电饭煲电路的原理分析和设计与组装
- 格式:pdf
- 大小:1.45 MB
- 文档页数:18
奥克斯电饭煲电路原理与检修奥克斯WDF-FB302D型电饭煲是一款全新AI人工智能型设计,它采用的是新型微电脑控制技术来实现电饭煲的蒸、熬、炖、煮等多种状态,它是用单片机S3F9454B 来实现控制。
一、S3F9454B的简介S3F9454B集专用控制功能于一身的多种应用电路中,是采用CMOS工艺的8位微控制器。
它的引脚功能如附表所示。
二、工作原理该电饭煲由超温保护、电源、时钟振荡、上电复位、锅底温度检测、锅盖温度检测、加热控制等电路组成,如图1所示。
1、直流电源电路整流管D1~D4、电容C2~C4、电阻R1、R2和5V三端稳压器78L05等元件组成电源电路。
通电后,220V市电经超温熔断器FU输入后,一路通过继电器K1为电饭煲的加热盘供电;另一路经C1降压,由D1~D4整流,C2、C3频滤波产生12V直流电压。
该电压不仅供继电器K1使用,而且经R4限流后,由稳压器78L05稳压输出5V直流电压,为微处理器IC1等电路供电。
2、超温保护电路超温熔断器FU 串联在交流电源输入电路中,安装在锅底热敏感的位置。
当继电器K1的触点粘连或其驱动电路异常,导致加热盘温度达到FU的安全设定温度时,FU就会自行熔断,切断整机电源,以免加热盘过热损坏,起到安全保护的作用。
3、时钟振荡电路IC1的②、③脚与其外接元件组成时钟振荡电路。
时钟振荡电路的振荡频率为4MHz。
时钟振荡电路产生的振荡信号用于统一步调、协调微处理器各部分电路的工作。
4、复位电路IC1的④脚与其外接元件组成复位电路。
在每次接通市电时,5V 直流电源对复位电容充电,当④脚输入的复位电压低于3.8V时,低电平对IC1内部寄存器、存储器等电路进行清零复位,完成程序初始化工作。
5、锅底温度检测与锅盖温度检测电路IC1的12脚与其外接负温度系数热敏电阻T2、电阻R6等组成锅底温度检测电路。
T2的作用是检测锅底温度,当锅底温度发生变化时,T2的阻值发生变化,则在R6两端得到变化的电压,送入IC1的⑦脚,在IC1内部A/D转换器中进行数据比较,并根据锅底的温度发出不同的指令,实现煮饭、煲汤、煲粥、保温等功能。
一、电路:半球I型与三角牌相似(图1和4),后者多一超温熔断器和保温指示灯ND2,这两种产品保温和煮饭用同一发热元件R1,“保温”在65℃以上即断电,NDl(ND)亮表示Rl正在加热,ND2亮表示R1处于断电状态。
半球I、II型相似,后者也多一超温熔断器和保温指示灯ND2。
该两种的特点是:“煮饭”发热元件是R1,保温发热是R1与R3(或R4)串联,R3(R4)起主要作用;没有“保温”开关,只要接上电源,不按按键,无论温度高低即是长期有约45W的保温耗电,所以这两种电饭煲使用完毕更要及时断电,否则将一直不停耗电(ND1、ND2分别为“煮饭”、“保温”指示)。
上面两大类的判断:插上电源不按键,第一类一般几分钟即可断电,(ND熄或ND1熄ND2亮),而后一类则一直不能断电,灯也不熄不转换。
二,电饭煲限温保温开关检查方法:1、插上电源不按按键,不放内锅(放入也一样),指示灯即亮(双灯者则为“煮饭”Rice Cooking的红灯亮),此时即处于“保温”的加热状态,一直到65℃左右时灯熄断电(双灯为红灯熄,“保温”Keep Warm的黄灯亮),此时处于保温的断电状态。
2、紧接上步按下按键(须放入内锅),指示灯又亮(或红亮黄熄),此时即处于“煮饭”的加热状态。
当温度上升到103℃时,指示灯再熄灭(或红熄黄亮)。
上述第一步表示保温功能能正确动作,第二步则表示磁温控开关的正确动作。
至于煮饭的生熟程度则跟内锅与发热盘的接触程度有关。
半球牌I、II型因没有保温开关,第一步不能自行断电。
三、电饭煲故障一例:现象为有时煮得好饭,有时煮不好饭即自动断电。
检查发现按下按键后,磁控开关的磁芯跟上端面有时接触好。
有时接触不好(一边接触而另一边则有约2~3毫米间隙),接触不好时即煮不熟饭。
稍加调整使其能每次都完全接触,故障即消除。
上述故障也可以不拆底盖而通过按下按键再力才能掰开,接触不好时所需用力要小得多。
整个电路由热熔断器 FU、发热器、限温器、保温器、加热指示灯和保温指示灯等部分组成。
电饭煲的工作原理及原理图电饭煲的工作原理及原理图普通电饭煲的结构:普通电饭煲主要由发热盘、限温器、保温开关、杠杆开关、限流电阻、指示灯、插座等组成。
1、发热盘:这是电饭煲的主要发热元件。
这是一个内嵌电发热管的铝合金圆盘,内锅就放在它上面,取下内锅就可以看见。
2、限温器:又叫磁钢。
它的内部装有一个永久磁环和一个弹簧,可以按动,位置在发热盘的中央。
煮饭时,按下煮饭开关时,靠磁钢的吸力带动杠杆开关使电源触点保持接通,当煮米饭时,锅底的温度不断升高,永久磁环的吸力随温度的升高而减弱,当内锅里的水被蒸发掉,锅底的温度达到103±2C时,磁环的吸力小于其上的弹簧的弹力,限温器被弹簧顶下,带动杠杆开关,切断电源。
3、保温开关:又称恒温器。
它是由一个弹簧片、一对常闭触点、一对常开触点、一个双金属片组成。
煮饭时,锅内温度升高,由于构成双金属片的两片金属片的热伸缩率不同,结果使双金属片向上弯曲。
当温度达到80C以上时,在向上弯曲的双金属片推动下,弹簧片带动常开与常闭触点进行转换,从而切断发热管的电源,停止加热。
当锅内温度下降到80C以下时,双金属片逐渐冷却复原,常开与常闭触点再次转换,接通发热管电源,进行加热。
如此反复,即达到保温效果。
4、杠杆开关:该开关完全是机械结构,有一个常开触点。
煮饭时,按下此开关,给发热管接通电源,同时给加热指示灯供电使之点亮。
饭好时,限温器弹下,带动杠杆开关,使触点断开。
此后发热管仅受保温开关控制。
5、限流电阻:外观金黄色或白色为多,大小象3W电阻,按在发热管与电源之间,起着保护发热管的作用。
常用的限流电阻为185C 5A或10A100℃,维持沸腾,这时磁钢限温器温度达到平衡,维持沸腾一段时间后,内锅里的水已基本被米吸干,而且锅底部的米粒有可能连同糊精粘到锅底形成一个热隔离层,因此,内锅底部会以较快的速度,由100℃上升到103℃±2℃,相应磁钢限温器温度从110℃上升到145℃左右,热敏磁块感应到相应温度,失去磁性不吸合,从而推动磁钢连杆机构带动杠杆支架,把微动开头从闭合转为断开状态,断开电热盘的电源,从而实现电饭煲(锅)的自动限温;进入保温状态,焖饭10分钟后,方可食用。
电饭煲的工作原理及原理图电饭煲是一种常见的家用电器,广泛应用于煮饭和保温食物。
它的工作原理主要涉及加热、感应和控制三个方面。
本文将详细介绍电饭煲的工作原理及原理图。
一、工作原理1. 加热原理:电饭煲的加热原理是通过利用电能将电能转化为热能,进而将热能传递给内胆,使其加热。
电饭煲内部通常有一个加热盘,通过加热盘将热能传递给内胆。
加热盘是由电阻丝制成的,当通电时,电阻丝会发热,从而使加热盘加热。
内胆则通过加热盘的传热作用,使米饭受热并煮熟。
2. 感应原理:电饭煲通常配备了感应器,用于感知内胆的温度。
感应器可以是温度传感器或热敏电阻。
当内胆的温度低于设定的温度时,感应器会发出信号,启动加热盘进行加热。
当内胆的温度达到设定的温度时,感应器会停止加热,以避免过热。
3. 控制原理:电饭煲的控制原理是通过控制器对加热盘的加热进行调节,以达到煮饭和保温的目的。
控制器通常由微处理器和相关电路组成。
微处理器可以接收来自感应器的信号,并根据设定的程序进行计算和控制。
通过控制器,用户可以设置煮饭的时间和温度,并监控整个加热过程。
二、原理图以下是电饭煲的简化原理图,用于说明电饭煲的基本电路结构和连接方式。
1. 电源部分:电饭煲的电源部分通常由插头、电源开关和保险丝组成。
插头用于连接电源,电源开关用于控制电饭煲的通电和断电,保险丝则用于过载保护,以防止电饭煲损坏。
2. 控制部分:电饭煲的控制部分包括控制器、按键和显示屏。
控制器是电饭煲的核心部件,负责接收和处理来自感应器的信号,并根据设定的程序进行控制。
按键用于设置煮饭的时间和温度等参数,显示屏则用于显示当前的工作状态和设置参数。
3. 加热部分:电饭煲的加热部分由加热盘和加热盘电路组成。
加热盘电路通常包括电阻丝、继电器和温度传感器等元件。
电阻丝通过加热盘电路接通电源,发热并将热能传递给加热盘。
继电器用于控制电阻丝的通断,温度传感器用于感知内胆的温度。
4. 保温部分:电饭煲的保温部分由保温盘和保温电路组成。
电饭煲的工作原理及原理图引言概述:电饭煲是我们日常生活中常见的厨房电器之一,它能够快速煮熟米饭,为我们提供方便。
然而,你是否好奇电饭煲是如何工作的呢?本文将详细介绍电饭煲的工作原理及原理图,匡助你更好地理解这个常用的厨房电器。
一、加热原理1.1 发热体电饭煲的加热原理是利用发热体将电能转化为热能。
发热体通常采用铝合金或者不锈钢材料制成,具有良好的导热性能。
当电饭煲通电后,电能通过发热体,使其发热并传导给内胆,从而加热米饭。
1.2 温度控制为了保证米饭能够均匀受热且无非熟,电饭煲内部配备了温度控制系统。
该系统通过感温元件(如热敏电阻)感知内胆温度,并将信号传输给控制电路。
控制电路根据设定的温度值,控制发热体的工作状态,使内胆保持在恰当的温度范围内。
1.3 加热保护为了防止电饭煲过热,导致事故发生,电饭煲内部还设置了加热保护装置。
当温度超过安全范围时,加热保护装置会自动切断电源,住手加热。
这样可以有效避免因过热引起的火灾或者其他安全问题。
二、蒸汽循环原理2.1 蒸汽发生电饭煲内胆底部通常设置有蒸汽孔,当水加热至沸腾时,产生大量蒸汽。
蒸汽通过蒸汽孔进入内胆,使米饭受热并煮熟。
2.2 蒸汽循环为了使米饭受热均匀,电饭煲还设计了蒸汽循环系统。
蒸汽循环系统由风扇和风道组成。
风扇通过旋转产生气流,将蒸汽从底部吹向内胆顶部,再通过风道回流至底部,形成循环。
这样,米饭在蒸煮过程中能够均匀受热,达到更好的烹饪效果。
2.3 减压装置在蒸煮过程中,蒸汽压力会逐渐增加。
为了防止压力过高,电饭煲内部还设置了减压装置。
当压力超过安全范围时,减压装置会自动释放蒸汽,以降低内胆内的压力,确保使用安全。
三、控制电路原理3.1 控制芯片电饭煲的控制电路采用微型控制芯片,负责控制整个煮饭过程。
控制芯片内置了程序,可以根据设定的烹饪模式和时间,自动控制加热、蒸汽循环等操作。
3.2 按钮与显示屏电饭煲外部通常配备有按钮和显示屏,用于设置烹饪模式、时间等参数。
电饭锅的电路图、工作原理、维修技巧电饭锅的电路图、工作原理、维修技巧电饭锅可分为自动保温式电饭锅、定时保温式电饭锅、压力电饭锅等三种。
各类电饭锅的常见规格和工作能力见表1。
图1是一种双层自动保温式电饭锅的结构图,主要由锅盖、外壳、内胆、开关、发热板和温度控制装置组成。
下面介绍它的主要部件:1.内胆内胆系采用纯铝板拉伸成型,底部加工呈球面状,使与发热板很好吻合,以提高热效率。
胆的内壁上有刻度,可指示出放米量和放水量。
内胆的边向外翻口,既可增加强度,又可使溢出的饭水流到壳外,以防损坏内部电器零件。
2.外壳外壳是用冷轧薄钢板拉伸成型,外面喷涂装饰性漆层。
外壳与内胆之间有一层空气间隔,起保温作用,同时可以安装开关、发热板和温度控制装置。
3.锅盖有的锅盖中央部位嵌有一块玻璃,能观察烹饪情况;有的装有压紧锅盖用的手柄,兼具便携作用。
4.发热板发热板是将环形金属管状电热元件铸造在铝合金体中,再经加工而成,它具有较好的热传导性能和较大的机械强度,板面形状要求与锅底相吻合,在其中心处装有磁性温度控制元件,如图2所示。
5.温度控制装置电饭锅所以能够自动断电和保温,是因为它内部装有磁钢限温器和热双金属片恒温器两个自动装置。
磁钢限温器的动作原理,见图3。
它是利用感温磁钢(软磁体)的磁性随温度的高低而变化的特性来设计的。
当低温时,感温磁钢是顺磁性物质,具有磁性;当温度升到某一界限时,感温磁钢变成逆磁性物质,因而失去磁性。
这个温度界限,叫做居里点。
通常,居里点的温度略高于103℃。
在饭煮熟前,锅内有水,所以电饭锅的内胆温度不会超过100℃,感温磁钢仍然具有磁性。
当饭熟后,内胆没有水,温度便会上升超过100℃。
此时,紧贴于内胆底面的感温磁钢温度,也随之上升到居里点而失去磁性。
这样,永磁体在重力或弹簧弹力的作用下,使感温磁钢不能继续吸住它而跌落。
下跌时,永磁体通过连杆作用把触点分离,于是电饭锅断电,表明米饭已经煮熟。
热双金属片恒温器的动作原理,见图4。
电饭煲的工作原理及原理图电饭煲是一种家用电器,主要用于煮饭和保温。
它的工作原理是通过利用电热加热元件将水加热至沸腾,然后转入保温模式以保持食物温热的状态。
下面将详细介绍电饭煲的工作原理及原理图。
一、电饭煲的工作原理1. 加热元件:电饭煲的加热元件通常采用电热管或加热盘。
电热管是一种导电材料制成的管状元件,通过电流通过电热管产生热量。
加热盘则是通过电流通过盘状元件产生热量。
这些加热元件通常位于电饭煲的底部,与内胆接触。
2. 温控装置:电饭煲内部还配备了温控装置,用于控制加热元件的温度。
温控装置通常包括温度传感器和控制电路。
温度传感器负责检测内胆的温度,一旦温度达到设定值,传感器会向控制电路发送信号,控制电路则会切断加热元件的电流,以保持温度稳定。
3. 保温装置:电饭煲的保温装置用于保持煮熟的食物温热状态。
保温装置通常由保温盖和保温层组成。
保温盖密封内胆,防止热量散失。
保温层则是一种隔热材料,能够有效地阻止热量传递到外部环境。
二、电饭煲的原理图以下是一种常见的电饭煲的原理图,用于说明其内部电路的工作原理。
1. 电源电路:电饭煲的电源电路主要由电源插头、开关、保险丝和变压器组成。
电源插头用于连接电饭煲与电源,开关用于控制电饭煲的开关机,保险丝则是一种安全装置,一旦电流过大或故障,保险丝会自动断开电路,起到保护作用。
变压器用于将电源的交流电转换为电饭煲所需的直流电。
2. 控制电路:控制电路是电饭煲的核心部分,它由控制芯片、温度传感器和继电器组成。
控制芯片负责接收温度传感器的信号,并根据设定的温度控制策略来控制继电器的开关状态。
继电器则用于控制加热元件的电流通断,以实现温度的控制。
3. 加热元件:加热元件包括电热管和加热盘。
电热管通过控制电路的控制,接通电流产生热量,从而加热内胆中的水。
加热盘也是通过电流产生热量,实现加热的目的。
4. 温度传感器:温度传感器通常采用热敏电阻或热敏电偶作为敏感元件,能够根据温度的变化产生相应的电阻或电压信号。