baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**百度文库baiduwenku**百度文库-baiduwenku**推荐下载推荐下载**百度文库绝对精品---baiduwenku**推荐下载推荐下载**百度文库。
湖北省部分重点中学2013—2014学年度上学期高二期末考试 数 学 试 卷(文科)命题人:武汉中学 杨银舟 审题人:洪山高中 高珺 2014.1.16一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是“集合”的知识结构图,如果要加入“子集”,则应该放在( )A.“集合的概念”的下位B.“集合的表示”的下位C.“基本关系”的下位D.“基本运算”的下位2.已知(12)43i z i +=+,则zz =A .543i -B .543i +C .534i +D .534i -3.为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做100次和150次试验,并且利用线性回归方法,求得回归直线分别为1t和2t ,已知两人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( ) A .1t和2t 有交点(),s t B .1t 与2t 相交,但交点不一定是(),s tC .1t与2t 必定平行 D .1t与2t 必定重合4.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的。
下列说法中正确的是( ) A .100个心脏病患者中至少有99人打酣 B ..1个人患心脏病,那么这个人有99%的概率打酣 C .在100个心脏病患者中一定有打酣的人D .在100个心脏病患者中可能一个打酣的人都没有5.设a R ∈,则1>a 是11<a的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件6.命题:p 若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件;命题:q函数y =的定义域是(][),13,-∞-+∞ ,则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真7.过椭圆1422=+y x 右焦点且斜率为1的直线被椭圆截得的弦MN 的长为( ) A .58 B .528 C .538 D .5168.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若Q PF 1∆是钝角三角形,则双曲线的离心率e 范围是( ) A .()12,1+ B .()22,1+ C .()+∞+,12 D .(),,22+∞+9.右图1是一个水平摆放的小正方体木块,图2、图3是由这样的小正方体木块叠放而成,按照这样的规律继续逐个叠放下去,那么在第七个叠放的图形中小正方体木块数应是( )A .25B .66C .91D .12010.我们把离心率为e =5+12的双曲线22221x y a b -=(a>0,b>0)称为黄金双曲线.如图,21,A A 是双曲线 的实轴顶点,21,B B 是虚轴的顶点,21,F F N M ,在双曲线上且过右焦点2F ,并且x MN ⊥轴,给出以下几个说法:①双曲线x2=1是黄金双曲线;②若b2=ac ,则该双曲线是黄金双曲线;③如图,若∠F1B1A2=90°,则该双曲线是黄金双曲线; ④如图,若∠MON =90°,则该双曲线是黄金双曲线. 其中正确的是( )A .①②④B .①②③C .②③④D .①②③④二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11. 若命题p :∀x ,y ∈R ,x2+y2-1>0,则该命题p 的否定是 .12.在复平面内,复数2i 1i z =+(i 为虚数单位)的共轭复数对应的点位于第 象限. y13.椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是 .14.已知()f x =,分别求(0)(1)f f +,(1)(2)f f -+,(2)(3)f f -+,然后归纳猜想一般性结论()()=++-x f x f 1 .15.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量L /mg P 与时间t h间的关系为kt e P P -=0.如果在前5个小时消除了10%的污染物,则10小时后还剩__________%的污染物.16.甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人. 根据以上数据建立一个22⨯的列联表如下:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++;n a b c d =+++绩与班级有关系” .17.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1(-c,0)、F2(c,0).若双曲线上存在点P ,使sin ∠PF1F2sin ∠PF2F1=ac,则该双曲线的离心率的取值范围是________.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)已知0208:2≤--x x p ;)0(012:22>≤-+-m m x x q ,若p ⌝是q ⌝的必 要非充分条件,求实数m 的取值范围. 19.(本小题满分13分)下面的(a)、(b)、(c)、(d)为四个平面图.(1)数一数,每个平面图各有多少个顶点?多少条边?它们分别围成了多少个区域?请将结果填入下表(按填好的例子做).(2)观察上表,推断一个平面图的顶点数、边数、区域数之间有什么关系?(3)现已知某个平面图有2014个顶点,且围成了2014个区域,试根据以上关系确定这个平面图的边数. 20.(本小题满分13分) 平面内与两定点()0,1a A -、()0,2a A (0a >)连线的斜率之积等于非零常数m 的点的轨迹,加上A 、2A 两点所成的曲线C 可以是圆、椭圆或双曲线.求曲线C 的方程,并讨论C 的形状与m 值得关系. 21.(本小题满分13分)若0>>>>d c b a ,且c b d a +=+,求证:c b a d +<+22.(本小题满分14分)已知椭圆C 的中心在坐标原点,焦点在x 轴上且过点1)2P . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)直线l 过点(1,0)E -且与椭圆C 交于A ,B 两点,若2EA EB=,求直线l 的方程.湖北省部分重点中学2013—2014学年度上学期高二期末考试数学(文科)试题参考答案及评分标准一、选择题1.C 2.B 3.A 4.D 5.C 6.D 7.A 8.C 9.C 10.D 二、填空题11.∃x ∈R ,x 2+y 2-1≤0 12.四(或者4,Ⅳ) 13.⎪⎪⎭⎫⎝⎛-553,553 14.3315. ()12,1+ 三、解答题 16.(本小题满分12分)解析:0208:2>--⌝x x p ,所以10,2>-<x x , 令{}10,2>-<=x x x A ………………………4分012:22>-+-⌝m x x q ,即m x m x +>-<1,1,令{}m x m x x B +>-<=1,1………………………8分p ⌝ 是q ⌝的必要非充分条件,B∴A ,即129,9110m m m m -<-⎧⇒>∴>⎨+>⎩.……………………12分 当21-=-m 即3=m 成立,当101=+m ,即9=m 成立,所以9≥m ……12分17.(本小题满分12分)(2)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯由此可得:2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………12分18.(本小题满分12分) 解析:(1)填表如下:(2)由上表可以看出,所给的四个平面图的顶点数、边数及区域数之间有下述关系: 4+3-6=1;8+5-12=1;6+4-9=1;10+6-15=1由此,我们可以推断:任何平面图的顶点数、边数及区域数之间,都有下述关系: 顶点数+区域数-边数=1. ………………………………8分(3)由(2)中所得出的关系,可知所求平面图的边数为:边数=顶点数+区域数-1=2014+2014-1=4027. …………12分 19.(本小题满分13分)解析:设动点为M ,其坐标为()y x ,,当a x ±≠时,由条件可得m a x y a x y a x y k k MA MA =-=+⋅-=⋅22221 即222may mx =-()a x ±≠, 又()()0,,0,21a A a A -的坐标满足222ma y mx =-,故依题意,曲线C 的方程为222ma y mx =-.………4分 当1-<m 时,曲线C 的方程为12222=-+ma y a x ,C 是焦点在y 轴上的椭圆; ……………………6分 当1-=m 时,曲线C 的方程为222a y x =+,C 是圆心在原点的圆; ……………………8分当01<<-m 时,曲线C 的方程为12222=-+ma y a x , C 是焦点在x 轴上的椭圆; …………………10分当0>m 时,曲线C 的方程为12222=-may a x , C 是焦点在x 轴上的双曲线. ……………………12分20.(本小题满分13分)若0>>>>d c b a 且c b d a +=+,求证:c b a d +<+【证明】要证c b a d +<+,只需证22)()(c b a d +<+即bc c b ad d a 22++<++,因c b d a +=+, 只需证bc ad <即bc ad <, ………………6分因为a c b d -+=,则=-bc ad ()bc a c b a --+bc a ac ab --+=2()()c a a b c a ---=()()a b c a --= ………………10分因为0>>>>d c b a ,所以0>-c a ,0<-a d 从而0<-bc ad 所以c b a d +<+. ………………13分22.(本小题满分14分)解:(Ⅰ)设椭圆C 的方程为22221x y a b+=(0)a b >>.由已知可得222223114.c aab a bc ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,………………………………3分解得24a =,21b =.故椭圆C 的方程为2214x y +=.…………………………………………6分 (Ⅱ)由已知,若直线l 的斜率不存在,则过点(1,0)E -的直线l 的方程为1x =-,此时(1(1A B --,,,显然2EA EB =不成立.……………7分 若直线l 的斜率存在,则设直线l 的方程为(1)y k x =+.则2214(1).x y y k x ⎧+=⎪⎨⎪=+⎩, 整理得2222(41)8440k x k x k +++-=.………………………………9分 由2222(8)4(41)(44)k k k ∆=-+- 248160k =+>. 设1122()()A x y B x y ,,,.故2122841k x x k +=-+,① 21224441k x x k -=+. ②…………………10分 因为2EA EB =,即1223x x +=-.③①②③联立解得k =. ……………………13分 所以直线l60y +=60y -+=.………14分。