3-3光合作用
- 格式:doc
- 大小:47.00 KB
- 文档页数:5
光合作用的三个过程光合作用是指绿色植物和蓝藻等光合生物利用太阳能将二氧化碳和水转化为有机物质的过程。
这个过程是生命活动中非常重要的一环,因为它不仅可以产生有机物质,还可以释放出氧气,维持地球上所有生命的存在。
光合作用的三个过程分别是:光能转化、光反应和暗反应。
下面将针对这三个过程进行详细的介绍。
一、光能转化在光合作用中,最初需要将太阳能转化为植物可利用的化学能。
这个过程就叫做光能转化。
在这个过程中,植物吸收到太阳辐射中的光子,并将其转换成电子、正孔和激发态分子等活性粒子。
其中最重要的是叶绿体内含有一种特殊的色素——叶绿素。
叶绿素可以吸收红外线和紫外线之间波长范围内(400~700nm)的可见光,并将其转换成电子、正孔等活性粒子。
此外,还有其他色素如类胡萝卜素、类黄酮等也可以吸收光子,但它们的吸收峰位于叶绿素的两侧,因此对光合作用的贡献较小。
二、光反应在光能转化之后,电子和正孔需要分别进行不同的反应。
电子首先被传递到一系列蛋白质复合物中,这些蛋白质复合物被称为光系统。
在光系统中,电子通过一系列氧化还原反应最终被传递到NADP+上形成NADPH。
与此同时,正孔则会从叶绿体内向外跨膜移动,并驱动ATP合成酶进行ATP的合成。
这个过程被称为光化学势梯度,在植物细胞内起到了非常重要的作用。
三、暗反应在光反应之后,NADPH和ATP需要参与到暗反应中来完成二氧化碳固定和有机物质的合成。
暗反应也被称为Calvin循环或碳同化作用。
暗反应发生在叶绿体基质中,在这个过程中,CO2与RuBP(核酮糖1,5-二磷酸)发生羧化反应生成3PGA(3-磷酸甘油酸),然后经过一系列反应最终生成六碳糖物质。
这个过程中需要消耗大量的ATP和NADPH,因此光反应和暗反应是相互依存的。
总结光合作用是一个极其复杂的生物化学过程,涉及到众多的生物分子和蛋白质。
其中,光能转化、光反应和暗反应是三个非常重要的环节,它们相互协作完成了整个光合作用过程。
光合作用的三个过程光合作用是植物和一些原核生物通过光能转化为化学能的重要过程,它是地球上几乎所有生物生存的根本能源。
光合作用主要由三个过程组成:光能的吸收、能量转移和化学反应。
下面将详细介绍这三个过程。
1.光能的吸收:光合作用的第一个过程是吸收光能。
植物细胞中存在一种叫做叶绿素的色素,它能够吸收光线中的能量。
叶绿素主要位于植物细胞中的叶绿体内,其化学结构使其能够吸收一定波长范围的光。
在吸收光线时,叶绿素分子会发生电子激发,从基态跃迁到激发态。
不同波长的光会导致不同程度的电子激发,其中红光和蓝光激发程度较高,而绿光较低。
这正是为什么植物看上去是绿色的原因。
2.能量的转移:光合作用的第二个过程是能量的转移。
一旦叶绿素分子被激发,其激发的能量将会传递给叶绿体中的其他分子。
在叶绿体中,存在一系列叫做色素复合体的结构,其中包含多个叶绿素分子和其他辅助色素分子。
这些复合体会将能量从一个叶绿素分子传递到另一个叶绿素分子,直到能量传递到反应中心。
反应中心是一个叫做P680的大分子结构,它能够将能量转化为化学能。
在此过程中,能量的转移是通过共振能量转移实现的,即一个叶绿素分子将能量传递给另一个叶绿素分子,而自己回到基态。
这样能量就能够从吸收光线的叶绿素分子传递到反应中心,而不会丧失。
3.化学反应:光合作用的第三个过程是化学反应。
当能量到达反应中心时,反应中心会失去一个电子,变成正离子(P680+)。
同时,另一个叫做P700的结构也会失去一个电子,变成正离子(P700+)。
这两个离子对彼此具有亲和力。
然后,电子会从P680+传递到P700+,在此过程中产生光化学反应。
这个过程中,需要一个叫做氧化还原酶的辅助酶来帮助电子传递。
电子从P680+传递到P700+的同时,光能也被转化为化学能。
这个化学能会被用来将二氧化碳和水转化为葡萄糖和氧气。
这个过程叫做碳同化作用。
总的来说,光合作用的三个过程相互协同,将光能转化为化学能,为植物提供能量和有机物质。
光合作用各阶段反应式光合作用是植物通过光能将二氧化碳和水转化为有机物质的过程。
它是地球上最重要的能量转化过程之一,也是维持生态平衡的重要环节。
光合作用可以分为光反应和暗反应两个阶段,下面将分别介绍它们的反应式和作用。
一、光反应阶段光反应阶段是光合作用的第一步,也是光合作用的能量捕获过程。
光反应主要在植物叶绿体的基质中进行,包括光能的吸收、电子传递、ATP和NADPH的合成等过程。
其反应式如下:1. 光能吸收和光能转化:2H2O + 2NADP+ + 3ADP + 3Pi + 光能→ O2 + 2NADPH + 3ATP在这个反应式中,光能被叶绿体中的叶绿素吸收,激发了叶绿素分子中的电子,使其跃迁到激发态。
这些激发态的电子经过一系列的电子传递过程,最终被用来还原NADP+,生成NADPH。
同时,光反应还产生了氧气和ATP。
二、暗反应阶段暗反应阶段是光合作用的第二步,也称为卡尔文循环。
暗反应主要发生在叶绿体基质中的液泡中,其反应式如下:CO2 + 3ATP + 2NADPH + H+ → (CH2O) + 2NADP+ + 3ADP + 3Pi在这个反应式中,二氧化碳在酶的催化下与ATP和NADPH反应,最终生成有机物质(CH2O,一般为葡萄糖)。
这个过程需要消耗能量,产生的NADP+和ADP再经过光反应阶段的再生再次参与光合作用。
光合作用是地球上生命存在的基础,它通过光能转化为化学能,为生物提供了养分和能量。
光反应阶段的产物ATP和NADPH为暗反应阶段提供了能量和还原力,而暗反应阶段则利用这些能量和还原力将二氧化碳转化为有机物质。
整个光合作用过程不仅能够维持植物的生存,还能够净化空气,释放氧气,调节气候等。
总结起来,光合作用的两个阶段反应式如下:光反应:2H2O + 2NADP+ + 3ADP + 3Pi + 光能→ O2 + 2NADPH + 3ATP暗反应:CO2 + 3ATP + 2NADPH + H+ → (CH2O) + 2NADP+ + 3ADP + 3Pi光合作用是一个复杂的过程,其中的反应式只是其中的一部分。
植物利用光反应中形成的NADPH和ATP将CO2转化成稳定的碳水化合物的过程,称为CO2同化(CO2 assimilation)或碳同化。
根据碳同化过程中最初产物所含碳原子的数目以及碳代谢的特点,将碳同化途径分为三类:C3途径(C3 pathway)、C4途径(C4 pathway)和CAM(景天科酸代谢,Crassulacean acid metabolism)途径。
一、C3途径糖和淀粉等碳水化合物是光合作用的产物,这在100多年前就知道了,但其中的反应步骤和中间产物用一般的化学方法是难以测定的。
因为植物体内原本就有很多种含碳化合物,无法辨认哪些是光合作用当时制造的,哪些是原来就有的。
况且光合中间产物量很少,转化极快,难以捕捉。
1946年,美国加州大学放射化学实验室的卡尔文(M.Calvin)和本森(A.Benson)等人采用了两项新技术:(1)14C同位素标记与测定技术(可排除原先存在于细胞里的物质干扰,凡被14C标记的物质都是处理后产生的);(2)双向纸层析技术(能把光合产物分开)。
选用小球藻等单细胞的藻类作材料,藻类不仅在生化性质上与高等植物类似,且易于在均一条件下培养,还可在试验所要求的时间内快速地杀死。
经过10多年周密的研究,卡尔文等人终于探明了光合作用中从CO2到蔗糖的一系列反应步骤,推导出一个光合碳同化的循环途径,这条途径被称为卡尔文循环或卡尔文 本森循环(图4-17)。
由于这条途径中CO2固定后形成的最初产物PGA为三碳化合物,所以也叫做C3途径或C3光合碳还原循环(C3photosynthetic carbon reduction cycle, C3PCR 循环),并把只具有C3途径的植物称为C3植物(C3plant)。
此项研究的主持人卡尔文获得了1961年诺贝尔化学奖。
图4-17 Calvin-Benson 循环(光合碳还原循环) (一)C3途径的反应过程C3途径是光合碳代谢中最基本的循环,是所有放氧光合生物所共有的同化CO2的途径。
光合作用简介光合作用(Photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。
植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。
通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。
对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。
而地球上的碳氧循环,光合作用是必不可少的。
光合作用的详细机制植物利用阳光的能量,将二氧化碳转换成淀粉,以供植物及动物作为食物的来源。
叶绿体由于是植物进行光合作用的地方,因此叶绿体可以说是阳光传递生命的媒介。
原理:植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。
就是所谓的自养生物。
对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。
这个过程的关键参与者是内部的叶绿体。
叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气。
CO₂+H₂O(光照、酶、叶绿体)==(CH₂O)+O₂(上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。
原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。
而右边的水分子的氧原子则是来自二氧化碳。
为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都写上水分子,或者在右边的水分子右上角打上星号。
)光合作用可分为光反应和碳反应(旧称暗反应)两个阶段。
影响光和作用的外界条件1.光照光合作用是一个光生物化学反应,所以光合速率随着光照强度的增加而加快。
但超过一定范围之后,光合速率的增加变慢,直到不再增加。
光合速率可以用CO₂的吸收量来表示,CO₂的吸收量越大,表示光合速率越快。
2.二氧化碳CO₂是绿色植物光合作用的原料,它的浓度高低影响了光合作用暗反应的进行。
3.5.1 光合作用—光合作用原理、意义和应用一、单选题1.下图是光合作用的反应式,a、b代表两种不同的物质。
下列说法错误的是()A.a是二氧化碳,是光合作用的原料B.叶绿体是植物进行光合作用的场所C.植物的所有细胞都可以进行光合作用D.光合作用将光能转变成b中储存的能量【答案】C【分析】绿色植物通过叶绿体利用光能把二氧化碳和水转化成储存能量的有机物,并且释放出氧气的过程,叫做光合作用。
其中,a表示二氧化碳,b表示有机物。
【详解】A.光合作用的原料是二氧化碳和水;场所是叶绿体;条件是光;产物是有机物和氧。
所以,可a 表示二氧化碳,二氧化碳和水都是光合作用的原料,A正确。
B.叶绿体是光合作用的场所,把光能转化为化学能贮存在有机物中,是绿色植物细胞特有的一种能量转换器,B正确。
C.叶绿体只存在植物的绿色部分,如根尖细胞无叶绿体,不能进行光合作用,C错误。
D.光合作用的实质是制造有机物,储存能量,将无机物转化成有机物,将光能转变成化学能,储存在b有机物中,D正确。
故选C。
2.如图是绿色植物光合作用示意图,下列叙述错误的是()A.光合作用必须在光下才能进行B.绿色植物叶片中的水主要由根尖的伸长区从土壤中吸收的C.①代表二氧化碳,②代表氧气D.绿色植物的光合作用对于维持生物圈中的碳-氧平衡有重要作用【答案】B【分析】绿色植物利用光能,通过叶绿体,把二氧化碳和水转化成贮存着能量的有机物(主要是淀粉),并释放氧气的过程。
【详解】A.光合作用的概念是:绿色植物利用光能,通过叶绿体,把二氧化碳和水转化成贮存着能量的有机物(主要是淀粉),并释放氧气的过程。
由此可知,光合作用是通过叶绿体来完成的,叶绿体是光合作用的场所;光合作用的必要条件是光,因此,光合作用必须有光才能完成其过程,A正确。
B.绿色植物需要的水分是通过根从土壤中吸收的,根吸水的主要区域是根尖的成熟区,B错误。
C.通过光合作用的概念可以看出绿色植物进行光合作用吸收二氧化碳,释放氧气,所以①代表二氧化碳,②代表氧气,C正确。
专题三细胞代谢考点三影响光合作用和细胞呼吸的因素1.影响细胞呼吸因素相关的曲线2.关注光合作用3类影响因素曲线中的“关键点”(1)光照强度(2)CO2浓度①图乙中A点的代谢特点为植物光合速率与细胞呼吸速率相等,此时的二氧化碳浓度为二氧化碳补偿点,而图甲中D点的二氧化碳浓度是植物进行光合作用时最小二氧化碳浓度,从D 点才开始启动光合作用。
②B点和P点的限制因素:外因有温度和光照强度等,内因有酶的数量和活性、C5的含量、色素含量等。
(3)多因子影响上述图1、2、3中的曲线分析:P点时,限制光合速率的主要因素应为横坐标所表示的因子,随着该因子的不断加强,光合速率不断提高。
当达到Q点时,横坐标所表示的因子不再是影响光合速率的因素,要想提高光合速率,可采取适当提高图示中的其他因子的方法。
3.聚焦自然环境及密闭容器中植物一昼夜气体变化曲线(1)自然环境中一昼夜植物光合作用变化曲线①a点:凌晨低温,细胞呼吸减弱,CO2释放量减少。
②开始进行光合作用的点:b点;结束光合作用的点:m点。
③光合速率与呼吸速率相等的点:c、h点;有机物积累量最大的点:h点。
④de段下降的原因是气孔关闭,CO2吸收量减少,fh段下降的原因是光照强度减弱。
(2)密闭容器中一昼夜CO2和O2含量的变化曲线①光合速率等于呼吸速率的点:C、E点。
②若图1中N点低于虚线,该植物一昼夜表现为生长,其原因是N点低于M点,说明一昼夜密闭容器中CO2浓度减少,即总光合量大于总呼吸量,植物生长。
③若图2中N点低于虚线,该植物一昼夜不能生长,其原因是N点低于M点,说明一昼夜密闭容器中O2浓度减少,即总光合量小于总呼吸量,植物不能生长。
1.(2018·江苏,18)下图为某一植物在不同实验条件下测得的净光合速率,下列假设条件中能使图中结果成立的是()A.横坐标是CO2浓度,甲表示较高温度,乙表示较低温度B.横坐标是温度,甲表示较高CO2浓度,乙表示较低CO2浓度C.横坐标是光波长,甲表示较高温度,乙表示较低温度D.横坐标是光照强度,甲表示较高CO2浓度,乙表示较低CO2浓度答案 D解析随着CO2浓度的增大,净光合速率先增大后趋于稳定,但由于净光合速率最大时对应着一个温度,即最适温度,低于或高于此温度,净光合速率都将下降,所以无法确定在CO2浓度足够大时,较高温度下的净光合速率高于较低温度,A不符合题意;植物进行光合作用存在最适温度,高于最适温度后,净光合速率减小,所以随着温度升高,净光合速率不应呈现先升高后趋于稳定的状态,B不符合题意;由于光合色素主要吸收红光和蓝紫光,在相应光波长时,植物的净光合速率存在峰值,不应呈现先升高后趋于稳定的状态,且光波长一定时,较高温度下的净光合速率不一定较高,C不符合题意;随着光照强度的增加,净光合速率先增大后趋于稳定,在光照强度足够时,较高的CO2浓度下净光合速率较大,D符合题意。
2024年新课标光合作用教案高中生物一、教学内容本节课选自人教版高中生物必修一第三章《光合作用》,具体内容包括:光合作用的概念、过程、影响因素及实际应用。
主要涉及章节第3节:光合作用与呼吸作用。
二、教学目标1. 理解光合作用的概念、过程及其在生物圈中的重要性。
2. 掌握影响光合作用的因素,并能运用所学知识解释生产生活中的实际问题。
3. 培养学生的实验操作能力和科学思维。
三、教学难点与重点教学重点:光合作用的概念、过程及影响因素。
教学难点:光合作用过程中光反应与暗反应的联系与区别。
四、教具与学具准备1. 教具:多媒体课件、光合作用实验装置。
2. 学具:学生分组实验材料、实验报告单。
五、教学过程1. 实践情景引入展示绿色植物光合作用的实际应用案例,如光伏发电、温室栽培等,引发学生对光合作用的兴趣。
2. 知识讲解(1)光合作用的概念:光合作用是指绿色植物利用光能将二氧化碳和水转化为有机物和氧气的过程。
(2)光合作用的过程:光反应、暗反应。
3. 例题讲解讲解光合作用过程中的光反应与暗反应的实质及其联系与区别。
4. 随堂练习让学生完成教材第3节后的练习题,巩固所学知识。
5. 分组实验学生分组进行光合作用实验,观察光合作用产物的。
6. 实验结果讨论与分析学生汇报实验结果,讨论影响光合作用的因素,分析实验现象。
7. 课堂小结六、板书设计1. 光合作用的概念2. 光合作用的过程光反应暗反应3. 影响光合作用的因素4. 光合作用的实际应用七、作业设计1. 作业题目(1)简述光合作用的概念及过程。
(2)举例说明影响光合作用的因素。
(3)结合实际应用,谈谈光合作用在生活中的重要性。
2. 答案(1)光合作用是指绿色植物利用光能将二氧化碳和水转化为有机物和氧气的过程。
过程包括光反应和暗反应。
(2)影响光合作用的因素有光照强度、温度、二氧化碳浓度等。
(3)光合作用是生物圈中最重要的化学反应之一,为生物提供食物和氧气,同时影响气候变化。
第三课时第三节光合作用
【考点解读】
1.了解光合作用的概念和反应式(两个) 2.分析并熟记光合作用的过程3.了解光合作用的重要意义 4.描述提高光合作用效率的方法5.学会设计光合作用有关的实验 6.掌握有关光合作用的有关计算【自主探究】
1.学海导航
2.例题精析
〖例1〗将植物栽培在适宜的光照、温度和充足的C02条件下。
如果将环境中C02含量突然降至极低水平,此时叶肉细胞内的C3化合物、C5化合物和ATP含量的变化情况依次是
A. 上升;下降;上升
B. 下降;上升;下降
C. 下降;上升;上升
D. 上升;下降;下降
解析:从光合作用的反应过程进行分析:在光合作用过程中,C02参与暗反应,C02与C5化合物结合,生成两个C3化合物,当C02突然减少时,这个过程必然受阻,因而导致C5化合物的含量上升和C3化合物含量下降。
而C3化合物的减少,又使暗反应中C3化合物还原成葡萄糖的过程受阻,消耗光反应提供的ATP量也减少,使细胞中ATP含量上升。
[答案] C
〖例2〗图表示在75%的全部日照下一个叶片在不同的CO2浓度(单位10-6)下净CO2交换速度(单位μm ol·ms-1)的变化,判断下列叙述错误的是
A.植物A是C4植物,因它在高CO2浓度下有较高的CO2光转换速度
B.在CO2交换速度等于0时,两种植物A和B仍有光合作用和呼吸作用
C.如果光强度保持恒定,CO2浓度进一步增加,则植物A的CO2交换速度将达到饱合点
D.在CO2浓度为200×10-6时,C4植物比C3植物有较高的光能利用效率
解析:与C3植物相比,C4植物二氧化碳饱和点低,而光饱和点高,光合效率高,这是判断C4植物的标准之一。
C4植物是通过C4途径同化碳的植物,它同时具备C3和C4两条途径,C4途径本身不能将CO2还原成糖,只是改善CO2的供应,是一种辅助系统。
从图中可知,植物A的光补偿点(即在光照下,植物光合作用吸收的CO2量与呼吸作用放出的CO2量达到动态平衡时,外界环境中的CO2浓度)高,它不是C4植物。
在CO2交换速度等于0时,只是两种植物光合作用消耗的CO2和呼吸作用消耗的CO2相等,此时,外界的CO2浓度称为CO2的补偿点。
如果光强度保持恒定,CO2浓度进一步增加,也会达到CO2饱和点,超过饱和点,则光合速率不再随CO2浓度的增加而增加,有的植物光合强度甚至会降低,出现中毒现象。
在低CO2浓度的情况下,植物的光合速率取决于其CO2补偿的高低。
C4植物的CO2补偿点低于C3植物,前者体积分数约为0~5×10-6,后者约为5.0×10-5。
空气中CO2体积分数约为3.4~3.5×10-4。
当CO2浓度为200×10-6(即2.0×10-4)时,仍低于空气中正常的CO2浓度,在低CO2浓度的情况下,C4植物应该比C3植物有较高的光合速率。
[答案]A
【自我诊断】
1、在做植物实验的暗室内,为了尽可能地降低植物光合作用的强度,最好安装
A红光灯B绿光灯C白炽灯D蓝光灯
答案:B
2、欲测定植物是否进行光反应,可以检测是否有
A 葡萄糖的生产
B 淀粉的生成
C O2的生成
D CO2的吸收
答案:C
3、在光合作用下,不需要酶参与的过程是
A CO2的固定B叶绿素吸收光能C三碳化合物的还原D ATP的形成
答案:B
4、在正常条件下,进行光合作用的某植物,当突然改变某条件后,发现其叶肉细胞内五碳化合物的含量突然上升,则改变的条件是
A停止光照B停止光照和降低CO2浓度,C升高CO2浓度D降低CO2浓度
答案:D
5、对某植株作如下处理:(甲)持续光照10分钟;(乙)光照5秒后再黑暗处理5秒,连续交替进行20分钟。
若其它条件不变,则在甲、乙两种情况下植株所制造的有机物总量是
A甲多于乙B甲少于乙C甲和乙相等D无法确定
答案:B
6、光合作用中,光直接参与
A淀粉的形成B水的分解C葡萄糖的形成D氢和二氧化碳的结合
答案:B
7、要检验绿色植物在呼吸过程中放出二氧化碳,以下哪一项实验条件是必要的?
A要用一株叶子多的植物B要在黑暗条件下实验C把植物淹没在水中D用一株幼小植物
答案:B
8、轮作就是在同一块田地上,按预定的种植计划,轮换种植不同的作物,这样可以提高作物产量,用
下列说法对其解释,正确的是
A可以充分利用光能B能够改变原有的食物链,防止病虫害
C可以充分利用土壤中矿质元素D能防止土壤肥力的枯竭
答案:B
9、将小球藻培养液放在明亮处一段时间后,向其中滴加酚酞PH指示剂(遇碱变红),培养液变为红色,将此培养液分为两份,一份放在明亮处,一份放在暗处。
结果放在明处的仍为红色,放在暗处的又恢复了原色,其原因是
A光合作用产生了氧B光合作用产生了二氧化碳C光合作用消耗了氧D光合作用消耗了二氧化碳
答案:D
10、某地区有一片丛林和几家工厂,A图形表示该地区一天内丛林水分散失,B图形表示该地区一天内当地植物对CO2净吸收或释放量,C图形表示该地区当地附近大气污染物浓度的变化情况。
请分析图示,并回答有关的问题(S代表面积,横轴示时间/h)。
(1)若S B<S A,仅从外界环境推测,当日气温可能偏,或者丛林地表土壤溶液的浓度根细胞液的浓度,这时植物体内水分的含量将会
(2)若S B>S A,则多余水分去向是用于
(3)若S B>S A,SⅢ>SⅠ+SⅡ,则这片丛林当日有机物的变化是,这是由于
(4)图中大气污染物浓度降低的主要原因可能是
(5)每天清晨,在这片丛林里有许多退休职工早起锻炼,从环境因素考虑,你认为是否合适?请说明理由。
答案: (1)高大于减少 (2)光合作用其他代谢活动 (3)净增加光合作用合成的有机物量大于呼吸作用消耗的有机物量 (4)被丛林植物吸收掉 (5)不适合,因为清晨空气中CO2多,同时大气污染物浓度较高
11、右图为测定光合作用速度的仪器。
在密闭小室内放有一片某作物新鲜叶片和二氧化碳缓冲液,缓冲液用以调节小室内CO2的量,使其浓度保持在一个定植。
小灯泡可以调节光照强度。
小室内气体体积的变化可根据毛细管内水柱的移动距离测得。
请回答:
(1) 为了防止光照引起小室内气体的物理性膨胀或收缩所造成的误差,必须要有对照,并对实验结果进行校正。
那么对照组小室内应放置
(2)若二氧化碳浓度保持适宜定值,当光强度为零时,小室内减少气体为0.5微升/平方厘米叶面积/分。
而当光强度增加至某一值时,小室内增加气体为1.5微升/平方厘米叶面积/分,那么此时葡萄糖的生成速率是微克/平方厘米叶面积/分
(3)若该作物光合作用的最适二氧化碳浓度为800mg/mL, 最适光强为20千勒克司。
试利用本实验装置探究光强和二氧化碳浓度对光合速率的影响。
请简要列出实验步骤,并将预期结果绘制在坐标图上(只需绘4-6条曲线,表示出变化趋势即可)实验步骤:
答案:(1)同样大小死叶片和缓冲溶液(2)60 ( 6:(0.5+1.5)=180:X) (3)(一)固定适宜光强(如20千勒克司),依次调节二氧化碳缓冲液为200mg/mL、400mg/mL、600mg/mL、800mg/mL、1000mg/mL……,分别测出光合速率值(二)固定适宜浓度二氧化碳缓冲液(如600mg/mL),依次调节光强为5千勒克司、10千勒克司、15千勒克司、20千勒克司、25千勒克司、30千勒克司、35千勒克司、40千勒克司……,分别测出光合速率值。
光强和二氧化碳浓度对光合速率的影响曲线如图:
【信息链接】
卡尔文循环
卡尔文通过实验发现的C O2在光合作用中被固定的一种途径,由于这一途径中C O2的固定是一个循环过程,并且是卡尔文发现的,故称为卡尔文循环。
二次世界大战之后,美国加州大学贝克利分校的M e l v i n C a l v i n和他的同事们使用14C 示踪和双向纸层析技术,研究一种藻:C h l o r e l l a在光合作用中怎样固定C O2,。
他们将培养的藻生长在含有未标记C O2的密闭容器中,然后将标记的C O2注入培养基,培养合适时间后,将培养的藻浸入热的乙醇中,这种处理有三种功效:杀死细胞、终止酶的作用、提取溶解的分子。
然后将提取物点在层析纸上进行双向纸层析,最后通过放射自显影分析放射性斑点,并同已知化学成份进行比较。
在卡尔文的实验中,发现标记的C O2转变成有机物的速度很快,几秒钟之内,在层析纸上就有放射性的斑点,经测定,斑点中的化学成份是三磷酸甘油酸(3-p h o sp h o g l y c e r a t e,P GA),是糖酵解的中间体。
由于被鉴定到的第一个中间体是三碳分子,所以将C O2的这种固定途径称为C3途径,将通过这种途径固定C O2的植物称为C3植物。
最终的研究结果发现,C O2固定的C3途径是一个循环过程,称为C3循环,由于这一循环是卡尔文发现的,故又称卡尔文循环,可分为三个阶段:羧化、还原和R u B P的再生。