沪教版(上海)八年级下册数学 第二十二章 四边形 章末测试题(含答案)
- 格式:doc
- 大小:213.50 KB
- 文档页数:8
沪教版八年级下册数学第二十二章四边形含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.圆有无数条对称轴,对称轴是直径所在的直线B.正方形有两条对称轴 C.两个图形全等,那么这两个图形必成轴对称 D.等腰三角形的对称轴是高所在的直线2、如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形3、▱ABCD中,∠A:∠B:∠C:∠D的值可以等于()A.1:2:3:4B.3:4:4:3C.3:3:4:4D.3:4:3:44、设面积为7的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数B.C.x不存在D.x是2和3之间的实数5、如图所示,矩形ABCD被分割成五个矩形,且MH=PF,则下列等式中:①② 可以判断甲、乙两个矩形面积相等的是()A.①②都不可以B.仅①可以C.仅②可以D.①②都可以6、如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形7、如图,把矩形沿对折后使两部分重合,若,则=()A.110°B.115°C.120°D.130°8、如图,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于( )A.30°B.15°C.45°D.60°9、如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,)B.(,)C.(2,﹣2)D.(,﹣)10、下列命题中,错误的是()A.矩形的对角线互相平分且相等B.对角线互相垂直的矩形是正方形 C.等腰梯形同一底上的两个角相等 D.对角线互相垂直的四边形是菱形11、如图,矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2,则矩形的面积为()A. B.2 C.4 D.12、如图,将□ABCD的一边BC延长至点E,若∠A=1100,则∠1=().A.110 0B.35 0C.70 0D.55 013、若=,=-4,且||=||,则四边形ABCD是()A.平行四边形B.菱形C.等腰梯形D.不等腰梯形14、如图,在ABCD中,BE平分∠ABC,交AD于点E,AE=3,ED=1,则ABCD 的周长为()A.10B.12C.14D.1615、已知一个正方形的边长为a,将该正方形的边长增加1,则得到的新正方形的面积为()A. a2+2 a+1B. a2﹣2 a+1C. a2+1D. a+1二、填空题(共10题,共计30分)16、若一个多边形外角和与内角和相等,则这个多边形是________.17、如果等腰三角形的两边长分别为4和7,则三角形的周长为________ .18、已知点O为□ABCD两对角线的交点,且S△AOB=1,则S□ABCD=________ .19、八边形内角和度数为________.20、如图,点A是反比例函数的图象上任意一点,AB∥x轴交反比例函数的图象于点B,以AB为边作,其中C,D在x轴上,若的面积为5,则k的值为________.21、如图,在四边形中,点E、F分别是线段AD、BC的中点,G、H分别是线段BD、AC的中点,当四边形的边满足________时,四边形是菱形.22、如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C 在反比例函数y= 的图象上,则k的值为________.23、如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为________.24、如图,将矩形沿折叠,使点落在点处,点落在点处,若,则折痕的长为________.25、如图,矩形ABOC的顶点O在坐标原点,顶点B,C分别在x,y轴的正半轴上,顶点A在反比例函数y= (k为常数,k>0,x>0)的图象上,将矩形ABOC绕点A按逆时针反向旋转90°得到矩形AB′O′C′,若点O的对应点O′恰好落在此反比例函数图象上,则的值是________.三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形.请在图中找出与△HBC相似的三角形,并说明它们相似的理由.28、如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-2,0)、B(0,-2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形.29、一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?30、已知:□ 的周长为,对角线、相交于点,的周长比的周长长,求这个平行四边形各边的长.参考答案一、单选题(共15题,共计45分)1、A2、D3、D5、D6、C7、B8、B9、B10、D11、A12、C13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
八年级数学第二学期第二十二章四边形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是()A.有一个角为直角的四边形是矩形B.对角线互相垂直的四边形是菱形C.一组对边平行,另一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形2、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A.7 B.6 C.4 D.83、下列说法中,不正确的是()A.四个角都相等的四边形是矩形B.对角线互相平分且平分每一组对角的四边形是菱形C.正方形的对角线所在的直线是它的对称轴D.一组对边相等,另一组对边平行的四边形是平行四边形4、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.1)B.(1,1)C.(1D.,1)5、正八边形的外角和为()A.360︒B.720︒C.900︒D.1080︒6、下图是文易同学答的试卷,文易同学应得()A.40分B.60分C.80分D.100分7、如图,在正方形有ABCD中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH,的值为()那么BHAEA.1 B C D.28、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.29、下列说法正确的有( )①有一组邻边相等的矩形是正方形 ②对角线互相垂直的矩形是正方形②有一个角是直角的菱形是正方形 ④对角线相等的菱形是正方形A .1个B .2个C .3个D .4个10、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC 的三条边为边长向外作正方形ACHI ,正方形ABED ,正方形BCGF ,连接BI ,CD ,过点C 作CJ ⊥DE 于点J ,交AB 于点K .设正方形ACHI 的面积为S 1,正方形BCGF 的面积为S 2,长方形AKJD 的面积为S 3,长方形KJEB 的面积为S 4,下列结论:①BI =CD ;②2S △ACD =S 1;③S 1+S 4=S 2+S 3 )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个多边形的内角和是外角和的2倍,则它的边数是_______.2、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN =AM AN +的最小值是________.3、如图,在平行四边形ABCD 中,45ABC ∠=︒,E 、F 分别在CD 和BC 的延长线上,AE BD ∥,30EFC ∠=︒,AB =EF =______.4、在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =6,EF =2,则BC 的长为_____.5、如图,矩形ABCD 的对角线AC ,BD 交于点O ,M 在BC 边上,连接MO 并延长交AD 边于点N .若BM = 1,∠OMC = 30°,MN = 4,则矩形ABCD 的面积为 _________ .三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt △ABC 中,∠ACB =90°.(1)作AB 的垂直平分线l ,交AB 于点D ,连接CD ,分别作∠ADC ,∠BDC 的平分线,交AC ,BC 于点E ,F (尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF 是矩形.2、在Rt ABC 中,90ACB ∠=︒,斜边4AB =,过点C 作CF AB ∥,以AB 为边作菱形ABEF ,若150BEF ∠=︒,求Rt ABC 的面积.3、如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连结AG、DE.(1)猜想AG与DE的数量关系,请直接写出结论;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,旋转角为α(0°<α<180°),得到图2,请判断:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在正方形OEFG旋转过程中,请直接写出:①当α=30°时,∠OAG的度数;②当△AEG的面积最小时,旋转角α的度数.4、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.5、如图,在正方形ABCD中,点,E F分别在边AB、BC上,AF与DE相交于点G,且BAF ADE∠=∠.(1)如图1,求证:AF DE⊥;(2)如图2,AG与DG是方程22-=的两个根,四边形BFGE的面积为(10x kx方形ABCD的面积.(3)在第(2)题的条件下,如图3,延长BC至点N,使得CN=3,连接GN交CD于点M,直接写出线段2GN的值.-参考答案-一、单选题1、D【分析】根据矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,结合选项进行判断即可.【详解】A.有三个角是直角的四边形是矩形,故本选项为假命题;B.两条对角线互相垂直的平行四边形是菱形,故本选项为假命题;C.一组对边平行且相等的四边形是平行四边形,故本选项为假命题;D.有一组邻边相等的矩形是正方形,故本选项为真命题.故选:D .【点睛】考查矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,熟练掌握它们的判定方法是解题的关键.2、A【分析】如图所示,连接AC ,OB 交于点D ,先求出C 和A 的坐标,然后根据矩形的性质得到D 是AC 的中点,从而求出D 点坐标为(2,1),再由当直线32y x =+经过点D 时,可将矩形OABC 的面积平分,进行求解即可.【详解】解:如图所示,连接AC ,OB 交于点D ,∵C 是直线32y x =+与y 轴的交点,∴点C 的坐标为(0,2),∵OA =4,∴A 点坐标为(4,0),∵四边形OABC 是矩形,∴D 是AC 的中点,∴D 点坐标为(2,1),当直线32y x =+经过点D 时,可将矩形OABC 的面积平分,由题意得平移后的直线解析式为32y x m =+-,∴3221m ⨯+-=,∴7m =,故选A .【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.3、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A 、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D.【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.4、B【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.5、A【分析】根据多边形的外角和都是360︒即可得解.【详解】解:∵多边形的外角和都是360︒,∴正八边形的外角和为360︒,故选:A.【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是360︒是解题的关键.6、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键7、B【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵点A 关于直线DE 的对称点为F ,∴△ADE ≌△FDE ,∴DA =DF =DC ,∠DFE =∠A =90°,∠1=∠2,∴∠DFG =90°,在Rt △DFG 和Rt △DCG 中,∵DF DCDG DG =⎧⎨=⎩, ∴Rt △DFG ≌Rt △DCG (HL ),∴∠3=∠4,∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG =45°,∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵1DM BE BEHDE EH =⎧⎪∠=∠⎨⎪=⎩,∴△DME ≌△EBH (SAS ),∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM ,∴BH ,即BHAE .故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.8、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C =90°,若D 为斜边AB 上的中点,∴CD =12AB ,∵AB 的长为10,∴DC =5,故选:A .【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.9、D【分析】根据 正方形的判定定理依次分析判断.解:①有一组邻边相等的矩形是正方形,故该项正确;②对角线互相垂直的矩形是正方形,故该项正确;②有一个角是直角的菱形是正方形,故该项正确;④对角线相等的菱形是正方形,故该项正确;故选:D .【点睛】此题考查了正方形的判定定理,正确掌握正方形与矩形菱形的特殊关系及对应添加的条件证得正方形是解题的关键.10、C【分析】根据SAS 证△ABI ≌△ADC 即可得证①正确,过点B 作BM ⊥IA ,交IA 的延长线于点M ,根据边的关系得出S △ABI =12S 1,即可得出②正确,过点C 作CN ⊥DA 交DA 的延长线于点N ,证S 1=S 3即可得证③正确,利用勾股定理可得出S 1+S 2=S 3+S 4,即能判断④不正确.【详解】解:①∵四边形ACHI 和四边形ABED 都是正方形,∴AI =AC ,AB =AD ,∠IAC =∠BAD =90°,∴∠IAC +∠CAB =∠BAD +∠CAB ,即∠IAB =∠CAD ,在△ABI 和△ADC 中,AI AC IAB CAD AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABI ≌△ADC (SAS ),故①正确;②过点B作BM⊥IA,交IA的延长线于点M,∴∠BMA=90°,∵四边形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,∴BM=AC,∵S△ABI=12AI•BM=12AI•AC=12AC2=12S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=12S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=12AD•CN=12AD•AK=12S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正确;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.二、填空题1、6【分析】根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.【详解】解:设这个多边形的边数是n,根据题意得,(n−2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.2【分析】过点A 作AD //BC ,且AD =MN ,连接MD ,则四边形ADMN 是平行四边形,作点A 关于BC 的对称点A ′,连接AA ′交BC 于点O ,连接A ′M ,三点D 、M 、A ′共线时,AM AN +最小为A ′D 的长,利用勾股定理求A ′D 的长度即可解决问题.【详解】解:过点A 作AD //BC ,且AD =MN ,连接MD ,则四边形ADMN 是平行四边形,∴MD =AN ,AD =MN ,作点A 关于BC 的对称点A ′,连接A A ′交BC 于点O ,连接A ′M ,则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长,∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO =CO =AO∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN 转化为DM 是解题的关键.3、8【分析】证明四边形ABDE 是平行四边形,得到DE=CD =AB =AB CE ∥, 过点E 作EH ⊥BF 于H ,证得CH=EH ,利用勾股定理求出EH ,再根据30度角的性质求出EF .【详解】解:∵四边形ABCD 是平行四边形,∴AB CD ∥,AB=CD ,∵AE BD ∥,∴四边形ABDE 是平行四边形,∴DE=CD =AB =AB CE ∥,过点E 作EH ⊥BF 于H ,∵45ABC ∠=︒,∴∠ECH =45ABC ∠=︒,∴CH=EH ,∵222CH EH CE +=,CE =∴CH=EH =4,∵∠EHF =90°,30EFC ∠=︒,∴EF =2EH =8,故答案为:8.【点睛】此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.4、10或14或10【分析】利用BF 平分∠ABC , CE 平分∠BCD ,以及平行关系,分别求出AB AF =、DE DC =,通过BF 和CE 是否相交,分两类情况讨论,最后通过边之间的关系,求出BC 的长即可.【详解】解: 四边形ABCD 是平行四边形,AD BC ∴=,6AB CD ==,AD BC ∥,AFE FBC ∴∠=∠,DEC ECB ∠=∠,BF 平分∠ABC , CE 平分∠BCD ,ABF FBC ∴∠=∠,DCE ECB ∠=∠,AFE ABF ∴∠=∠,DCE DEC ∠=∠,∴由等角对等边可知:6AF AB ==,6DE DC ==,情况1:当BF 与CE 相交时,如下图所示:=+-,AD AF DE EFAD∴=,10∴=,BC10情况2:当BF与CE不相交时,如下图所示:=++AD AF DE EFAD,∴=14BC∴=,14故答案为:10或14.【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据BF和CE是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.5、4+过点N 作NE BC ⊥交于点E ,由矩形ABCD 得OB OD =,OBM ODN ∠=∠,根据ASA 可证BOM DON ≅△△,故可得1CE DN BM ===,由直角三角形30角所对的边为斜边的一半得出122CD EN MN ===,根据勾股定理求出ME ,从而得出BC ,由矩形的面积公式即可得出答案. 【详解】如图,过点N 作NE BC ⊥交于点E ,∵四边形ABCD 是矩形,∴OB OD =,OBM ODN ∠=∠,∵BOM DON ∠=∠,∴()BOM DON ASA ≅,∴1CE DN BM ===,∵30OMC ∠=︒, ∴122CD EN MN ===,∴ME ==∴112BC =+=+∴(224ABCD S =+⨯=+矩形.故答案为:4+本题考查矩形的性质,全等三角形的判定与性质,直角三角形的性质以及勾股定理,掌握相关知识点的应用是解题的关键.三、解答题1、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明CED ∠与EDF ∠都是90︒,最后加上90ACB ∠=︒,即可证明结论.【详解】(1)答案如下图所示:分别以A 、B 两点为圆心,以大于2AB 长为半径画弧,连接弧的交点的直线即为垂直平分线l ,其与AB 的交点为D ,以点D 为圆心,适当长为半径画弧,分别交DA 于点M ,交CD 于点N ,交BD 于点T ,然后分别以点M ,N 为圆心,大于2MN 为半径画弧,连接两弧交点与D 点的连线交AC 于点E ,同理分别以点T ,N 为圆心,大于2TN 为半径画弧,连接两弧交点与D 点的连线交BC 于点F . (2)证明:D 点是AB 与其垂直平分线l 的交点,D ∴点是AB 的中点,CD ∴是Rt △ABC 上的斜边的中线,2AB CD AD ∴==,DE 、DF 分别是∠ADC ,∠BDC 的角平分线,12CDE ADE ADC ∴∠=∠=∠,12CDF CDB ∠=∠, EDF CDE CDF ∠=∠+∠,11190222EDF ADC CDB ADB ∴∠=∠+∠=∠=︒ , CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩, ()CDE ADE SAS ∴∆∆≌,1902CED AED AEC ∴∠=∠=∠=︒, 在四边形CEDF 中,90ACB CED EDF ∠=∠=∠=︒,∴四边形CEDF 是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键. 2、4【分析】分别过点E 、C 作EH 、CG 垂直AB ,垂足为点H 、G ,则CG 是斜边AB 上的高;在菱形ABEF 中,AB EF ∥ 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。
沪教版八年级下册数学第二十二章四边形含答案一、单选题(共15题,共计45分)1、如图,在ABCD中,∠A=130°,则∠C-∠B的度数为()A.90°B.80°C.70°D.60°2、如图,在等腰梯形ABCD中,AB∥CD,对角线AC平分∠BAD,∠B=60°,CD=2cm,则梯形ABCD的周长为()cm.A.8B.9C.10D.123、如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是()A.(2,−1)B.(1,−2)C.(1,2)D.(2,1)4、如图,在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是()A.45cmB.59cmC.62cmD.90cm5、如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A.16B.24C.4D.86、如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cmB.4cmC.6cmD.8cm7、如图,P是菱形ABCD对角线BD上一点,PE⊥AB于E,PE=4cm,则点P到BC 的距离是()A.2cmB.3cmC.4cmD.8cm8、顺次连接任意四边形ABCD各边的中点所得四边形是()A.一定是平行四边形B.一定是菱形C.一定是矩形D.一定是正方形9、如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值是()A. B. C. D.10、下列边长为a的正多边形与边长为a的正方形组合起来,不能镶嵌成平面的是( )( 1 )正三角形 (2)正五边形 (3)正六边形 (4)正八边形A.(1)(2)B.(2)(3)C.(1)(3)D.(1)(4)11、一个十二边形的内角和等于( )A.2160°B.2080°C.1980°D.1800°12、下列说法正确的是()①函数中自变量的取值范围是.②若等腰三角形的两边长分别为3和7,则第三边长是3或7.③一个正六边形的内角和是其外角和的2倍.④同旁内角互补是真命题.⑤关于的一元二次方程有两个不相等的实数根.A.①②③B.①④⑤C.②④D.③⑤13、菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8B.20C.8或20D.1014、如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG, 的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=20,则AB的长是()A.9B.C.13D.1615、如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为()A. B.1 C. D.二、填空题(共10题,共计30分)16、如图,已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G。
沪教版八年级下册数学第二十二章四边形含答案一、单选题(共15题,共计45分)1、下列度数不可能是多边形内角和的是()A.360°B.720°C.810°D.2 160°2、如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF ∶S△AOB的值为( )A.1∶3B.1∶5C.1∶6D.1∶113、如图,在平行四边形ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则平行四边形ABCD的面积为()A.4B.3C.2D.14、在下列所给出的4个图形中,对角线一定互相垂直的是()A. 长方形B.平行四边形 C.菱形 D.直角梯形5、如图,□ABCD中,E,F是对角线AC上的两点,若添加一个条件使△ABE≌△CDF,则添加的条件不能是()A.∠1=∠2B.∠3=∠4C. BE=DFD. AF=CE6、如图,在等腰梯形ABCD中,AB∥CD,对角线AC⊥BC,∠B=60º,BC=2cm,则梯形ABCD的面积为()A. cmB.6 cmC. cmD.12 cm7、已知一个n边形的每个外角都等于,则n的值是A.5B.6C.7D.88、能判断平行四边形是菱形的条件是()A.一个角是直角B.对角线相等C.一组邻角相等D.对角线互相垂直9、顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形①平行四边形;②菱形;③对角线互相垂直的四边形;④对角线相等的四边形,满足条件的是()A.①③④B.②③C.①②④D.①②③10、下列说法:①如果一个四边形任意相邻的两个内角都互补,那么这个四边形是平行四边形;②一组对边平行,另一组对边相等的四边形是平行四边形;③一组对边平行,一组对角相等的四边形是平行四边形;④如果AC,BD是四边形ABCD的对角线,且AC垂直平分BD,那么四边形ABCD是菱形.其中正确的有()A.1个B.2个C.3个D.4个11、若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定满足()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线相等且相互平分12、如图,若平行四边形ABCD中,AB=6,AD=4,∠B=150°,则平行四边形ABCD的面积为()A.6B.12C.12D.2413、如图,用等式表示∠1、∠2、∠3与∠4之间的数量关系正确的是()A.∠1+∠2+∠3+∠4=360°B.∠1+∠2+∠3=360°+∠4C.∠1+∠2=∠3﹣∠4D.∠1+∠2=∠3+∠414、如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A. B. C. D.15、如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有关D.只与n的大小有关二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=2 ,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为________时,△CDF是等腰三角形.17、如图,矩形ABCD中,AB=4,BC=5,以AB为直径作⊙O,在直线BC上取点P,使得⊙O上的动点E到点P的最小距离为,则DP的长为________.18、如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=________°.19、如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=140°,则∠B+∠C=________°.20、如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68°,则∠CHN=________.21、把正五边形和正六边形按如图所示方式放置,则∠a=________。
八年级数学第二学期第二十二章四边形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个多边形每个外角都等于36°,则这个多边形是几边形()A.7 B.8 C.9 D.102、已知正多边形的一个外角等于45°,则该正多边形的内角和为()A.135°B.360°C.1080°D.1440°3、如图,边长为1的正方形ABCD绕点A逆时针旋转45°后,得到正方形AB′C′D′,边B'C′与DC交于点O,则∠DOB'的度数为()A.125°B.130°C.135°D.140°4、如图,小明从点A出发沿直线前进10m到达点B,向左转30,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了()米.A.80 B.100 C.120 D.1405、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A B C.4.5 D.4.36、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是()A.1 B.1.5 C.2 D.47、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A.7 B.8 C.9 D.108、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A .125B .245C .6D .4859、如图,矩形ABCD 中,两条对角线AC 与BD 相交于点O ,AB =6,OA =4.则这个矩形的面积为( )A .24B .48C .D .10、如图,在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )A .AB BC = B .AD BC = C .A C ∠=∠ D .180B C ∠+=︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.2、如图,圆柱形容器高为0.8m ,底面周长为4.8m ,在容器内壁离底部0.1m 的点B 处有一只蚊子,此时一只壁虎正好在容器的顶部点A 处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m .3、在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =6,EF =2,则BC 的长为_____.4、判断:(1)菱形的对角线互相垂直且相等(________)(2)菱形的对角线把菱形分成四个全等的直角三角形(________)5、直线()0y x m m =-+>与双曲线()10y x x=>的图象交于C 、D 两点,以OC 、OD 为邻边作OCED .现有以下结论:①OCED 为菱形②2m ≥;③若45COD ∠=︒,则1COD S =;④OCED 可以是正方形,其中正确的是______.(写出所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD 是平行四边形,∠BAC =90°.(1)尺规作图:在BC 上截取CE ,使CE =CD ,连接DE 与AC 交于点F ,过点F 作线段AD 的垂线交AD 于点M ;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM 和CF 的数量关系,并证明你的结论.2、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以14AEDS S=△正方形.(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1和S2,若6AB=,求S1和S2的值.3、如图,DE是ABC∆的中位线,延长DE到F,使EF DE=,连接BF.求证:BF DC=.4、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.5、综合与实践问题情境:数学活动课上,同学们开展了以“矩形纸片折叠”为主题的探究活动(每个小组的矩形纸片规格相AD=.同),已知矩形纸片宽6动手实践:(1)如图1,腾飞小组将矩形纸片ABCD折叠,点A落在DC边上的点A'处,折痕为DE,连接A E',然后将纸片展平,得到四边形AEA D'.试判断四边形AEA D'的形状,并加以证明.(2)如图2,永攀小组在矩形纸片ABCD的边BC上取一点F,连接DF,使30∠=︒,将CDF沿CDF线段DF折叠,使点C正好落在AB边上的点G处.连接DG,GF,将纸片展平,①求DFG的面积;②连接CG,线段CG与线段DF交于点M,则CG=______.深度探究:DN A N'=,将(3)如图3,探究小组将图1的四边形AEA D'剪下,在边A D'上取一点N,使:1:2△,连接A D'',探究并直接写出A D''的长度.AND△沿线段AN折叠得到AND'-参考答案-一、单选题1、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.2、C【分析】先利用正多边形的每一个外角为45 ,求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45°,∴ 这个正多边形的边数为:3608,45∴ 这个多边形的内角和为:821801080,故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.3、C【分析】连接B ′C ,根据题意得B ′在对角线AC 上,得∠B 'CO =45°,由旋转的性质证出∠OB 'C 是直角,得=45B CO '∠︒,即可得出答案.【详解】解:连接B ′C ,如图所示,∵四边形ABCD 是正方形,∴AC 平分∠BAD ,∵旋转角∠BAB ′=45°,∠BAC =45°,∴B ′在对角线AC 上,∴∠B 'CO =45°,由旋转的性质得:90AB C B ''∠=∠=︒,AB '=AB =1,∴45B OC '∠=︒∴18045135DOB '∠=︒-︒=︒故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识;熟练掌握正方形的性质和旋转的性质是解题的关键.4、C【分析】由小明第一次回到出发点A ,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为360︒,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】 解:由360=12,30可得:小明第一次回到出发点A , 一个要走1210=120⨯米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为360︒得到一共要走12个10米”是解本题的关键.5、A【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE +∠DCH =90°,∴∠CDF +∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE == ∴GH故选A .【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.6、C【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD =CG 以及∠FCD =∠ECG ,由旋转的性质可得出EC =FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF =GE ,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =4,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG ,在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ∴△FCD ≌△ECG (SAS ),∴DF =GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG =DF =12CD =14BC =2.故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.7、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数=36036=10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.8、B【分析】根据菱形的性质求得BD的长,进而根据菱形的面积等于12AC BD CD BE⋅=⋅,即可求得BE的长【详解】解:如图,设,AC BD的交点为O,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴== 菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.9、C【分析】根据矩形的性质,对角线相等且互相平分,可得28AC OA ==,进而勾股定理求得BC ,再根据AB BC ⨯即可求得矩形的面积.【详解】 解:四边形ABCD 是矩形,12OA AC ∴=,90ABC ∠=︒AB =6,OA =4BC ∴∴矩形ABCD 的面积为:6AB BC ⨯=⨯故选C【点睛】本题考查了矩形的性质,勾股定理,掌握矩形的性质是解题的关键.10、C【分析】由平行线的性质得180A D +=︒∠∠,再由A C ∠=∠,得180C D ∠+∠=︒,证出//AD BC ,即可得出结论.【详解】解:一定能判定四边形ABCD 是平行四边形的是A C ∠=∠,理由如下://AB CD ,180A D ∴∠+∠=︒,A C ∠=∠,180C D ∴∠+∠=︒,//AD BC ∴,又//AB CD ,∴四边形ABCD 是平行四边形,故选:C .【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出//AD BC .二、填空题1、七【分析】根据多边形的内角和公式(n -2)•180°与多边形的外角和定理列式进行计算即可求解.【详解】解:设多边形的边数为n ,则(n -2)•180°-2×360°=180°,解得n =7.故答案为:七.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键. 2、2.5.【分析】如图所示,将容器侧面展开,连接AB ,则AB 的长即为最短距离,然后分别求出AC ,BC 的长度,利用勾股定理求解即可.【详解】解:如图所示,将容器侧面展开,连接AB ,则AB 的长即为最短距离,∵圆柱形容器高为0.8m ,底面周长为4.8m 在容器内壁离底部0.1m 的点B 处有一只蚊子,此时一只壁虎正好在容器的顶部点A 处,∴0.8m AD =, 2.4m DE =,0.1m BE =,过点B 作BC ⊥AD 于C ,∴∠BCD =90°,∵四边形ADEF 是矩形,∴∠ADE =∠DEF =90°∴四边形BCDE 是矩形,∴ 2.4m BC DE ==,=0.1m CD BE =,∴=0.7m AC AD CD =-,∴ 2.5m AB ==,答:则壁虎捕捉蚊子的最短路程是2.5m .故答案为:2.5.【点睛】本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB 的长即为所求.3、10或14或10【分析】利用BF 平分∠ABC , CE 平分∠BCD ,以及平行关系,分别求出AB AF =、DE DC =,通过BF 和CE 是否相交,分两类情况讨论,最后通过边之间的关系,求出BC 的长即可.【详解】解: 四边形ABCD 是平行四边形,AD BC ∴=,6AB CD ==,AD BC ∥,AFE FBC ∴∠=∠,DEC ECB ∠=∠,BF 平分∠ABC , CE 平分∠BCD ,ABF FBC∠=∠,∴∠=∠,DCE ECB∠=∠,∴∠=∠,DCE DECAFE ABF∴由等角对等边可知:6==,DE DCAF AB==,6情况1:当BF与CE相交时,如下图所示:AD AF DE EF=+-,∴=,10AD∴=,BC10情况2:当BF与CE不相交时,如下图所示:=++AD AF DE EF∴=AD,14∴=,BC14故答案为:10或14.【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据BF 和CE 是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.4、× √【分析】根据菱形的性质,即可求解.【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形.故答案为:(1)×;(2)√【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.5、①③【分析】过点C 作CA ⊥y 轴于点A ,过点D 作DB ⊥x 轴于点B ,设点()()1122,,,C x y D x y ,可得11221,1x y x y == ,再将两解析式联立,可得210x mx -+= ,进而得到12,x x 是方程210x mx -+=的两个不相等实数根,从而得到2m > 或2m < ,故②错误;再由一元二次方程根与系数的关系,可得121x x ⋅=,从而得到2112,x y x y == ,进而得到△AOC ≌△BOD ,得到OC =OD ,因而四边形OCED 是菱形,故①正确;过点O 作OH ⊥CD 于点H ,利用等腰三角形的三线合一和45COD ∠=︒,,可得∠COH =∠DOH =22.5°,∠AOC =∠BOD =22.5°,从而得到△AOC ≌△BOD ≌△HOC ≌△HOD ,进而得到1COD COH HOD COA BOD S S S S S =+=+= ,故③正确;再由双曲线与坐标轴没有交点可得OCED 不可能是正方形,故④错误,即可求解.【详解】解:如图,过点C 作CA ⊥y 轴于点A ,过点D 作DB ⊥x 轴于点B ,设点()()1122,,,C x y D x y ,把()()1122,,,C x y D x y ,代入()10y x x=>,得:11221,1x y x y == , ∵直线()0y x m m =-+>与双曲线()10y x x =>的图象交于C 、D 两点, ∴1y x m y x =-+⎧⎪⎨=⎪⎩,解得:210x mx -+= , ∴12,x x 是方程210x mx -+=的两个不相等实数根,∴()240m ∆=--> ,解得:2m > 或2m < ,故②错误;∵210x mx -+= ,∴121x x ⋅=,∵11221,1x y x y ==,∴2112,x y x y == ,即AC =BD ,OA =OB ,∵∠OAC =∠OBD =90°,∴△AOC ≌△BOD ,∴OC =OD ,∵四边形OCED 是平行四边形,∴四边形OCED 是菱形,故①正确;过点O 作OH ⊥CD 于点H ,∵OC =OD ,45COD ∠=︒,∴∠AOC +∠BOD =90°-45°=45°,∠COH =∠DOH =22.5°,∵△AOC ≌△BOD ,∴∠AOC =∠BOD =22.5°,∴∠AOC =∠BOD =∠COH =∠DOH ,∵∠OHC =∠OHD =∠OAC =∠OBD =90°,∴△AOC ≌△BOD ≌△HOC ≌△HOD , ∴11122COD COH HOD COA BODS S S S S =+=+=+= ,故③正确; 若OCED 可以是正方形,则∠COD =90°,即OC ⊥OD ,反比例函数的图象与坐标轴有交点,这与双曲线与坐标轴没有交点相矛盾,∴OCED 不可能是正方形,故④错误;所以正确的有①③.故答案为:①③【点睛】本题主要考查了一次函数与反比例函数交点问题,一元二次方程根与系数的关系,根的判别式,全等三角形的性质和判定,菱形和正方形的判定,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.三、解答题1、(1)图形见解析;(2)FM FC =,证明见解析【分析】(1)以C 为圆心CD 长为半径画弧于BC 交点即为E ;连DE 与AC 交点即为F ;过F 作AD 的垂直平分线与AD 交点即为M ;(2)证明DF 平分ADC ∠,再利用角平分线的性质判定即可.【详解】(1)图形如下:(2)FM FC =,证明如下:由(1)可得:90FMD ∠=︒,CE =CD∴CED CDE ∠=∠∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD∴CED ADE ∠=∠,∴ADE CDE ∠=∠即DF 平分ADC ∠∵∠BAC =90°∴90ACD FMD ∠=∠=︒∴FM FC =【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.2、(1)ADC ABC ≌△△;AHK CIJ △≌△;AEG CFG △≌△;(2)证明ADC ABC ≌△△;证明见解析;(3)19S =,28S =【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG ,由材料二可得,ABC ∆被分成4个面积相等的等腰直角三角形,即可得出1S ;连接HJ ,KI ,过点H 作HM ⊥AD 于点M ,过点I 作IN ⊥CD 于点N ,则ACD ∆被分为9个面积相等的等腰直角三角形,即可得出2S .【详解】解:(1)ADC ABC ≌△△;AHK CIJ △≌△;AEG CFG △≌△(2)证明ADC ABC ≌△△;由题意得,在正方形ABCD 中,∵AB AD =,90ABC ADC ∠=∠=︒,在Rt ABC ∆和Rt ADC ∆中AC AC AB AD =⎧⎨=⎩(HL)Rt ABC Rt ADC ∴△≌△;证明:AHK CIJ △≌△;由题意得,在正方形HIJK 中,HK IJ =,90AHK CIJ ∠=∠=︒,∵AC 为正方形ABCD 的对角线,∴45DAC DCA ∠=∠=︒,在RRRRRR 和RRRRRR 中DAC DCA AHK CIJ HK IJ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴RRRRRR ≅RRRRRR ;证明:AEG CFG △≌△由题意得,在正方形EBFG 中,EG FG =,90AEG GFC ∠=∠=︒,∵AC 为正方形ABCD 的对角线,∴45EAG FCG ∠=∠=︒,在RRRRRR 和RRRRRR 中EAG FCG AEG GFC EG FG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴RRRRRR ≅RRRRRR ;(3)如图,连接BG ,由材料二可得,ABC ∆被分成4个面积相等的等腰直角三角形,R RRRR =R RRRR =12×6×6=18. ∴111892S =⨯= 连接HJ ,KI ,过点H 作HM ⊥AD 于点M ,过点I 作IN ⊥CD 于点N ,则ACD ∆被分为9个面积相等的等腰直角三角形, ∴241889S =⨯=. ∴19S =,28S =.【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.3、见解析【分析】由已知条件可得DF =AB 及DF ∥AB ,从而可得四边形ABFD 为平行四边形,则问题解决.【详解】∵DE 是ABC ∆的中位线∴DE ∥AB ,12DE AB =,AD =DC ∴DF ∥AB∵EF =DE∴DF =AB∴四边形ABFD 为平行四边形∴AD =BF∴BF =DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.4、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到AB CD ∥,AB =CD ,然后根据CE =DC ,得到AB =EC ,AB EC ∥,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论得四边形ABEC 是平行四边形,再通过角的关系得出FA =FE =FB =FC ,AE =BC ,可得结论.证明:(1)∵四边形ABCD是平行四边形,∥,AB=CD,∴AB CD∵CE=DC,∴AB=EC,AB EC∥,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.5、(1)四边形AEA D'是正方形;理由见详解;(2)①=S CG=(3)A D''=.(1)由正方形的判定定理进行证明,即可得到结论成立;(2)①由折叠的性质,则DC =DG ,求出∠ADG =30°,利用勾股定理得到AG =,DG =再求出4CF =,由面积公式即可求出面积;②求出60CDG ∠=︒,CD DG =,则△CDG 是等边三角形,即可求出CG 的长度;(3)作PQ ∥AD ∥A E ',垂足分别为P 、Q ,先求出2DN =,4A N '=,设PD x '=,然后表示出6D Q x '=-,2AQ =,再利用勾股定理,求出65x =,然后利用勾股定理,即可求出答案. 【详解】解:(1)∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,由折叠的性质,则90DA E '∠=︒,AD DA '=,∴四边形AEA D '是正方形;(2)①如图,由折叠的性质,则DC =DG ,CF =FG ,∵30CDF ∠=︒,∴30GDF CDF ∠=∠=︒,∴90303030ADG ∠=︒-︒-︒=︒, ∴12AG DG =,∴1122AG DC AB ==;由勾股定理,则222DG AG AD =+, ∴2221()62DG DG =+,∴DG =∴12AG =⨯在直角△BFG 中,由勾股定理,则 ∵BG AG ==66BF CF FG =-=-,∴222BG BF FG +=,∴222(6)FG FG +-=,∴4FG =,∴DFG 的面积为:11422S FG DG ==⨯⨯②由①可知,30GDF CDF ∠=∠=︒,DC =DG ,∴303060CDG ∠=︒+︒=︒,∴△CDG 是等边三角形, ∴CG DG ==故答案为:(3)作PQ ∥AD ∥A E ',垂足分别为P 、Q ,如图所示,∴PQ ⊥A D ',PQ ⊥AE ,由(1)可知,四边形AEA D '是正方形,∴6AD A D AE A E ''====,由折叠的性质,则6AD AD '==,∵:1:2DN A N '=,∴2DN =,4A N '=,∴2D N DN '==,设PD x '=,则PN∴4A P '=6D Q x '=-,∴4QE A P '==∴6(42AQ =-=在直角AQD '∆中,由勾股定理,则222AD AQ QD ''=+∴22(2(6)36x +-=,整理化简得:812x -+,23x-+,∴2249124x x x-=-+,解方程,得16 5x=,20x=(舍去);∴65 PD'=;∴85 PN==,∴812455A N'=-=,∴A D''==【点睛】本题考查了折叠的性质,正方形的判定和性质,矩形的性质,勾股定理,解一元二次方程,等边三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.本题涉及的知识点综合,应用能力强,难度大,学生需要仔细分析.。
沪教版八年级下册数学第二十二章四边形含答案一、单选题(共15题,共计45分)1、如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.22、下面命题正确的是()A.矩形对角线互相垂直B.方程x 2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等3、如图,已知矩形的周长为,和分别为和的内切圆,连接,,,,,若,则的长为()A. B. C. D.4、如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH'L、四边形EKE'A、△BGF的周长分别为C1、C2、C3,且G 1=2G2=4G3,已知FG=LK,EF=6,则AB的长是()A.9.5B.10C.10.5D.115、如果一个多边形的内角和是其外角和的2倍,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6、如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD =2S△EFBB.BF= DFC.四边形AECD是等腰梯形 D.∠AEB=∠ADC7、如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是()A.2B.2+C.4D.4+28、如图,一个长方形是由四块小长方形拼成(四块小长方形放置时既不重叠,也没有空隙),其中②和③两块长方形的形状大小完全相同,如果要求出①和④两块长方形的周长之差,则只要知道哪条线段的长()A. B. C. D.9、如图,正方形ABCD的三边中点E、F、G,连接ED交AF于点M,交CG于点N,下列结论:①AF⊥DE;②AF∥CG;③CD=CM;④∠CMD=∠AGM。
其中正确的有( )A.①②③B.①②④C.①③④D.①②③④10、如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是( )A. =B. =C. =D. =11、如图,正方形纸片ABCD的边长为5,E是边BC的中点,连接AE.沿AE 折叠该纸片,使点B落在F点.则CF()A. B.2 C. D.12、如图,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cmB.4cmC.6cmD.8cm13、如图,在一张长方形纸条上画一条截线AB,将纸条沿截线AB折叠,则△ABC一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形14、下列命题是真命题的是( )A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.顺次连接矩形各边中点所得的四边形是菱形15、ABCD是边长为1的正方形,△BPC是等边三角形,则△BPD的面积为()A. B. C. D.二、填空题(共10题,共计30分)16、正边形的一个外角为72°,则的值是________.17、如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于________.18、如图,点在双曲线上,点的坐标为,点在双曲线上,且轴,在轴上,若四边形为矩形,则它的面积是________.19、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB 边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C 长度的最小值是________.20、如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E 处,点C落在点Q处,折痕为FH,则线段AF的长是________cm.21、如图是小章为学校举办的数学文化节没计的标志,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空自部分面积为10.5,则阴影部分面积为________.22、如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD 的延长线于点F,则DF=________ cm23、如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是________.24、如图,在直线l上摆放着三个等边三角形,△ABC,△HFG,△DCE,已知BC= CE,F,G分别是BC,CE的中点,FM∥AC,GN∥DC,设图中三个平行四边形的面积依次是S1, S2, S3;若S2=3,则S1+S3=________.25、如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为8,则k的值为________.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、如图,,平分∠ABC交于点D,点C在上且,连接.求证:四边形是菱形.28、如图,在梯形ABCD中,,AB=DC.点E,F,G分别在边AB,,BC,,CD 上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当时,求证:四边形AEFG是矩形.29、如图,一块直角三角板的直角顶点P放在正方形ABCD的BC边上,并且使条直角边经过点D,另一条直角边与AB交于点Q.请写出一对相似三角形,并加以证明.(图中不添加字母和线段)30、如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.参考答案一、单选题(共15题,共计45分)1、B2、D4、D5、A6、A7、D8、B9、A10、D11、C12、A13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、30、。
沪教版八年级下册数学第二十二章四边形含答案一、单选题(共15题,共计45分)1、A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种2、如图,▱ABCD的周长为32cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.24cmB.16cmC.8cmD.10cm3、平行四边形中,若,则的度数为()A. B. C. D.4、如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,交AC于点F,如果EF=4,那么菱形ABCD的周长为()A.9B.12C.32D.245、长为a,宽为b的长方形,它的周长为10,面积为5,则a2b+ab2的值为()A.25B.50C.75D.1006、在ABCD中,E,F是对角线BD上的两点(不与点B,D重合).下列条件中,无法判断四边形AECF一定为平行四边形的是( )A.AE∥CFB.AE=CFC.BE=DFD.∠BAE=∠DCF7、如图,在平面直角坐标系中,反比例函数的图象和矩形在第一象限,平行于x轴,且,,点A的坐标为.将矩形向下平移,若矩形的两个顶点恰好同时落在反比例函数的图象上,则矩形的平移距离a和k的值分别为()A. ,B. ,C. ,D.,8、已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为().A.3cm 2B.4cm 2C. cm 2D. cm 29、下列命题中,真命题是( )A.四边相等的四边形是正方形B.对角线相等的菱形是正方形C.正方形的两条对角线相等,但不互相垂直平分D.矩形、菱形、正方形都具有“对角线相等”的性质10、如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN=()A. B. C.3 D.611、如图1是边长分别为的两个正方形,经如图2所示的割补可以得到边长为的正方形,且面积等于割补前的两正方形的面积之和.利用这个方法可以推得或验证勾股定理.现请你通过对图2的观察指出下面对割补过程的理解错误的是()A.割⑤补⑥B.割③补①C.割①补④D.割③补②12、正五边形的内角和是()A.180°B.360°C.540°D.720°13、如图,正方形的边长为5,点的坐标为,点在轴的正半轴上.若反比例函数的图象经过点,则的值是()A.3B.4C.5D.614、在锐角三角形中,,分别是,边上的高,且,交于点,若,则的度数是()A. B. C. D.15、如图,在平行四边形ABCD中,AC,BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是()A.∠BAC=∠ACBB.∠BAC=∠ACDC.∠BAC=∠DACD.∠BAC=∠AB D二、填空题(共10题,共计30分)16、如图,矩形的边在轴上,点在反比例函数的图象上,点在反比例函数的图象上,若,,则________.17、如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为________.18、如图,在正方形中,,分别以、为圆心,长为半径画弧,则图中阴影部分的面积为________(结果保留)19、已知:如图,∠MON=90°,四边形ABCD为矩形,A、B两点分别在射线ON、OM上,AD=2,AB=4,A、B两点在ON、OM上滑动时,C、D点随之运动,则线段OD的最大值为________.20、一个边长为16m的正方形展厅,准备用边长分别为1m和0.5m的两种正方形地板砖铺设其地面.要求正中心一块是边长为1m的大地板砖,然后从内到外一圈小地板砖、一圈大地板砖相间镶嵌(如图所示),则铺好整个展厅地面共需要边长为1m的大地板砖________块.21、如图所示,在矩形中,,,两条对角线相交于点,、为邻边作第1个平行四边形,对角线相交于点,以为、邻边作第2个平行四边形,对角线相交于;再以、为邻边作第3个平行四边形……此类推,第2020个平行四边形的面积________.22、如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于________度.23、如图,在正方形ABCD中,点E是线段AD上的一点,以EC为斜边作等腰直角△ECF,连接BF,若AE=2,DE=3,则线段BF的长度为________.24、在□ABCD中,已知∠A=110°,则∠D=________.25、折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上.若AB=AD+2,EH=1,则AD=________。
沪教版八年级下册数学第二十二章四边形含答案一、单选题(共15题,共计45分)1、下列命题中,正确的命题是( )A.两条对角线相等的四边形是矩形B.两条角线互相垂直且相等的四边形是正方形C.两条对角线相互垂直的四边形是菱形D.两条对角线互相平分的四边形是平行四边形2、下列命题中,假命题是( )A.一组邻边相等的平行四边形是菱形;B.一组邻边相等的矩形是正方形;C.一组对边相等且有一个角是直角的四边形是矩形;D.一组对边平行且另一组对边不平行的四边形是梯形.3、如图,□ABCD的顶点A,B,D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°4、下列语句错误的是()A.如果k=0或= ,那么k =0B.如果m、n为实数,那么m(n)=(mn) C.如果m、n为实数,那么(m+n) =m +n D.如果m、n为实数,那么m( + )=m +m5、平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A.8和14B.10和14C.18和20D.10和346、在直角坐标系中,A,B,C,D四个点的坐标依次为(﹣1,0),(x,y),(﹣1,5),(﹣5,z),若这四个点构成的四边形是菱形,则满足条件的z的值有()A.1个B.3个C.4个D.5个7、如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B,C,G 在同一直线上,M是线段AE的中点,连接MF,则MF的长为( )A. B. C. D.28、如图,在梯形ABCD中,AD//BC,AC⊥AB,AD=CD,cos∠DCA=,BC=10,则AB的值是()A.3B.6C.8D.99、一个多边形的内角和与外角和相等,则这个多边形的边数为()A.8B.6C.5D.410、现有边长为a的小正方形卡片一张,长宽分别为a、b的长方形卡片6张,边长为b的大正方形卡片10张,从这17张卡片中取出16张来拼图,能拼成长方形或正方形有()A.2种B.3种C.4种D.5种11、如图,将边长为2cm的菱形ABCD沿边AB所在的直线l翻折得到四边形ABEF,若∠DAB=30°,则四边形CDFE的面积为()A.2cm 2B.3cm 2C.4cm 2D.6cm 212、如图所示,折叠矩形的一边AD,使D落在BC边的点F处,已知AB=8,BC=10,求CE的长( )A.5B.4C.8D.313、如图,已知正方形ABCD的边长为4,点P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=2EC;②四边形PECF的周长为8;③AP⊥EF;④AP=EF;⑤EF的最小值为2.其中正确结论的序号为()A.①②③⑤B.②③④C.②③④⑤D.②③⑤14、菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5B.4C.7D.1415、已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种二、填空题(共10题,共计30分)16、如图,在边长为3正方形ABCD的外部作Rt△AEF,且AE=AF=1,连接DE,BF,BD,则DE2+BF2=________.17、如图,点E是正方形ABCD边BC延长线上一点,且CE=AC,则∠AFC的度数为________.18、菱形的周长是20,一条对角线的长为6,则它的面积为________.19、正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG 交FH于点M,当GB平分∠CGE时,BM=2 ,AE=8,则ED=________.20、如图,已知直线∥AB,与 AB 之间的距离为 2 ,C、D 是直线上l 两个动点(点 C在 D 点的左侧),且 AB=CD=5.连接 AC、BC、BD,将△ABC 沿 BC 折叠得到△A′BC.若以A′、C、B、D 为顶点的四边形为矩形,则此矩形相邻两边之和为________.21、如图,在矩形ABCD中,AD=6,以点C为圆心,以CB的长为半径画弧交AD于E,点E恰好是AD中点,则图中阴影部分的面积为________(结果保留π)22、在矩形中,,点P为线段垂直平分线上一点,且,则的长是________.23、如图,正方形ABCD中,AB=3,O是对角线AC上一点,AO=2 ,OE⊥AC 交AB的延长线于点E,点F、G分别在CD、CB上,∠FOG=90°,且DF=2,连接AF、EG,M是EG的中点,连接MO并延长交AF于点N,则MN=________.24、如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y 轴上,OC=3,OA=2 ,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为________.25、某正n边形的一个内角为108°,则n=________.三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,分别延长▱ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC 于G,H,连结CG,AH.求证:CG∥AH.28、如图,在菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连接BE、CF求证:BE=CF。
沪教版八年级下册数学第二十二章四边形含答案一、单选题(共15题,共计45分)1、如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的A.三角形B.平行四边形C.矩形D.正方形2、如图,如图正方形内一点E,满足为正三角形,直线AE交BC于F点,过E点的直线,交AB于点G,交CD于点H.以下结论:① ;② ;③ ;④ ,其中正确的有()A.①②③B.①③④C.①④D.①②③④3、如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E,点F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC,则下列结论错误的是()A.FB⊥OC,OM=CMB.△EOB≌△CMBC.四边形EBFD是菱形 D.MB:OE=3:24、若一个多边形有5条对角线,则这个多边形的边数为()A.4B.5C.6D.75、如图,在▱ABCD中,E为AD的三等分点,AE= AD,连接BE交AC于点F,AC=12,则AF为()A.4B.4.8C.5.2D.66、如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4B.8C.10D.127、如图已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.315°B.270°C.180°D.135°8、如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=上一点,k的值是()A.4B.8C.16D.249、下列说法正确的是()A.只有正多边形可以进行平面镶嵌B.最多能用两种正多边形进行平面镶嵌C.一般的凸四边形也可以进行平面镶嵌D.只有正五边形不可以进行平面镶嵌10、小李把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°11、如图在□ABCD中,下列结论不一定成立的是()A.∠1=∠2B.AD=DCC.∠ADC=∠CBAD.OA=OC12、如图,四边形ABCD是平行四边形,则下列结论:①若AB=BC,则四边形ABCD一定是菱形;②若AC⊥BD,则四边形ABCD一定是矩形;③若∠ABC=90°,则四边形ABCD一定是菱形;④若AC=BD,则四边形ABCD一定是正方形.其中正确的有()A.1个B.2个C.3个D.4个13、如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为()A.20B.18C.16D.1514、一个正方形周长与一个等腰三角形的周长相等,若等腰三角形的两边长为和,则这个正方形的对角线长为()A. B. C. D.15、如图,已知∠MON=30°,点A在射线OM上,0A=4 ,长度为2的线段BC在射线ON上移动,连结AB, AC,则△ABC周长的最小值为()A.6B.8C.4D.0A=4 +2二、填空题(共10题,共计30分)16、如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=5,= ,则EC=________.17、如图,直线与双曲线相交于A、B两点,以AB为边作正方形ABCD,则正方形ABCD面积的最小值为________.18、如图为一半径为3m的圆形会议室区域,其中放有4个宽为1m的长方形会议桌,这些会议桌均有两个顶点在圆形边上,另两个顶点紧靠相邻桌子的顶点,则每个会议桌的长为________.19、若一个多边形的内角和为1800°,则这个多边形的对角线条数是________.20、如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD 上,EC=1,则PC+PE的最小值是________.21、如图,面积为16的菱形ABCD中,点O为对角线的交点,点E是边BC的中点,过点E作于点F,于点G,则四边形EFOG的面积为________.22、如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=________度.23、一个多边形的每个内角都是150°,那么这个多边形的边数为________.24、如图,在正方形的内侧,作等边,则的度数是________.25、如果一个正六边形的每个外角都是30°,那么这个多边形的内角和为________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。
八年级数学第二学期第二十二章四边形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,长度恰好是方程x2+x﹣1=0的一个正根的线段为()A.线段BF B.线段DG C.线段CG D.线段GF2、如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90°B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC3、正八边形的外角和为()A.360︒B.720︒C.900︒D.1080︒4、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为∠''=10°,则∠EAF的度数为()B′、D',若B ADA.40°B.45°C.50°D.55°5、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为()A.16 B.24 C.32 D.406、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE7、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为()A.4:1 B.5:1 C.6:1 D.7:18、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()A.12 B.15 C.18 D.249、下列说法不正确...的是()A.三角形的外角大于每一个与之不相邻的内角B.四边形的内角和与外角和相等C.等边三角形是轴对称图形,对称轴只有一条D.全等三角形的周长相等,面积也相等10、n边形的每个外角都为15°,则边数n为()A.20 B.22 C.24 D.26第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知□ABCD的周长是20cm,且AB:BC=3:2,则AB=_______cm.2、如图,在平行四边形ABCD中,AB=4,BC=6,以点B为圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于1PQ的长为半径作弧,两弧在∠ABC内交于点M,2连接BM并延长交AD于点E,则DE的长为________.3、一个多边形,每个外角都是60︒,则这个多边形是________边形.4、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.5、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形ABCD中,点,E F分别在边AB、BC上,AF与DE相交于点G,且∠=∠.BAF ADE(1)如图1,求证:AF DE⊥;(2)如图2,AG与DG是方程22-=的两个根,四边形BFGE的面积为x kx(10方形ABCD的面积.(3)在第(2)题的条件下,如图3,延长BC 至点N ,使得CN =3,连接GN 交CD 于点M ,直接写出线段2GN 的值.2、如图,在平行四边形ABCD 中,8cm AB =,16cm BC =.30B ∠=︒.点P 在BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点D 向点A 运动,速度为每秒1cm .当点P 运动到点C 时,点P ,Q 同时停止运动.连接PQ ,设运动时间为t 秒.(1)当t 为何值时,四边形ABPO 为平行四边形?(2)设四边形ABPQ 的面积为y ,求y 与t 之间的函数关系式.(3)当t 为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?求出此时PQD ∠的度数.(4)连接AP ,是否存在某一时刻t ,使ABP △为等腰三角形?若存在,请求出此刻t 的值;若不存在,请说明理由.3、小乾同学提出一种新图形定义:一组对边相等且垂直的四边形叫等垂四边形.如图1,四边形ABCD 中,AB =CD ,AB ⊥CD ,四边形ABCD 即为等垂四边形,其中相等的边AB 、CD 称为腰,另两边AD 、BC 称为底.(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整:①等垂四边形两个钝角的和为°;②若等垂四边形的两底平行,则它的最小内角为°.(2)拓展研究:①小坤同学发现两底中点的连线与腰长有特定的关系,如图2,M、N分别为等垂四边形ABCD的底AD、BC的中点,试探索MN与AB的数量关系,小坤的想法是把其中一腰绕一个中点旋转180°,请按此方法求出MN与AB的数量关系,并写出AB与MN所在直线相交所成的锐角度数.②如图1,等垂四边形ABCD的腰为AB、CD,AB=CD=AD=3,则较长的底BC长的取值范围是.(3)实践应用:如图3,直线l1,l2是两条相互垂直的公路,利用三段围栏AB、BC、AD靠路边按如图方式围成一块四边形种植园,第四条边CD做成一条隔离带,已知AB=250米,BC=240米,AD=320米,此隔离带最长为多少米?4、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE5、如图,在ABCD中,AD>AB,∠ABC的平分线交AD于点F,EF∥AB交BC于点E.(1)求证:四边形ABEF 是菱形;(2)若AB =5,AE =6,ABCD 的面积为36,求DF 的长.-参考答案-一、单选题1、B【分析】首先根据方程x 2+x -1=0,再判断这个数值和题目中的哪条线段接近.线段BF =0.5排除,其余三条线段可以通过设未知数找到等量关系.利用正方形的面积等于图中各个三角形的面积和,列等量关系.设DG =m ,则GC =1-m ,从而可以用m 表示等式.【详解】解:设DG =m ,则GC =1-m .由题意可知:△ADG ≌△AHG ,F 是BC 的中点,∴DG =GH =m ,FC =0.5.∵S 正方形=S △ABF +S △ADG +S △CGF +S AGF ,∴1×1=12×1×12+12×1×m +12×12×(1-m )+12×m ,∴m .∵x2+x-1=0的解为:x∴取正值为x.∴这条线段是线段DG.故选:B.【点睛】此题考查的是一元二次方程的解法,运用勾股定理和面积法找到线段的关系是解题的关键.2、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;当▱ABCD是菱形时,AB=BC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.3、A【分析】根据多边形的外角和都是360︒即可得解.【详解】解:∵多边形的外角和都是360︒,∴正八边形的外角和为360︒,故选:A.【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是360︒是解题的关键.4、A【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5、C【分析】BC,根据平行线的性由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=12质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】∵D,E分别是AB,AC的中点,∴AE=CE,AD=BD,DE为△ABC的中位线,BC,∴DE//BC,DE=12∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△MBD ≌△EDA ,∴MD =AE ,DE =MB ,∵DE //MB ,∴四边形DMBE 是平行四边形,∴MD =BE ,∵AC =18,BC =14,∴四边形DMBE 的周长=2DE +2MD =BC +AC =18+14=32.故选:C .【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.6、B【分析】先证明四边形BCED 为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,且AD =BC ,又∵AD =DE ,∴DE ∥BC ,且DE =BC ,∴四边形BCED 为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE为矩形,故本选项不符合题意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE为矩形,故本选项不符合题意.故选:B.【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.7、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.8、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=12BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12CD,∴OE=12BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,故选:B.【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.9、C【分析】根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.【详解】∵三角形的外角大于每一个与之不相邻的内角,正确,∴A不符合题意;∵四边形的内角和与外角和都是360°,∴四边形的内角和与外角和相等,正确,∴B不符合题意;∵等边三角形是轴对称图形,对称轴有三条,∴等边三角形是轴对称图形,对称轴只有一条,错误,∴C符合题意;∵全等三角形的周长相等,面积也相等,正确,∴D不符合题意;故选C.【点睛】本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.10、C【分析】根据多边形的外角和等于360度得到15°•n=360°,然后解方程即可.【详解】解:∵n边形的每个外角都为15°,∴15°•n=360°,∴n=24.故选C.【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键.二、填空题1、6【分析】由平行四边形ABCD的周长为20cm,根据平行四边形的性质,即可求得AB+BC=10cm,又由AB:BC=3:2,即可求得答案.【详解】解:∵平行四边形ABCD的周长为20cm,∴AB=CD,AD=BC,AB+BC+CD+AD=20cm,∴AB+BC=10cm,∵AB:BC=3:2,∴3=106cm32AB⨯=+.故答案为:6.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.2、2【分析】先根据题意得到BE为∠ABC的平分线,再根据平行四边形的定义和性质得到AD∥BC,AD=BC=6,进而得到AB=AE=4,即可求出DE=2.【详解】解:由尺规作图得,BE为∠ABC的平分线,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=4,∴DE=AD-AE=2.故答案为:2【点睛】本题考查了尺规作图-作已知角的角平分线,平行四边形的性质,等腰三角形的性质等知识,熟知作已知角的角平分线做法和平行四边形、等腰三角形性质并灵活应用是解题关键.3、六6【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是60°,∴n=360°÷60°=6,故答案为:六.【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键.4、144°度【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.【详解】解:∵四边形的四个外角的度数之比为1:2:3:4,∴四个外角的度数分别为:360°×136 1234=︒+++;360°×272 1234=︒+++;360°×3108 1234=︒+++;360°×4144 1234=︒+++;∴它最大的内角度数为:18036144︒-︒=︒.故答案为:144°.【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.5、∥【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.【详解】解:根据两组对边分别平行的四边形是平行四边形可知:∵AB //CD ,BC //AD ,∴四边形ABCD 为平行四边形.故答案为://.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.三、解答题1、(1)见解析;(2)16;(3)55-【分析】(1)由正方形ABCD 得90DAE ABF ∠=∠=︒,由BAF ADE ∠=∠得90ADE AED BAF AED ∠+∠=∠+∠=︒,从而得出90AGE ∠=︒即可得证;(2)由ASA 证明ABF DAE ≅,从而得出AGD BFGE S S =,设AG a =,DG b =,则12ab =,即ab =k ,即可得出2222()2ABCD S AD a b a b ab ==+=+-正方形;(3)过点G 作PQ ⊥AD 于点P ,交BC 于Q ,则GQ ⊥BC ,由(2)可知,4=AD ,2AG =,DG =由等面积法求出PG ,由勾股定理求出AP ,故可得QG 、QN ,由勾股定理即可求出答案.【详解】(1)∵四边形ABCD 是正方形,∴90DAE ABF ∠=∠=︒,∵BAF ADE ∠=∠,∴90ADE AED BAF AED ∠+∠=∠+∠=︒,∴90AGE ∠=︒,∴AF DE ⊥;(2)∵四边形ABCD 是正方形,∴AB AD =,在ABF 与DAE △中,90BAF ADE AB DA ABF DAE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ABF DAE ASA ≅,∴AGD BFGE S S ==设AG a =,DG b =,则12ab =ab = ∵AG 与DG是方程22(10x kx -=的两个根,∴2ab ==,2=解得:2k =±,(10a b k +==+>, ∴0k >,∴2k =,∴一元二次方程为22(10x x -+,22222()24(1216ABCD S AD a b a b ab ==+=+-=-⨯=正方形;(3)如图,过点G 作PQ ⊥AD 于点P ,交BC 于Q ,则GQ ⊥BC ,由(2)可知,4=AD ,2AG =,DG =AG DG PG AD ⋅===1AP ==,则4QG =1BQ =,3QC =,∴6QN =,22222(4655GN GQ QN =+=+=-【点睛】本题考查正方形的性质,全等三角形的判定与性质,一元二次方程根与系数的关系以及勾股定理,掌握知识点间的相互应用是解题的关键.2、(1)163;(2)y =S 四边形ABPQ =2t +32(0<t ≤8);(3)t =8,75PQD ∠=;(4)当t =4或或ABP △为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ =BP 建立方程求解即可;(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形ABCD中,8cmAB=,16cmBC=,由运动知,AQ=16−t,BP=2t,∵四边形ABPQ为平行四边形,∴AQ=BP,∴16−t=2t∴t=163,即:t=163s时,四边形ABPQ是平行四边形;(2)过点A作AE⊥BC于E,如图,在Rt△ABE中,∠B=30°,AB=8,∴AE=4,由运动知,BP=2t,DQ=t,∵四边形ABCD是平行四边形,∴AD=BC=16,∴AQ=16−t,∴y=S四边形ABPQ=12(BP+AQ)•AE=12(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,∵BC=16,∴S四边形ABCD=16×4=64,由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),∵四边形ABPQ的面积是四边形ABCD的面积的四分之三∴2t+32=34×64,∴t=8;如图,当t=8时,点P和点C重合,DQ=8,∵CD=AB=8,∴DP=DQ,∴∠DQC=∠DPQ,∴∠D=∠B=30°,∴∠DQP=75°;(4)①当AB=BP时,BP=8,即2t=8,t=4;②当AP=BP时,如图,∵∠B=30°,过P作PM垂直于AB,垂足为点M,∴BM=4,22242BPBP⎛⎫+=⎪⎝⎭,解得:BP,∴2t,∴t③当AB=A P时,同(2)的方法得,BP=∴2t=∴t=所以,当t=4或ABP为等腰三角形.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.3、(1)①270;②45;(2)①MN AB =,AB 与MN 所在直线相交所成的锐角度数为45°,理由见解析;②3BC ≤+(3)650米【分析】(1)①延长CD 与BA 延长线交于点P ,则∠P =90°,可以得到∠B +∠C =90°,再由∠B +∠C +∠BAD +∠ADC =360°,即可得到∠BAD +∠ADC =270°;②延长CD 交BA 延长线于P ,过点D 作DE ∥AB 交BC 于E ,则∠DEC =∠B ,由等垂四边形的两底平行,即AD ∥BC ,可证四边形ABED 是平行四边形,得到DE =AB ,再由AB =CD ,AB ⊥CD 得到DE =CD ,DE ⊥CD ,则∠DEC =∠C =45°,即四边形ABCD 的最小内角为45°;(2)①延长CD 交BA 延长线与P ,交NM 延长线与Q ,NM 延长线与BA 延长线交于点F ,将腰AB 绕中点M 旋转180°得到DE ,连接CE ,BE ,由旋转的性质可得:MB =ME ,AB =DE ,∠ABM =∠DEM ,则CD =AB =DE ,AB ∥DE ,即可推出∠DEC =∠DCE ,∠EDC =∠EDP =∠BPD =90°,由勾股定理得到CE ==,∠DEC =∠DCE =45°,再证MN 是△BCE 的中位线,得到12MN CE AB ==,MN ∥CE ,则∠NQC =∠DCE =45°,由此即可推出直线AB 与直线MN 所在直线相交所成的锐角度数为45°;②延长CD 交BA 延长线于P ,取AD ,BC 的中点,M 、N 连接PM ,PN ,同理可得∠APD =90°,则1322PM AD ==,12PN BC =,即2BC PN =,由(2)①可知MN AB ==即可推出23BC PN =≤+PMN 随着PA 减小而减小,当点P 与点A 重合时,∠PMN 最小,此时PN 最小,即BC 最小,即此时A 、D 、C 三点共线由勾股定理得:BC ==3BC ≤+(3)仿照(2)②进行求解即可.(1)解:①如图所示,延长CD 与BA 延长线交于点P ,∵四边形ABCD 为等垂四边形,即AB =CD ,AB ⊥CD ,∴∠P =90°,∴∠B +∠C =90°,∵∠B+∠C+∠BAD+∠ADC=360°,∴∠BAD+∠ADC=270°,故答案为:270;②如图所示,延长CD交BA延长线于P,过点D作DE∥AB交BC于E,∴∠DEC=∠B,∵等垂四边形的两底平行,即AD∥BC,∴四边形ABED是平行四边形,∴DE=AB,又∵AB=CD,AB⊥CD∴DE=CD,DE⊥CD,∴∠DEC=∠C=45°,∴四边形ABCD的最小内角为45°,故答案为:45;(2)解:①MN AB,AB与MN所在直线相交所成的锐角度数为45°,理由如下:延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180°得到DE,连接CE,BE,∵四边形ABCD 是等垂四边形,∴AB =CD ,AB ⊥CD ,∴∠BPC =90°,∵M 是AD 的中点,∴MA =MD ,由旋转的性质可得:MB =ME ,AB =DE ,∠ABM =∠DEM ,∴CD =AB =DE ,AB ∥DE ,∴∠DEC =∠DCE ,∠EDC =∠EDP =∠BPD =90°,∴CE =,∠DEC =∠DCE =45°,又∵M 、N 分别是BE ,BC 的中点,∴MN 是△BCE 的中位线,∴12MN CE AB ==,MN ∥CE , ∴∠NQC =∠DCE =45°,∵∠BPC =90°,∴∠QPF =90°,∴∠QFP =45°,∴直线AB 与直线MN 所在直线相交所成的锐角度数为45°;②如图所示,延长CD 交BA 延长线于P ,取AD ,BC 的中点,M 、N 连接PM ,PN ,同理可得∠APD =90°, ∴1322PM AD ==,12PN BC =,即2BC PN =,由(2)①可知MN AB ==∵32PN MN PM ≤+=+∴23BC PN =≤+又∵∠PMN 随着PA 减小而减小,当点P 与点A 重合时,∠PMN 最小,此时PN 最小,即BC 最小,即此时A 、D 、C 三点共线由勾股定理得:BC∴3BC ≤≤+故答案为:3BC ≤≤+(3)解:如图所示,取AB ,CD 的中点M ,N ,连接MN ,作点C 关于M 的对称点E ,连接CE ,AE ,DE ,设直线l 1与直线l 2交于点P ,由(2)可知,AE ∥BC ,AE =BC =240米,∵l 1⊥l 2,∴∠APB =∠PAE =90°,∴∠DAE =90°,∴400DE =米,∵M 、N 分别是CE ,CD 的中点,∴MN 是△CED 的中位线, ∴12002MN ED ==米,MN ∥DE , ∵M 为AB 的中点,∠APB =90°, ∴11252PM AB ==米, 同理可得12PN CD =,即2CD PN =∴325PN PM MN ≤+=米,∴2650CD PN =≤米,∴隔离带最长为650米.【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解.4、见解析【分析】利用矩形性质以及等边对等角,证明EAB EDC ∠=∠,最后利用边角边即可证明ABE DCE ∆∆≌.【详解】 解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠,在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.5、(1)见解析;(2)2.5.【分析】(1)根据平行四边形的性质和角平分线的性质说明∠ABF =∠AFB 、可得AB =AF ,同理可得AB =AF ,再由AF ∥BE 可得四边形ABEF 是菱形;(2)过A 作AH ⊥BE 垂足为E ,根据菱形的性质可得AO =EO 、BO =FO ,AF =EF =AB =5,AE ⊥BF ,利用勾股定理可得AO 的长,进而可得AE 长,利用菱形的面积公式计算出AH 的长,然后根据ABCD 的面积公式求出AD ,最后根据线段的和差即可解答.【详解】(1)证明:四边形ABCD 是平行四边形,∴AD //BC ,即AF //BE∴∠FBE =∠AFB ,∵∠ABC 的平分线交AD 于点F ,∴∠ABF =∠EBF ,∴∠ABF=∠AFB,∴AB=AF,又∵AB//EF,AF//BE∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形;(2)如图:过A作AH⊥BE垂足为H,∵四边形ABCD是菱形,∴AO=EO,BO=FO,AF=AB=5,AE⊥BF,∵AE=6,∴AO=3,∴BO4==∴BF=8,∴S菱形ABEF=12AE·BF=12×8×6=24,∴BE·AH=24,∴AH=245;∵S平行四边形ABCD=BC·AH=36,∴BC=15 2∵平行四边形ABCD∴AD=BC=15 2∴FD=AD-AF=152-5=2.5..【点睛】本题主要考查了菱形的判定与性质、平行四边形的性质以及面积的问题,灵活利用菱形的判定与性质、平行四边形的性质成为解答本题的关键.。
第二十二章四边形章末测试题
一.选择题
1.下列说法中,正确的是( )
A.等腰梯形既是中心对称图形又是轴对称图形.
B.平行四边形的邻边相等.
C.矩形是轴对称图形且有四条对称轴.
D.菱形的面积等于两条对角线长乘积的一半.
2.若一个多边形的内角和为1080°,则这个多边形的边数为()
A.6 B.7 C.8 D.9
3.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,如果=,=.那么下列选项中,正确的是()
A.=(+)B.=(+)C.=(﹣)D.=(﹣)
4.杨伯家小院子的四棵小树E、F、G、H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH种上小草,则这块草地的形状是()
A.平行四边形 B.矩形 C.正方形 D.菱形
5. 如图,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周
长为()
A.19 B.20 C.21 D.22
6. 如图所示,ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC,交AD于点E,则△
DCE的周长为( )
A.4 cm B.6 cm C.8 cm D.10 cm
7. 矩形对角线相交成钝角120°,短边长为2.8cm,则对角线的长为()
A.2.8cm B.1.4cm C.5.6cm D.11.2cm
8.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()
A.2 B.3 C.D.
二.填空题
9.如图,若ABCD与EBCF关于B,C所在直线对称,∠ABE=90°,则∠F=______.
10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.
12.如图所示,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=4,BC=7,则梯形ABCD的周
长是_______.
13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点
落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.
14.平行四边形ABCD 的对角线相交于点O ,分别添加下列条件:①∠ABC=90°;
②AC ⊥BD ;③AB=BC ;④AC 平分∠BAD ;⑤AO=DO .使得四边形ABCD 是矩形的条件有 ,是菱形的条件有 .(填序号)
15.菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD 的面积是________,对角线BD 的长是_________.
16.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_______2
cm
三.解答题
17.如图,四边形ABCD 和四边形ACDE 都是平行四边形,
(1)填空:BA AC +=_____;ED EA CB -+=_____;
(2)求作:BC AE +
18.如图,平行四边形ABCD 中,以AC 为斜边作Rt △ACE ,又∠BED=90°,试说明:四边形ABCD 是矩形.
19. 如图所示,在直角梯形ABCD中,AD∥BC,DC⊥BC,∠B=60°,BC=2AD,E、F分别为
AB、BC的中点.
求证:(1)四边形AFCD为矩形;
(2)FE⊥DE.
20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF;
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF 是什么特殊四边形?并证明你的结论.
【答案与解析】
一.选择题
1.【答案】D;
2.【答案】C;
【解析】设这个多边形的边数为n,根据题意得:180(n-2)=1080,解得:n=8.3.【答案】A;
【解析】解:A、∵在平行四边形ABCD中,=,=,
∴==,=,
∴=+=+,
∴=(+);故正确;
B、∵=﹣=﹣(+);故错误;
C、∵=﹣=﹣,
∴==(﹣),故错误;
D、=﹣=﹣;故错误.
故选A.
4.【答案】A;
5.【答案】D;
【解析】作双高,解得腰长为6,所以周长为6+6+2+8=22.
6.【答案】C;
【解析】因为ABCD的周长为16 cm,AD=BC,AB=CD,所以AD+CD=1
2
×16=8(cm).因为O为AC的中点,又因为OE⊥AC于点O,所以AE=EC,所以△DCE
的周长为DC+DE+CE=DC+DE+AE=DC+AD=8(cm).
7.【答案】C;
8.【答案】A;
【解析】解:∵矩形对边AD∥BC,
∴∠ACB=∠DAC,
∵O是AC的中点,
∴AO=CO,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF,
又∵EF⊥AC,
∴四边形AECF是菱形,
∵∠DCF=30°,
∴∠ECF=90°﹣30°=60°,
∴△CEF 是等边三角形,
∴EF=CF ,
∵AB=,
∴CD=AB=,
∵∠DCF=30°,
∴CF=÷=2,
∴EF=2.
故选A .
二.填空题
9.【答案】45;
10.【答案】24;
11.【答案】).2,22(+;
【解析】过D 作DH ⊥OC 于H ,则CH =DH =2,所以D 的坐标为).2,22(+
12.【答案】17;
【解析】如图所示,过点D 作DE ∥AB 交BC 于点E ,
则易证四边形ABED 是平行四边形,△CDE 是等边三角形,
∴BE =AD =4,CE =BC -BE =7-4=3,AB =CD =CE =3.
∴梯形ABCD 的周长为AB +BC +CD +AD =3+7+3+4=17.
13.【答案】16;
【解析】证△ABE ≌△ADF ,四边形AECF 的面积为正方形ABCD 的面积.
14.【答案】①⑤,②③④;
【解析】解:要使得平行四边形ABCD 为矩形添加:①∠ABC=90°;⑤AO=DO2个即
可;要使得平行四边形为菱形添加::②AC ⊥BD ;③AB=BC ;④AC 平分
∠BAD3个即可,故答案为:①⑤,②③④.
15.【答案】832cm ;43cm ;
【解析】由题意知△ABC 为等边三角形,AE =23,面积为832cm ,
BD =2AE = 43cm .
16.【答案】18;
【解析】ABCD 11=
BD AC=66=1822
S ⋅⨯⨯梯形. 三.解答题
17.【解析】
解:(1)BA AC BC +=,0ED EA CB AD CB -+=+=;
(2)BC AE BC CD BD
+=+=,所画图形如下所示:
18.【解析】
证明:连接EO,
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
在Rt△EBD中,
∵O为BD中点,
∴EO=BD,
在Rt△AEC中,∵O为AC中点,
∴EO=AC,
∴AC=BD,
又∵四边形ABCD是平行四边形,
∴平行四边形ABCD是矩形.
19.【解析】
证明:(1)∵ BC=2AD,点F是BC的中点,
∴ BF=FC=AD.
∵ AD∥BC,∴四边形AFCD为平行四边形.
又∵ DC⊥BC,∴四边形AFCD为矩形.
(2)∵四边形AFCD为矩形,且∠B=60°,∠BAF=30°,
∴ BF=1
2 AB.
又∵点E是AB的中点,
∴ BF=BE=EF,即△BEF是等边三角形.∴∠BEF=60°.∵ AE=BE=BF=CF=AD,∠BAD=120°,
∴∠AED=1
2
(180°-120°)=30°,
∴∠FED=180°-∠BEF-∠AED=90°,即FE⊥DE.
20.【解析】证明:(1)∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°.
∵AE = AF,
∴Rt Rt
ABE ADF
△≌△.
∴BE=DF.
(2)四边形AEMF是菱形.
∵四边形ABCD是正方形,
∴∠BCA =∠DCA=45°,BC=DC.
∵BE=DF,
∴BC-BE=DC-DF. 即CE=CF.
∴OE=OF.
∵OM=OA,
∴四边形AEMF是平行四边形.
∵AE=AF,
∴平行四边形AEMF是菱形.A D
B E
F
O
C。