第3讲.有理数的乘除及乘方 - 基础班
- 格式:docx
- 大小:491.94 KB
- 文档页数:8
第3讲有理数的乘除与乘方(教师讲义)一、教学目标1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算,进一步掌握有理数的混合运算.二、例子【知识点一:乘法运算】【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸1111 12(2111)42612 -⨯-+-02.24(9)5025-⨯ 03.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a_____0,b______0,|a|_____|b|.03.(山东烟台)如果a +b <0,0b a>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >0【知识点二:除法运算】【例3】计算①(72)(18)-÷- ②11(2)3÷- ③13()()1025-÷ ④0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:①(72)(18)72184-÷-=÷= ②17331(2)1()1()3377÷-=÷-=⨯-=- ③131255()()()()10251036-÷=-⨯=- ④0(7)0÷-=【变式题组】 01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯ ⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯【知识点三:乘方运算】【例4】计算(1)323-; (2)()524-- (3)()()2332---; (4) -34÷241×(-32)2. 【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:(1)原式= (2)原式=(3)原式= (4)原式=【变式题组】(1)8十(-3)2×(-2)3 ⎥⎦⎤⎢⎣⎡-+-⨯-)95()32()3()2(22(3) 332)3()31()1(-⨯--- (4)已知223(2),1x y =-=- 求2008xy 的值;解:∵223(2),1x y =-=- x=2或x=-2 y=-1⑴当2,1x y ==-时,200820082(1)2xy =-=当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-【知识点四:有理数的混合运算】【例5】计算[]24)3(23)5.01(1--⨯÷--- 【解法指导】先算乘方,再乘除,最后加减,有括号先算括号里的。
有理数的乘、除及乘方运算一、知识要点:1. 有理数的乘法法则:(1) 两数相乘,同号 ,异号 ,并把 .任何数同0相乘,都得 .(2) 不等于0的数相乘,积的正负号由 的个数决定,当负因数有奇数个时,积为 ;当负因数有偶数个时,积为 .几个数相乘,有一个因数为0,积就为 .2. 乘积是 的两个数互为倒数3. 有理数的除法法则:除以一个数等于乘上 .两数相除,同号 ,异号 ,并把绝对值相除.0除以任何一个不等于0的数,都得0.4. 有理数的乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.二、典型例题:例1、计算:(1)⎪⎭⎫ ⎝⎛-⨯÷-43875.3 (2)532121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(3)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯22176412(4)()[]2432611--⨯--例2、如果0,0><+ab b a ,则a 0,b 0. 如果()03<-ab ,则ab 0. 如果02>-b a ,则b .例3、已知a 、b 为有理数,下列说法中,正确的是( )A.若a >b,则a 2>b 2B. 若︱a ︱>b,则a 2>b 2B. 若 a 3>b 3,则a 2>b 2 D. a >︱b ︱,则a 2>b 2例4、已知:a 、b 互为倒数,c 、d 互为相反数,|m |=5,n 是绝对值最小的数,求5ab -(c+d)×2008 - n + m 的值。
例5、计算:(-2)100+(-2)101的是( )A. 2100 B.-1 C.-2 D.-2100三、练习:1. 用四舍五入法把3.1415926精确到千分位是 .2. 用科学记数法表示302400,应记为 .3. 若m,n 互为相反数,xy 互为倒数,则(m +n )+5xy = ;4. 若 3-x 与9+y 互为相反数,求y x -的值5. 一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和06. 如果10<<a ,那么aa a 1,,2之间的大小关系是( ) A .a a a 12<< B .a a a 12<< C . 21a a a << D . a a a<<21 7. 下列计算错误的个数是 ( ) ①221⎪⎭⎫ ⎝⎛=4 ②-52=25 ③2516542= ④811912=⎪⎭⎫ ⎝⎛-- ⑤-(-14 ) =1 ⑥()001.01.03=-- ⑦ 55=-=a ,a 则 ⑧ -a=-2则a = 2 8. A 、5个 B 、4个 C 、3个 D 、2个9. 平方等于4的数是 ,立方等于—8的数是 。
有理数的运算(乘、除、乘方)教学目的:1、理解有理数的乘法法则;掌握异号两数的乘除运算的规律;2、会进行有理数的乘法、除法、乘方的运算,能灵活运用运算律进行简化运算。
教学重点:1、有理数的乘法、除法法则;2、熟练的进行有理数乘法、除法、乘方运算。
教学难点:若干个有理数相乘,积的符号的确定,乘方的符号确定。
有理数的乘法有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
例1:计算(1) )3()5(-⨯-(2) 4)7(⨯-(3))109()35(-⨯-例题目的:掌握有理数的乘法法则。
有理数乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
当负数的个数为奇数时,积为负,当负因数为偶数个时,积为正。
(2)几个数相乘,有一个因数为0,积为0。
例2:(1))4()37(21-⨯-⨯ (2) )253()5.2()94(321-⨯-⨯-⨯例题目的:会算两个以上有理数的乘法,并能判定积的符号。
有理数乘法的运算律:在有理数运算中,乘法的交换律,结合律以及乘法对加法的分配律仍然成立。
乘法交换律:两个数相乘,交换因数的位置,积不变,用式子表示为a·b =b·a 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用式子表示成(a·b)·c =a·(b·c)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘. 用字母表示成:a(b +c)=a·b +a·c例3:计算:(1) 25.18)5.4(⨯⨯- (2) )]23()3[()2(-+-⨯-(3) )8(161571-⨯例题目的:掌握有理数乘法的运算律。
有理数的除法法则1:两个有理数相除,同号得正,异号向负,并把绝对值相除。
0除以任何非0的数都得0。
倒数与负倒数的概念:乘积为1的两个有理数互为倒数,即若a , b 互为倒数,则1=ab ;乘积为1-的两个有理数互为负倒数,即若b a ,互为负倒数,则1-=⋅b a法则2:除以一个数等于乘以这个数的倒数,即a ÷b )0(1≠⋅=b ba 例4:1. 求下列各数的倒数,负倒数。
说一说我们学过的有理数的运算律:加法交换律:a +b=b+a ; 加法结合律:(a +b)+c=a +(b+c);乘法交换律:a b=b a ; 乘法结合律:(a b)c=a (bc);乘法分配律:a (b+c)=a b+a c这个算式里,含有有理数的加减乘除乘方多种运算,称为有理数的混合运算。
2.有理数混合运算的运算顺序规定如下:①先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
②可以应用运算律,适当改变运算顺序,使运算简便。
②进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法;③同级运算,按从左往右的顺序进行,这一点十分重要。
三、课堂小结:理数混合运算的规律:1.先乘方,再乘除,最后加减;2.同级运算从左到右按顺序运算;3.若有括号,先小再中最后大,依次计算。
有理数的混合运算的关键是运算的顺序,运算法则和性质,为此,必须进一步对加,减,乘,除,乘方运算法则和性质的理解与强化,熟练掌握,在此基础上对其运算顺序也应熟知,只要这两个方面学的好,掌握牢在运算过程中,始终遵循四个方面:一是运算法则,二是运算律,三是运算顺序,四是近似计算,为了提高运算适度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算,至此,便可在有理数的混合运算中稳操胜卷。
1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘都得0;(3)多个有理数相乘:a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。
授课类型 C 有理数的乘除法 C 有理数的乘方 T 运用能力教学目标有理数的乘除及乘方运算教学内容1.有理数的乘除法(☆☆)1) 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0. 2) 有理数乘法的运算律(1)两个数相乘,交换因数的位置,积相等. ab=ba(乘法结合律)(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. abc=a(bc)(乘法结合律)(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. a(b+c)=ab+ac(乘法分配律) 3)有理数乘法法则的推广(1)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.(2)几个数相乘,如果有一个因数为0,则积为0.在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.2.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数. a ÷b=a ·1b(b ≠0) 两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0. 5)倒数及有理数除法(1)乘积为1的两个数互为倒数.倒数是成对出现的,单独一个数不能称为倒数;互为倒数的两个数的乘积一定是正数;0没有倒数;求一个非零有理数的倒数,只要把它的分子和分母颠倒位置即可(正整数可以看作分母为1的分数). 注意: ,a b 互为倒数,则1a b =;,a b 互为负倒数,则1a b =-.反之亦然. (2)有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.【例4】 计算:(1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()()345826-⨯--⨯--⨯-⎡⎤⎡⎤⎣⎦⎣⎦ <分析>(1)小题是化带分数为假分数后约分. (2)小题是遵循括号先运算的原则. <解> (1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=9101133959211⎛⎫-⨯⨯⨯⨯=- ⎪⎝⎭(2) ()()[]()()34582(6)12581228-⨯--⨯--⨯-=-⨯-+=⎡⎤⎣⎦<教学建议>紧扣有理数乘法法则步骤,先定符号,再求绝对值,有括号的先算括号里的数.【例5】 计算:(1)1571(8)16-⨯-; (2)()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ <分析> (1)小题需变形后使用分配律;(2)小题逆向应用分配律,较复杂的有理数混合运算,要注意解题方法的选取. <解> (1)()()15137187181616⎛⎫-⨯-=--⨯- ⎪⎝⎭ ()()()13718816155685687.5575.52⎛⎫=-⨯-+-⨯- ⎪⎝⎭=+=+=(2)()()9985124121616⎛⎫⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9--12---+-16 =()9985412121616⎛⎫⨯⎡⎤ ⎪⎣⎦⎝⎭---+-=- <教学建议> 教师可以提问学生,应该采用什么方法比较简便(即运用分配律解).【教学拓展】计算:(1)111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭<解> (1)11110352532133537621⎛⎫⎛⎫⎛⎫⎛⎫-÷÷-=-⨯⨯-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭=511011210356⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<教学建议> 教师可以提问学生分析式子的特点,可按法则2进行处理,转化为乘法.【例6】 已知:a 的相反数是213,b 的倒数是122-,求算式32a b a b +-的值.<分析> 利用相反数和倒数的概念求出a 、b ,然后求代数式的值. <解> 依题意2521,335a b =-=-=-, 则:52563335355452223535a b a b ⎛⎫-+⨯--- ⎪+⎝⎭==-⎛⎫-+--⨯- ⎪⎝⎭ =43131515⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=431543151313⎛⎫-⨯-=⎪⎝⎭练1.计算: (1)()()6416-÷- (2)()1751÷- <解> (1)()()()641664164-÷-=+÷= (2)()()1175117513÷-=-÷=-练2.计算:(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭;(2)()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭<解> (1)小题是小数结合相乘凑成整数.(2)小题是小数化成分数,互为倒数结合相乘为1.(1)()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭ =()()()330.250.54700.2527055⎛⎫⎛⎫-⨯⨯⨯-=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=()313533530.57052510⎛⎫⎛⎫-⨯-=+⨯=⎪ ⎪⎝⎭⎝⎭(2)()113100110.033333323100322⎡⎤⎛⎫⎛⎫-⨯⨯-=-⨯-⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 练3. 计算: 1111122111;42612⎛⎫-⨯-+- ⎪⎝⎭<解> 直接顺向应用分配律;111112211142612⎛⎫-⨯-+- ⎪⎝⎭=()()()()937131212121242612⎛⎫⎛⎫-⨯+-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭=()2718(14)1310-++-+=-; 练4.计算: 735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦<解>原式=()735(36)(36)36(1)(36)1246⎛⎫⎛⎫-⨯-+⨯-+-⨯---⨯- ⎪ ⎪⎝⎭⎝⎭=21-27+30-36=-12练5.已知x 的负倒数是5,y 的相反数是-6,求算式2x yy x++的值. <解>由题意可知x =15-,y =6,所以2x y y x ++=12628512965-⨯+=-.做一做: 判断题:1.同号两数相乘,取原来的符号,并把绝对值相乘. ( ) 2.两数相乘,如果积为正数,则这两个因数都是正数. ( ) 3.两数相乘,如果积为负数,则这两个因数都是负数. ( ) 4.一个数除以-1,便得这个数的相反数.( ) 选择题:5.下面计算结果正确的是( ). (A)(-3×4)2=-144 (B)-(3×4)2=-144 (C)-3×(-4)2=-144 (D)3×(-4)2=1446.若)4(531-⋅=x ,则x =( ). (A)25- (B)25(C)52-(D)52解答题:7.判断下列乘积的符号,说明为什么? (1)(-1)×(-1)×(-1);(2));4()31()9.8(-⨯+⨯-(3)(-9)×(+10)×(-8)×(-7)×(-0.1);(4)(-4)×2×(-3)×(-5)×8.8.计算: (1));321(8.0-⨯(2));10()21(51-⨯+⨯-(3));311()211()21()32(-⨯-⨯-⨯+ (4)()113333⎛⎫⎛⎫-⨯÷-⨯ ⎪ ⎪⎝⎭⎝⎭(5))412()39()314(-⨯-÷-;(6))323()33.0()31()91(-÷⨯+÷-.有理数的乘方(1)定义:求几个相同因数积的运算,叫做乘方。
有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。
有理数的混合运算知识点1 有理数的乘除一、有理数乘法例1计算:(1) (-8)×4; (2)(-6)×(- 73)(3)5×(-3)× 15例2 若a + b < 0, ab > 0,则这两个数( )A.都是正数B.都是负数C.—正一负D.符号不能确定二、有理数除法例3 计算:(1)3× (- 56)÷(- 134) (2) 58 ×13 ÷5×(-8)三、乘法分配律例4 计算:(1)(-36)×(13+ 56-34)(2)(-36)×(14-19-112)×(-12)练4.1 计算:(1112-76+ 34-1324)×(-48)知识点2 有理数的乘方一、有理数的乘法例5(1) .下列各式中,不相等的是( )A.(-3)2与-32B.(-2)3与-23C.(-3)2与32D.|-2|3与|-23|练5.1对于任意有理数a,下列各式一定成立的是()A.a2 = (- a)2B.a3 = (-a)3C.-a2 = |a|2D.|a|3 = a3二、正指数科学计数法例6用激光测距仪测得两座山峰之间的距离为165000米,将数据165000用科学记数法表示为______________.练6.1“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()。
A. 0.18 x 107B. 1.8 x 105C. 1.8 x 106D. 18 x 105例7截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()知识点3 有理数的混合运算一、有理数的五则混合运算例8 计算:(1)|- 2|+(-1)2019+ 1×(-3)29(2)4+(-2)3×5-(-28)÷4+(-6)2(3)-14-32÷[(-2)3+4]练8.1 计算:(1)- 12+3×(-2)2+ ×(-9)÷(-13)2(2)- 12 +(-2)3+ |- 3|÷13(3)[-22+ (-1)2019 ] ÷154×43。
第3讲有理数的乘除及乘方中考内容中考要求A B C有理数的运算理解有理数的运算律;理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)运用运算律简化运算;运用有理数的运算解决简单问题科学记数法和近似数会用科学记数法表示数;了解近似数;会按实际问题的要求对结果取近似值中考大纲知识网络图3.1有理数的乘法一. 有理数的乘法1. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2. 有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值.3. 有理数乘法的应用:要得到一个数的相反数,只要将它乘1-.4. 多个有理数相乘:(1)几个不是0的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为0,那么积等于0. 5. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.ab ba =(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.()()ab c a bc =(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac +=+二. 倒数1. 倒数的概念:乘积是1的两个数互为倒数. (1)倒数是成对出现的,单独一个数不能称为倒数.(2)互为倒数的两个数的乘积一定是1,即a ,b 互为倒数,则1a b ⨯=;反之亦然. (3)0没有倒数.2. 求一个非零有理数的倒数,把它的分子和分母颠倒位置即可. (1)非零整数可以看作分母为1的分数; (2)带分数一定要先化成假分数之后再求倒数.知识概述【例】(2017秋•顺义区期末)四个互不相等的整数的积为4,那么这四个数的和是( ) A .0 B .6C .﹣2D .2【练习】(2017秋•蓬溪县期末)如果a +b <0,并且ab >0,那么( ) A .a <0,b <0 B .a >0,b >0 C .a <0,b >0 D .a >0,b <0【例】(2016秋•芝罘区期末)已知abc >0,a >c ,ac <0,下列结论正确的是( ) A .a <0,b <0,c >0 B .a >0,b >0,c <0 C .a >0,b <0,c <0 D .a <0,b >0,c >0【例】(2017秋•滨海新区期末)对于有理数a 、b ,如果ab <0,a +b <0.则下列各式成立的是( )A .a <0,b <0B .a >0,b <0且|b |<aC .a <0,b >0且|a |<bD .a >0,b <0且|b |>a3.2有理数的除法一.有理数的除法1. 有理数除法法则:(1)除以一个不等于0的数,等于乘这个数的倒数.小试牛刀再接再厉总述思考:多个不是的数相乘,先做哪一步,再做哪一步?知识概述1a b a b÷=⋅,(0b ≠)(2)法则的另一说法:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.2. 有理数除法的运算步骤:先将除法换成乘法,然后确定积的符号,最后求出结果.3. 分数:分数可以理解为分子除以分母.二.有理数的乘除混合运算先将除法换成乘法,然后确定积的符号,最后求出结果. 注意:乘除混合运算要“从左到右”运算.【例】(2017秋•临沂月考)若x=(﹣1.125)×÷(﹣)×,则x 的倒数是( ) A .1 B .﹣1 C .±1 D .2【练习】(2017秋•郯城县月考)÷(﹣10)×(﹣)÷(﹣)【例】(2017秋•昌平区期末)计算:(﹣3)×6÷(﹣2)×.【练习】(2017秋•安图县期末)÷(﹣1)×.【例】(2017秋•怀柔区期末)计算:3×(﹣)÷(﹣1).5.(2017秋•城关区校级期中)计算: (1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).小试牛刀再接再厉3.3有理数的乘方一. 有理数的乘方1. 乘方的概念:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,n 个相同的因数a 相乘,即n a a a a⋅⋅⋅⋅⋅⋅⋅个,记作,读作“a 的n 次方”;(2)在中,a 叫做底数,n 叫做指数;(3)当看作a 的n 次方的结果时,读作a 的n 次幂. 注意:()224-=,其底数为()2-,()()()22224-=-⨯-=;224-=-,其底数为2,()()222121224-=-⨯=-⨯⨯=-;239=749⎛⎫⎪⎝⎭,其底数为37,2333977749⎛⎫=⨯= ⎪⎝⎭; 239=77,其底数为3,23339777⨯==; 221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,带分数的乘方运算,一定要先化成假分数后再运算.2. 一个数可以看作这个数本身的一次方,例如,5就是15,指数1通常省略不写.3. 幂的正负规律:(1)负数的奇次幂是负数,负数的偶次幂是正数,即“奇负偶正”; (2)正数的任何次幂都是正数; (3)0的任何正整数次幂都是0. 二. 科学记数法n a n a n a 总述思考:加减乘除混合运算的运算顺序是什么?知识概述1. 科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是正整数).2. 用科学记数法表示一个n 位整数,其中10的指数是1n -,10的指数比整数的位数少1. 3. 万410=,亿810= 三.近似数1. 准确数:表示实际数量的数.2. 近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近.3. 精确度:表示近似数与准确数的接近程度. 4. 精确度的类型: (1)纯数字类按四舍五入法对圆周率π取近似数时 3π≈(精确到个位)3.1π≈(精确到十分位,或叫精确到0.1)3.14π≈(精确到百分位,或叫精确到0.01) 3.142π≈(精确到千分位,或叫精确到0.001)(2)带单位类近似数2.6万(精确到千位) (3)科学记数法类近似数43.5110⨯(精确到百位)【例】(2018•金牛区校级模拟)下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A .1个B .2个C .3个D .4个【练习】(2018•河北二模)下列各对数中,数值相等的是( ) A .+32与+22 B .﹣23与(﹣2)3 C .﹣32与(﹣3)2 D .3×22与(3×2)2小试牛刀再接再厉【练习】(2018•绵阳)四川省公布了2017年经济数据GDP排行榜,绵阳市排名全省第二,GDP总量为2075亿元,将2075亿用科学记数法表示为()A.0.2075×1012B.2.075×1011C.20.75×1010D.2.075×1012【例】(2018•绍兴)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×109【例】(2016秋•吴中区期末)阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×)100=____,2100×()100=_____;(2)通过上述验证,归纳得出:(a•b)n=_____;(abc)n=______.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.总述总结:“奇负偶正”你了解全了吗?3.4有理数的混合运算知识概述一.有理数混合运算顺序:1.先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行. 二. 进行有理数混合运算时的易错点:1. 乘方概念错误,如326=等.2. 底数错误,如2(2)4-=-,224-=等.3. 运算顺序发生错误,如1232123÷⨯=÷=等.4. 分配律运算错误,如112(2)22241522-⨯-=-⨯-⨯=--=-等.【例】(2017秋•招远市期末)形如的式子叫做二阶行列式,其运算法则用公式表示为=xn ﹣ym ,依此法则计算的结果为( )A .17B .﹣17C .1D .﹣1【练习】(2017秋•费县期末)现定义一种新运算“*”,规定a*b=ab +a ﹣b ,如1*3=1×3+1﹣3,则(﹣2*3)*5等于( ) A .71 B .47 C .﹣47 D .﹣71【例】(2017秋•揭西县期末)计算:(﹣2)2÷×(﹣2)﹣=______.【练习】(2017秋•河口区期末)计算8﹣23÷的值为_____.【例】(2017秋•泸县期末)计算:﹣14﹣×[2﹣(﹣3)2].小试牛刀再接再厉【例】(2018•杭州二模)计算:﹣23+6÷3×圆圆同学的计算过程如下:原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【练习】(2018•邵阳县模拟)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【巩固】(2017秋•贵阳期末)计算:(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.。
第三讲 有理数的乘方【知识网络】1.234⎧⎪⎪⎨⎪⎪⎩有理数乘方的意义.有理数乘方运算有理数的乘方.科学计数法.加减乘除与乘方的综合运算模块一:有理数乘方的意义【引例】1.从前,有个“聪明的乞丐”他要到了一块面包。
他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,照这样下去,我就永远不用那么辛苦去要饭啦,哈哈哈……请想想看,如果把整块面包看成整体“1”,那第三天将吃到面包的 ,那第五天呢?2.拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条。
请想想看,捏合 次后,可以拉出8根面条;捏合 次后,就可以拉出32根面条。
【知识导航】1.乘方的概念:一般地,n 个相同的因数a 相乘,即:n a a a a ⨯⨯⨯个…14444244443,记作na ,读作a 的n 次方。
求n 个相同因数的积的运算,叫做乘方。
2.乘方的结果叫做幂(power );在na 中,a 叫做底数(base number ),n 叫做指数(exponent )。
【典型例题】例1.(1)底数是a,指数是4的幂写作 ,结果是.(2)m 3的意义是 ,3m(m 为正整数)的意义是 .a m (m 为正整数)的意义是 .(3)5个x 相加写成 , 5个x 相乘可写成 。
例2.边长为a 的正方形的面积列式是a a ⨯,即 (幂的形式);棱长为a 的正方体的体积列式是 ,即 (幂的形式)。
当a=4cm 时,该正方体的体积是 (幂的形式)。
例3.判断下列说法是否正确,并说明理由。
(1)a 个k 相乘写作a k 。
( )(2)4个-5相乘写作-54。
( )例4.把下列式子写成幂的形式。
(1)1×1×1×1×1×1×1= ;(2)2.3×2.3×2.3×2.3 ×2.3= ;(3)(-3)×(-3)×(-3)×(-3)= ; (4) = (5)2013m m m ⨯⨯⨯个m…1444442444443 = .例5.在例4中,题(3)的计算结果是 (填正数或负数);题(5)中,若m>0,计算结果是 (填正数或负数);若m<0,计算结果是 (填正数或负数)。
第3讲有理数的乘除及乘方
知识网络图中考大纲
3.1有理数的乘法
一. 有理数的乘法
1. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.
任何数同0相乘,都得0.
2. 有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值.
3. 有理数乘法的应用:要得到一个数的相反数,只要将它乘1-.
4. 多个有理数相乘:
(1)几个不是0的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数
时,积为负数,即“奇负偶正”.
(2)几个数相乘,如果其中有因数为0,那么积等于0. 5. 有理数乘法运算律:
(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.
ab ba =
(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先
把后两个数相乘,积相等.
()()ab c a bc =
(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别
同这两个数相乘,再把积相加.
()a b c ab ac +=+
二. 倒数
1. 倒数的概念:乘积是1的两个数互为倒数. (1)倒数是成对出现的,单独一个数不能称为倒数.
(2)互为倒数的两个数的乘积一定是1,即a ,b 互为倒数,则1a b ⨯=;反之亦然. (3)0没有倒数.
2. 求一个非零有理数的倒数,把它的分子和分母颠倒位置即可. (1)非零整数可以看作分母为1的分数; (2)带分数一定要先化成假分数之后再求倒数.
知识概述
【例】(2017秋•城关区校级期中)下列运算错误的是( ) A .(﹣2)×(﹣3)=6 B .
C .(﹣5)×(﹣2)×(﹣4)=﹣
40 D .(﹣3)×(﹣2)×(﹣4)=﹣24
【例】(2018•昆山市二模)的结果是( )
A .
B .2
C .
D .﹣2
【练习】(2017秋•怀柔区期末)观察算式(﹣4)××(﹣25)×28,在解题过程中,能使运算变得简便的运算律是( ) A .乘法交换律 B .乘法结合律 C .乘法交换律、结合律 D .乘法对加法的分配律
【例】(2017秋•临颍县期末)若|a |=4,|b |=5,且ab <0,则a +b 的值是( ) A .1 B .﹣9 C .9或﹣9 D .1或﹣1
【例】(2017秋•荔湾区期末)计算=______.
【练习】(2017秋•城关区校级期中)计算: (1)﹣0.75×(﹣0.4 )×1;
(2)0.6×(﹣)×(﹣)×(﹣2).
总述
再接再厉
小试牛刀
3.2有理数的除法
一.有理数的除法
1. 有理数除法法则:
(1)除以一个不等于0的数,等于乘这个数的倒数.
1
a b a b
÷=⋅,(0b ≠)
(2)法则的另一说法:两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0的数,都得0.
2. 有理数除法的运算步骤:先将除法换成乘法,然后确定积的符号,最后求出结果.
3. 分数:分数可以理解为分子除以分母.
二.有理数的乘除混合运算
先将除法换成乘法,然后确定积的符号,最后求出结果. 注意:乘除混合运算要“从左到右”运算.
【例】(2018•河南一模)﹣2的倒数是( ) A .2 B .﹣3 C .﹣ D .
【例】(2018•河西区模拟)计算(﹣16)÷的结果等于( ) A .32 B .﹣32 C .8
D .﹣8
【例】(2017秋•石景山区期末)计算﹣100÷10×,结果正确的是( )
A .﹣100
B .100
C .1
D .﹣1
【练习】(2017秋•沙市区校级期中)计算: (1)(﹣)×(﹣3)÷(﹣1)÷3; (2)(﹣8)÷×(﹣1)÷(﹣9).
小试牛刀
知识概述
【例】(2017秋•亭湖区校级月考)(﹣81)÷×÷(﹣16)
【例】(2017秋•绥滨县校级月考)(﹣81)÷2×(﹣)÷(﹣16)
【例】(2017秋•海拉尔区校级月考)(﹣)×(﹣)÷(﹣0.25).
3.3有理数的乘方
一. 有理数的乘方
1. 乘方的概念:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.
(1)一般地,n 个相同的因数a 相乘,即n a a a a ⋅⋅⋅⋅⋅⋅⋅ 个
,记作,读作“a 的n 次方”;
(2)在中,a 叫做底数,n 叫做指数;
(3)当看作a 的n 次方的结果时,读作a 的n 次幂. 注意:()2
24-=,其底数为()2-,()()()2
2224-=-⨯-=;
224-=-,其底数为2,()()22
2121224-=-⨯=-⨯⨯=-;
2
39=749
⎛⎫
⎪⎝⎭,其底数为37,2
333977749⎛⎫=⨯= ⎪⎝⎭; n a n a n a 知识概述
总述
再接再厉
239=77,其底数为3,23339777
⨯==; 2
2
1391224⎛⎫⎛⎫== ⎪ ⎪
⎝⎭⎝⎭
,带分数的乘方运算,一定要先化成假分数后再运算. 2. 一个数可以看作这个数本身的一次方,例如,5就是15,指数1通常省略不写. 3. 幂的正负规律:
(1)负数的奇次幂是负数,负数的偶次幂是正数,即“奇负偶正”; (2)正数的任何次幂都是正数; (3)0的任何正整数次幂都是0. 二. 科学记数法
1. 科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是正整数).
2. 用科学记数法表示一个n 位整数,其中10的指数是1n -,10的指数比整数的位数少1. 3. 万410=,亿810= 三.近似数
1. 准确数:表示实际数量的数.
2. 近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非
常地接近.
3. 精确度:表示近似数与准确数的接近程度. 4. 精确度的类型: (1)纯数字类
按四舍五入法对圆周率π取近似数时 3π≈(精确到个位)
3.1π≈(精确到十分位,或叫精确到0.1)
3.14π≈(精确到百分位,或叫精确到0.01) 3.142π≈(精确到千分位,或叫精确到0.001)
(2)带单位类
近似数2.6万(精确到千位) (3)科学记数法类
近似数43.5110⨯(精确到百位)
【例】(2017秋•醴陵市校级期中)计算(﹣2)101+(﹣2)100的结果是( ) A .2100 B .﹣2 C .﹣1 D .﹣2100
【例】(2017秋•永城市期中)由乘方的意义可知,(﹣2)×(﹣2)×(﹣2)=(﹣2)3,反过来,(﹣2)3=(﹣2)×(﹣2)×(﹣2),请你利用乘方的意义和乘法运算律计算:.
【练习】(2017秋•浦东新区期中)用简便方法计算:﹣35×(﹣)5×(﹣5)
6
(结果可用幂的形式表示)
3.4有理数的混合运算
一.
有理数混合运算顺序:
1. 先乘方,再乘除,最后加减;
2. 同级运算,从左到右进行;
3. 如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行. 二. 进行有理数混合运算时的易错点:
1. 乘方概念错误,如326=等.
2. 底数错误,如2(2)4-=-,224-=等.
知识概述
总述
再接再厉
小试牛刀
3. 运算顺序发生错误,如1
232123
÷⨯=÷=等.
4. 分配律运算错误,如11
2(2)22241522
-⨯-=-⨯-⨯=--=-等.
【例】(2018•河北模拟)3﹣(﹣2)×4的相反数是( ) A .5 B .﹣5 C .11 D .﹣11
【例】(2018•鼓楼区二模)计算18+12÷(﹣6)的结果是( ) A .﹣5 B .5 C .16 D .20
【练习】(2018•溧水区二模)计算:(﹣5)×2﹣(﹣4)的结果是( ) A .﹣14 B .﹣6 C .14 D .6
【例】(2017秋•南京期末)计算﹣6÷×2﹣18÷(﹣6)的结果是( ) A .﹣21 B .﹣3 C .4 D .7
【例】(2018•通州区二模)计算:40352﹣4×2017×2018=____.
再接再厉
小试牛刀。