小学五年级数学因数与倍数讲义-非常经典的讲义教程文件
- 格式:doc
- 大小:56.50 KB
- 文档页数:10
因数和倍数学生/课程年级学科授课教师日期时段核心内容奇数与偶数、因数与倍数、2,3,5的倍数特征、质数与合数课型一对一/一对N教学目标1、理解因数与倍数概念,能举例说明;2、了解奇数与偶数,能准确判断奇数与偶数,通过探索奇数、偶数相加的结果是奇数还是偶数(奇偶性);3、了解质数与合数,在1~100的自然数中,能找出质数与合数,并能熟练判断20以内的数哪个是质数,哪个是合数。
重、难点2,3,5的倍数特征、质数与合数知识导图导学一:因数与倍数知识点讲解 1:因数与倍数1、自然数的个数是()的,最小的自然数是(),()最大的自然数。
2、在自然数中,是()的数叫做偶数,()的数叫做奇数。
3、因数和倍数的意义:如果整数a(a≠0)乘整数b(b≠0)得到整数c,那么a和b都是()的因数,c是()的倍数, c也是()的倍数。
因数和倍数是相互()的,不能说哪个数是因数,哪个数是倍数。
例 1. 判断(对的打“√”,错的打“×”)(1)18是倍数,2是因数。
()(2)因为1.4÷0.2=7,所以1.4是0.2的倍数,0.2是1.4的因数。
()(3)一个非零自然数的最大因数和最小倍数都是它本身。
()例 2. [单选题] 属于因数和倍数关系的等式是()。
A、2×0.25=0.5B、2×25=50C、2×0=0例 3. 在12、6、3、4中,()是()的倍数,()是()的因数。
例 4. [单选题] 15的最大因数是(),最小倍数是()。
A、1B、3C、5D、15 我爱展示1. 10×3=30,()是()的因数,()是()的倍数。
60÷5=12,60是()的倍数,()是()的因数。
1.一个数既是20的因数,又是20的倍数,这个数是()。
2.[单选题] 一个数既是4的因数,又是2的倍数,这个数是()。
A、2B、4C、2或43.[单选题] a是b的倍数,c是b的因数,则a是c的()。
五年下册数学因数和倍数集体讲解引言本文档旨在对五年级下册的数学因数和倍数进行集体讲解。
通过深入讲解和示范题目,希望能够帮助学生们更好地理解和应用这一知识点。
一、因数概念及性质1.1 因数的定义在数学中,我们将一个数能够整除另一个数的数称为后者的因数。
例如,4是8的因数,因为4可以整除8。
1.2 试除法求因数试除法是求解因数的一种常用方法。
其基本思路是从小到大不断试除,直至无法整除为止。
1.3 因数的性质- 一个数的所有因数都小于等于它本身;- 1和这个数本身是它的因数;- 除了1和这个数本身之外,其他因数都是成对出现的。
二、倍数概念及性质2.1 倍数的定义在数学中,一个数如果能够被另一个数整除,则前者称为后者的倍数。
例如,16是8的倍数,因为16可以被8整除。
2.2 如何判断一个数是另一个数的倍数一个数是否是另一个数的倍数,可以使用取余运算进行判断。
如果一个数除以另一个数的余数为0,则前者是后者的倍数。
2.3 倍数的性质- 一个数的所有倍数都大于等于它本身;- 一个数的倍数可以是无穷多个。
三、因数和倍数的应用3.1 公约数和公倍数- 公约数是指多个数共有的因数,即能够同时整除这些数的数;- 公倍数是指多个数共同的倍数,即能够同时被这些数整除的数。
3.2 求最大公因数最大公因数又称为最大公约数,是指多个数的公约数中最大的那个数。
可以使用辗转相除法或质因数分解法来求解最大公因数。
3.3 求最小公倍数最小公倍数是指多个数的公倍数中最小的那个数。
可以使用求最大公因数的方法来求解最小公倍数。
四、示范题目下面给出一些示范题目,帮助学生们更好地理解和应用因数和倍数的知识点。
1. 求8和12的最大公因数和最小公倍数。
2. 判断36是否是24的倍数。
3. 求24和36的公约数和公倍数。
4. 设有一个数的因数有3和9,求这个数。
五、总结通过本次集体讲解,我们对五年下册的数学因数和倍数进行了深入的研究和理解。
因数和倍数在数学中具有重要的应用价值,可以帮助我们解决实际问题。
北师大版五年级上册数学《倍数与因数》说课课件(共24张PPT)(共24张PPT)《倍数与因数》说课稿目录01.说教材07.说板书设计03.说教学目标05.说教法与学法02.说学情04.说教学重难点06.说教学过程08.说教学反思敬爱的各位老师,大家好!我是今天的内容是小学数学北师大版五年级上册第三单元倍数与因数第1节《倍数与因数》的课程。
接下来,我将从说教材、说学情、说教学目标、说教学重难点、说教法与学法、说教学过程、说板书设计以及说教学反思这八个方面进行详细的介绍。
说教材01说教材本节课的教材来源于北师大版五年级上册数学教材。
本单元的学习目标是让学生初步认识倍数与因数的概念,并能够准确判断一个数的倍数。
通过本节课的学习,学生将能够在具体情境中理解和应用倍数与因数的概念。
说学情02说学情本节课是五年级上学期的第三单元,学生已经具备了一定的数学基础知识和思维能力。
他们已经学过整数的概念和加法、减法的运算,对数学的抽象思维能力有了初步的培养。
但对于倍数与因数的概念和判断方法还不够熟悉,需要通过具体情境的引导和实际操作的训练来加深理解。
说教学目标03说教学目标1. 知识与能力目标:-理解倍数的概念,能够准确判断一个数是否为另一个数的倍数。
-理解因数的概念,能够找出一个数的所有因数。
2. 过程与方法目标:-培养学生的观察、探究和分析问题的能力。
-引导学生通过具体情境和实际操作来认识倍数与因数。
-激发学生的兴趣和主动参与,培养团队合作和交流能力。
说教学重难点04说教学重难点教学重点:-结合具体情境,认识倍数和因数的概念。
-掌握准确判断一个数的倍数的方法。
教学难点:-准确判断一个数的倍数的方法。
说教法与学法05说教法与学法-启发式教学法:通过引发学生的兴趣和好奇心,引导他们自主探索和发现倍数与因数的概念。
-合作学习法:通过小组合作讨论和合作解决问题,促进学生之间的互动和交流,培养他们的团队合作能力。
学法上,学生将通过观察、实践和讨论的方式积极参与课堂活动,主动探索倍数与因数的概念,培养他们的思维能力和解决问题的能力。
教学过程课前检测1、口算。
2、3÷4=)(12=)(12=18÷( )=( )(填小数) 。
3、三个分数的和是353,它们的分母相同,分子是相邻的三个自然数,这三个分数分别是( )、( )和( )4、 15 +X=23 X -91-92=95 5.甲、乙两人同时从两地相向而行,甲骑车每小时行1625 千米,乙步行每小时行4.6千米,经过2小时两人相遇。
两地相距多少千米 知识纵横知识点一:因数与倍数1、因数和倍数:如果整数a 能被b 整除,那么a 就是b 的倍数,b 就是a 的因数。
?2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
?3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
?知识点二:2、5、3的倍数的特征?①个位上是0、2、4、6、8的数,都是2的倍数。
?②个位上是0或5的数,是5的倍数。
?③一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能被2整除的数叫偶数,不能被2整除的数叫奇数。
偶数用2a表示、奇数用2a+1表示偶数±偶数=偶数奇数±奇数=偶数奇数±偶数=奇数偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数无论多少个偶数相加都是偶数??知识点三:质数和合数?质数:一个数,如果只有1和本身两个因数,这样的数叫做质数。
1,3,5,7。
?合数:一个数,如果除了1和本身还有别的因数,这样的数叫做合数。
4,6,8,9。
知识点四:知识点扩充1.9的倍数的数特征是一个数各位上的数字的和是9的倍数,这个数同时也是3的倍数????2.既是2的倍数,又是5的倍数的数的特征是个位必须是0????3.4、和25的倍数的特征是末二位是4或25的倍数????4.8和125的倍数的特征是末三位是8和125的倍数??5、如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数?6.如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数?例题求解【例题1】(1)在自然数的范围内,最小的质数是(),最小的合数是(),最小的奇数是(),最小的偶数是(),最小的自然数是()。
人教版小学五年级数学下册同步复习与测试讲义第二章因数与倍数【知识点归纳总结】1. 因数和倍数的意义假如整数n除以m,结果是无余数的整数,那么我们称m就是n的因子.需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立.反过来说,我们称n为m的倍数.【经典例题】1.4和8都是32的()A.因数B.倍数C.奇数D.偶数【分析】整数a除以整数b得到的商c是整数,并且没有余数,我们就说a是b和c的倍数,b和c都是a的因数,因为32÷4=8,所以说4和8都是32的因数,32是4和8的倍数.【解答】解:因为32÷4=8 所以4和8都是32的因数,32是4、8的倍数.故选:A.【点评】此题考查因数和倍数的意义,因数和倍数是两个数之间的关系.2. 找一个数的因数的方法1.分解质因数.例如:24的质因数有:2、2、2、3,那么,24的因数就有:1、2、3、4、6、8、12、24.2.找配对.例如:24=1×24、2×12、3×8、4×6,那么,24的因数就有:1、24、2、12、3、8、4、6.【经典例题】2.在18的所有因数中,最大的因数是()A.1B.3C.66D.18【分析】根据一个数的因数是有限的,其中最大的因数是它本身,据此解答.【解答】解:在18的所有因数中,最大的因数是它本身,即是18.故选:D.【点评】本题主要考查因数、倍数的意义,理解一个数的最大的因数和最小的倍数都是它本身.3. 找一个数的倍数的方法找一个数的倍数,直接把这个数分别乘以1、2、3、4、5、6…,一个数的倍数的个数是无限的.1.末尾是偶数的数就是2的倍数.2.各个数位加起来能被3整除的数就是3的倍数.9的道理和3一样.3.最后两位数能被4整除的数是4的倍数.4.最后一位是5或0的数是5的倍数.5.最后3位数能被8整除的数是8的倍数.6.奇数位上数字之和与偶数位上数字之和的差能被11整除的数是11的倍数.注意:“0”可以被任何数整除.【经典例题】3.如果一个数是9的倍数,那么它也一定是()的倍数.A.6B.3C.18D.27【分析】因为9是3的倍数,所以一个数是9的倍数,那么它一定是3的倍数,举例证明.【解答】解:18是9的倍数也是3的倍数,54是9的倍数也是3的倍数,所以一个数是9的倍数,那么它一定是3的倍数.故选:B.【点评】本题主要考查3和9的倍数特征,注意9是3的倍数.4. 2、3、5的倍数特征2、3、5的倍数特征:被2整除特征:偶数被3整除特征:每一位上数字之和能被3整除被5整除特征:个位上是0或5的数同时能被2、3、5整除的特征:个位是0且每一位上数字之和能被3整除.【经典例题】4.一个数既是2的倍数,又是5的倍数,还有因数3,这个数最小是30.【分析】由于这个数既是2的倍数,又是5的倍数,还有因数3,要使这个数最小,就是求2、3、5的最小公倍数.根据最小公倍数的含义,这三个数如果两两互质,那么这几个数的最小公倍数就是这几个数的乘积.【解答】解:2、3、5两两互质,它们的最小公倍数是;2×3×5=6×5=30故答案为:30.【点评】2、3、5的倍数特征是一个常考的知识点,应熟练掌握.5. 合数与质数合数:指自然数中除了能被1和本身整除外,还能被其他的数整除的数.“0”“1”既不是质数也不是合数.质数:一个数只有1和它本身两个因数,这个数叫作质数(素数)【经典例题】5.30以内的正整数中,最大的素数和最小的合数的积是116.【分析】自然数中,除了1和它本身外,没有别的因数的数为质数;除了1和它本身外,还有别的因数的数为合数;据此可知,在30以内的自然数中,最大的质数是29,最小的合数是4,用29×4计算得解.【解答】解:30以内的自然数中,最大的质数是29,最小的合数是4;29×4=116答:30以内的正整数中,最大的素数和最小的合数的积是116.故答案为:116.【点评】解答此题应明确:自然数中,质数与合数是根据因数的多少进行定义的.6. 合数分解质因数任何一个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的分解质因数.【经典例题】6.把36分解质因数是36=1×2×2×3×3.×(判断对错)【分析】分解质因数就是把一个合数写成几个质数相乘的形式,一般先从较小的质数试着分解.【解答】解:把36分解质因数是:36=2×2×3×3;故判断为:×.【点评】此题主要考查分解质因数的方法及运用.【同步测试】单元同步测试题一.选择题(共10小题)1.下面的说法中.正确的是()A.8是48的倍数B.27是9的因数C.一个数的倍数的个数是有限的D.15是60的因数,也是5的倍数2.2和3是12的()A.因数B.公因数C.最大公因数D.质数3.既是6的倍数,又是24的因数的数有()个.A.1B.2C.3D.44.A是合数,A有()个因数.A.2B.3C.至少3D.无数5.7的倍数有()个.A.1B.2C.无数6.一个数是9的倍数,这个数一定是()的倍数.A.3B.2C.5D.67.一本30页的画册,翻开后看到两个页码,其中一个页码既是2的倍数,又是5的倍数.想一想翻开的页码可能是()A.14、15B.10、11C.24、258.在横线上填上合适的质数:20=___+____,可以填的两个数分别是()A.1和19B.10和10C.3和179.把6分解质因数,正确的是()A.6=1×2×3B.2×3=6C.6=2×3D.1×2×3=610.89389767至少加上()就同时是2、3、5的倍数.A.2B.3C.5二.填空题(共8小题)11.既含有因数3又含有因数5的最小三位数是.12.最小的质数是,既不是质数也不是合数的是.13.40以内6的倍数有,50以内9的倍数有.14.自然数(0除外)按因数的个数分,包括、和.15.由48÷12=4,我们可以说是的倍数.16.因为5×8=40,所以40是5和8的,5和8是40的.17.一个数的因数一共有9个,按从小到大的顺序排列第5个因数是6,这个数是,把这个数分解质因数是.18.有一个三位数,它的十位上的数字是最小的质数,如果这个三位数能同时被2、3、5整除,这个三位数最大是.三.判断题(共5小题)19.1230同时是2、3、5的倍数.(判断对错)20.因为21×3=63,所以3和21是因数,63是倍数.(判断对错)21.32的全部因数是2、4、8、16和32,共有5个.(判断对错)22.一个自然数(0除外)的倍数的个数是无限的.(判断对错)23.两个不同数相乘的积一定是合数.(判断对错)四.计算题(共1小题)24.把下面各数分解质因数.(1)30(2)91(3)24五.应用题(共6小题)25.小丽家有两种塑料油桶,分别是3千克装,2千克装.小丽妈妈买回26千克油,选哪种塑料桶装能正好把油装完?为什么?26.人85个面包,如果每2个装成一袋,能正好装完吗?如果每5个装成一袋,能正好装完吗?如果每3个装成一袋,能正好装完吗?为什么?27.五年级同学48人排队做操,要求每行的人数相同(至少排成2行),有几种不同的排法?请你将他写出来.28.水果店有85个苹果,每3个装一袋,能正好装完吗?如果不能,至少还需要加上几个就能正好装完?29.有642盒牛奶,分别用6盒装和8盒装的箱子去装,选哪种箱子才能正好装完呢?30.相同的字母表示相同的数字,现在老师在黑板上写了21BBB这么一个五位数,它是不是3的倍数呢?先判断,再说明你的理由是什么?参考答案与试题解析一.选择题(共10小题)1.【分析】根据因数和倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;据此根据题意,对各选项进行依次分析、进而得出结论.【解答】解:A、因为48÷8=6,所以48是8的倍数,8是48的因数,所以本选项说法错误;B、因为27÷9=3,所以27是9的倍数,9是27的因数,所以本选项说法错误;C、根据一个数的倍数的个数是无限的,所以本选项说法错误;D、因为60÷15=4,15÷5=3,所以l5是60的因数,也是5的倍数,说法正确;故选:D.【点评】此题考查的是因数和倍数的意义,应根据其意义进行解答.2.【分析】2、3都能整除12,即2、3都是12的因数;依此即可求解.【解答】解:2和3是12的因数.故选:A.【点评】本题主要考查因数、公因数、最大公因数、质数的概念.3.【分析】先找出24的因数,然后找出24以内(包括24)的6的倍数,进而结合题意,得出结论.【解答】解:24的因数有:1,2,3,4,6,8,12,24;24以内的6的倍数有:6,12,24;所以既是24的因数,又是6的倍数的数有:6,12,24共3个.故选:C.【点评】解题的关键是:根据求一个数的倍数的方法和求一个数的因数的方法,进行分析、解答.4.【分析】根据质数、合数的特征:在自然数中,除了1和它本身外,没有别的因数的数为质数;除了1和它本身外,还有别的因数的数为合数,可得合数A至少有3个因数,据此解答即可.【解答】解:根据分析,可得:A是合数,A至少有3个因数.故选:C.【点评】此题主要考查了找一个数的因数的方法,要熟练掌握,解答此题的关键是要明确:一个质数有且只有两个因数,一个合数至少有3个因数.5.【分析】求一个数的因数、倍数的方法,一个数的因数的个数是有限的,最小的是1,最大的是它本身;一个数的倍数的个数是无限的,只有最小的倍数是它本身,没有最大的倍数;由此解答.【解答】解:根据分析可得:7的倍数有无数个.故选:C.【点评】此题的决定主要掌握求一个数的因数的个数和求一个数的倍数的方法.6.【分析】因为9是3倍数,所以一个数是9的倍数,这个数一定是3的倍数.据此判断.【解答】解:因为9是3倍数,所以一个数是9的倍数,这个数一定是3的倍数.故选:A.【点评】此题考查的目的是理解倍数的意义,掌握求一个数的倍数的方法.7.【分析】根据2、5的倍数的特征,个位上是0、2、4、6、8的数都是2的倍数;个位上是0或5的数都是5的倍数;同时是2和5的倍数的数,个位上必须是0;由此可知,翻开后看到两个页码,其中一个页码既是2的倍数,又是5的倍数,所以翻开的页码可能是10页、11页,据此解答即可.【解答】解:因为同时是2和5的倍数的数,个位上必须是0,所以翻开的页码可能是10页、11页.故选:B.【点评】此题考查的目的是理解掌握2、5的倍数的特征及应用.8.【分析】根据质数的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数.20以内的质数有:2、3、5、7、11、13、17、19.据此解答即可.【解答】解:20=3+17,故选:C.【点评】此题考查的目的是理解掌握质数的意义及应用.9.【分析】把一个合数写成几个质数相乘的形式叫做分解质因数,据此把6分解质因数.【解答】解:把6分解质因数,正确的是:6=2×3故选:C.【点评】本题主要考查分解质因数的方法.10.【分析】根据2、3、5的倍数的特征,个位上是0、2、4、6、8的数都是2的倍数,一个数各位上的数字之和是3的倍数,这个数一定是3的倍数,个位上是0或5的数都是5的倍数,同时是2、3、和5的倍数的数,个位上必须是0且各位上的数字之和是3的倍数.据此解答即可.【解答】解:因为同时是2、3、和5的倍数的数,个位上必须是0且各位上的数字之和是3的倍数.所以89389767至少加上3就同时是2、3、5的倍数.故选:B.【点评】此题考查的目的是理解掌握2、3、5的倍数的特征及应用.二.填空题(共8小题)11.【分析】根据3、5倍数的特征可知:既是3的倍数,又是5的倍数的最小三位数,要满足个位上是0或5,然后满足3的倍数的条件,即百位、十位和个位数字上的数的和是3的倍数即可,要想最小百位应为非0自然数中最小的数1,个位数字是0或5,1+0+5=6,十位数字是5或0,要想这个数字最小,只能是105;据此写出即可.【解答】解:由分析可知:1+0+5=6,是3的倍数,既是3又是5的倍数,最小三位数是105.故答案为:105.【点评】本题主要根据2、3、5倍数的特征可知,要先确定个位满足是2和5的倍数,再确定百位、十位是3的倍数.12.【分析】根据质数、合数的意义,一个自然数如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;1既不是质数也不是合数.据此解答即可.【解答】解:最小的质数是2,既不是质数也不是合数的是1.故答案为:2、1.【点评】此题考查的目的是理解掌握质数、合数的意义,明确:1既不是质数也不是合数.13.【分析】求一个数的倍数的方法用这个数分别乘以自然数:1,2,3,4,5…,所得积就是这个数的倍数.由此解答.【解答】解:40以内6的倍数有:6,12,18,24,30,36;50以内9的倍数有:9,18,27,36,45.故答案为:6,12,18,24,30,36;9,18,27,36,45.【点评】此题考查的目的是使学生理解和掌握公倍数的意义,掌握求公倍数的方法.14.【分析】一个自然数(0除外),只有1个因数的数是1,除了1和它本身以外不含其它因数的数是质数;除了1和它本身外还含有其它因数的数是合数;据此解答即可.【解答】解:由分析知:自然数(0除外)按它的因数的个数可以分为:质数、合数和1;故答案为:质数,合数,1.【点评】解答此题的关键:结合题意,并根据质数和合数的含义进行分析、解答.15.【分析】在除法算式中,被除数是商与除数的倍数,商与除数是被除数的因数,然后再进一步解答.【解答】解:因为48÷12=4,所以48是12的倍数.故答案为:48,12.【点评】考查了因数与倍数之间的关系,然后再进一步解答.16.【分析】根据因数和倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;进行解答即可.【解答】解:因为5×8=40,所以40是5和8的倍数,5和8是40的因数.故答案为:倍数,因数.【点评】此题考查了因数和倍数的意义,要记住,因数和倍数是相互依存的,不能单独存在.17.【分析】根据一个数的因数的个数是奇数个,中间数的平方等于这个数,依此可求该数;分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.【解答】解:6×6=3636=2×2×3×3答:这个数是,36,把这个数分解质因数是36=2×2×3×3.故答案为:36,36=2×2×3×3.【点评】此题主要考查分解质因数的方法以及如何求一个数的约数和约数的个数.关键是由因数的中间数求出这个数.18.【分析】根据2、3、5的倍数的特征,个位上是0、2、4、6、8的数都是2的倍数;一个数各位上的数字之和是3的倍数,这个数一定是3的倍数;个位上是0或5的数都是5的倍数;同时是2、3和5的倍数的数个位上必须是0且各位上的数字之和是3的倍数;最小的质数是2,十位上的数字是2,个位上的数0,要使这个三位数最大,由3的倍数的特征可知,百位上的数字最大是7.据此解答.【解答】解:最小的质数是2,也就是这个三位数的十位上的数字是2,同时是2、3和5的倍数的数个位上必须是0且各位上的数字之和是3的倍数,所以要使这个三位数最大,也就是百位上的数字是7,即这个三位数是720.答;这个三位数最大是720.故答案为:720.【点评】此题考查的目的是理解掌握2、3、5的倍数的特征及应用.三.判断题(共5小题)19.【分析】根据2、3、5的倍数的特征,个位上是0、2、4、6、8、的数都是2的倍数;各位上的数字之和是3的倍数,这个数一定是3的倍数;个位上是0或5的数都是5的倍数;同时是2、5、3的倍数的特征是个位上必须是0且各位上的数字之和是3的倍数.据此解答.【解答】解:因为1+3+2=0=6,6是3的倍数;所以1320是3的倍数,又因为1320的个位是0,所以1320是2和5的倍数,即1320同时是2、3、5的倍数.所以“1320同时是2、3、5的倍数”的说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握2、3、5的倍数的特征.20.【分析】根据因数和倍数的意义:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数;进行解答即可.【解答】解:因为21×3=63,则:63÷21=3,63÷3=21,即21和3是63的因数,63是21和3的倍数,不能单独说一个数是因数或倍数;所以原题说法错误;故答案为:×.【点评】此题考查了因数和倍数的意义,应明确因数和倍数的意义,注意因数和倍数是相互依存的.21.【分析】根据找一个数因数的方法,列举出32的所有因数,然后判断即可.【解答】解:32的全部因数是1、2、4、8、16和32,共有6个,所以本题说法错误;故答案为:×.【点评】明确找一个数因数的方法,是解答此题的关键.22.【分析】根据倍数的含义和找一个数的倍数的方法,可得一个数(0除外)的倍数的个数是无限的,最小的是它本身,据此解答即可.【解答】解:因为一个数(0除外)的倍数的个数是无限的,最小的是它本身,所以题中说法正确.故答案为:√.【点评】此题主要考查了倍数的含义和找一个数的倍数的方法,要熟练掌握.23.【分析】两个自然数(0除外)相乘,积不一定是合数,可以举出反例证明.【解答】解;1和2是大于零的自然数,它们的积1×2=2,2是质数,1和5是大于零的自然数,它们的积1×5=5,5是质数,所以两个不同数相乘的积一定是合数的说法是错误的;故答案为:×.【点评】解答本题关键是找出反例进行推翻结论.四.计算题(共1小题)24.【分析】分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.【解答】解:(1)30=2×3×5;(2)91=7×13;(3)24=2×2×2×3.【点评】此题考查的目的是理解掌握分解质因数的方法.五.应用题(共6小题)25.【分析】因为买回来26千克豆油,26的个位数字是偶数,得出能被2整除,所以选用2千克装,根据进而得出结论.【解答】解:由分析知:选用2千克装,26÷2=13(个)答:选用2千克装,需这样的桶13个;因为26是2的倍数.【点评】解答此题的关键:根据能被2整除的数的特征,进行解答即可.26.【分析】(1)根据能被2整除的特征:即个位上是0、2、4、6、8的数判断即可;(2)根据能被5整除的特征:即个位上是0或5的数判断即可;(3)根据能被3整除的特征:各个数位上的数字之和能被3整除这个数就能被3整除,判断即可.【解答】解:(1)85个位上是5,不能被2整除,所以每2个装一袋,不能正好装完;答:不能正好装完;(2)85个位上是5,能被5整除,所以每5个装一袋,能正好装完;答:能正好装完;(3)8+5=13,不能被3整除,所以每3个装一袋,不能正好装完;答:不能正好装完.【点评】此题根据能被2、3、5整除的数的特征,解决实际问题.27.【分析】要求每行的人数相同,可以排成几行?即求48的因数,有:1、2、3、4、6、8、12、16、24、48;因为至少排2排,如果每行2人,可以排24行;如果每行3人,可以排16行;如果每行4人,可以排12行;如果每行6人,可以排8行;如果每行8人,可以排6行;如果每行12人,可以排4行;如果每行16人,可以排3行,如果每行24人,可以排2行;共8种情况.【解答】解:48的因数有:1、2、3、4、6、8、12、16、24、48;要求每行的人数相同(至少排成2行),如果每行2人,可以排24行;如果每行3人,可以排16行;如果每行4人,可以排12行;如果每行6人,可以排8行;如果每行8人,可以排6行;如果每行12人,可以排4行;如果每行16人,可以排3行,如果每行24人,可以排2行;共8种情况.答:共有8种情况.【点评】解答此题的关键:先根据找一个数的因数的方法,求出48的因数,进而根据题意,列举出所有的排法.28.【分析】先计算一下85能不能被3整除,如果能,就能正好装完,反之,则不能;求至少还需几个,先求出余数,然后用除数减去余数,即至少买的个数.【解答】解:85÷3=28(袋)…1(个),至少增加:3﹣1=2(个);答:不能正好装完,如果每3个装一袋,至少还需要加上2个苹果.【点评】此题主要考查根据能被3整除的数的特征解决问题.29.【分析】选哪个箱子能正好装完,只要依据整除的意义,谁能整除642,就选那种包装箱,据此解答即可.【解答】解:因为642÷6=107642÷8=80.25所以每箱装6盒能正好把642盒牛奶装完;【点评】此题主要依据整除的意义解决问题,掌握整数除法的计算方法是解答本题的关键.30.【分析】这个五位数的最高两位数字之和是2+1=3,3是3的倍数,如果后三位的数字之和也是3的倍数,那么这个数就是3的倍数.任何一个由相同数字组成的三位数都是3的倍数,如111、222、333……999,即3个1、3个2、3个3……3个9都是3个倍数,因此,21BBB这个五位数不论B为任何一位自然数,这个数都是3的倍数.【解答】解:21BBB是3的倍数.理由:最高两位数字之是2+1=3,3÷3=1,即21是3的倍数111、222、333……999都是3的倍数因此,21BBB无论B为任何自然数(包括0),这个数都是3的倍数.【点评】此题是考查3的倍数特征.一个数各位上的数字之和是3的倍数,这个数就是3的倍数.。
专题3:因数与倍数(小升初复习讲义)2024年小升初数学复习专题:第一章数的认识(高频考点梳理+重难点讲解+同步练习+答案)【知识梳理】1、在整数除法中,如果商是整数而没有余数(或者说余数为0),我们就说除数是被除数的因数,被除数是除数的倍数。
例如:12÷2=6 → 2是12的因数,12是2的倍数。
2×6=12 → 2和6是12的因数,12是2和6的倍数。
2、因数和倍数是相互依存的,不能单独存在,不能说谁是因数,也不能说谁是倍数,应该说谁是谁的因数或谁是谁的倍数。
倍数和因数都是自然数(一般不包括0),不能是小数或分数。
3、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
4、一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个非0自然数既是它本身的因数,也是它本身的倍数。
5、表示一个数的因数和倍数的方法:列举法;集合表示法。
【例1】如果一个数的最大因数和它的最小倍数的积是49,那么这个数是()。
【解题分析】因为一个数的最大因数和最小倍数都是它本身,已知这个数的最大因数和最小倍数的积是49,而7×7=49,则这个数是7。
【答案】7;【例2】把24个玻璃杯分别装在盒子里,要使每个盒子中玻璃杯的数量同样多,且刚好可以全部装完,一共有()种不同的装法。
【解题分析】24的因数有:1、2、3、4、6、9、12、18,36;装法有:(1)24=1×24,①每盒24个,装1盒,因为这个装法不能体现每个盒子装得同样多,所以不可以这样装;②每盒装1个,装24盒;(2)24=2×12,③每盒装12个,装2盒;④每盒装2个,装12盒;(3)24=3×8,⑤每盒装8个,装3盒;⑥每盒装3个,装8盒;(4)24=4×6,⑦每盒装6个,装4盒;⑧每盒装4个,装6盒;所以一共有7种装法。
【答案】7;【例3】古希腊的毕达哥拉斯学派在研究自然数时发现了一些珍贵的数字。
重点整理1因数和倍数1.一个整数能够被另一整数整除,这个整数就是另一整数的倍数,另一个整数就是这个整数的因数。
范例一(因数和倍数)(1)18÷6=2这个式子中,_______是_______的倍数,_______是_______的因数。
学生练习(1)在3×5=15式子中,_______是_______的倍数,也是_______的倍数;_______是_______的因数,_______也是_______的因数。
(2)12的因数有________________________________,24的因数有______________________________________.(3)30以内的自然数中,6的倍数有__________________________.重点整理21.一个数的因数有有限个,最小是1,最大是他本身;2.一个数的倍数有无限个,最小是他本身。
重点整理32、3、5的倍数的特点1.个位数是0、2、4、6、8的整数是2的倍数;2.个位数是0和5的整数是5的倍数;3.如果一个数是3的倍数,那它的各个位的数加起来也是3的倍数。
范例二(1)举出5个两位数的2的倍数______________________________________。
(2)举出5个两位数的3的倍数______________________________________. (3)举出5个两位数的5的倍数______________________________________。
学生练习() (1)既是2的倍数,又是5的倍数的数是_______。
(A)42 (B)30 (C)55 (D)107( ) (2)既是3的倍数,又是5的倍数的数是_______。
(A)42 (B)30 (C)55 (D)107( ) (3)既是2的倍数,又是3的倍数的数是_______。
(A)42 (B)30 (C)55 (D)107() (4)_____是3的倍数。
讲义2 因数与倍数一、自学自补(一)因数和倍数。
1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数. 又如整数a能被b整除(a÷b=c),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
2、因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找,或用除法找。
3、倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
4、一个数的倍数的求法:依次乘自然数。
(二)自然数按能不能被2整除分为:奇数、偶数奇数:不是2的倍数的数叫做奇数。
偶数:是2的倍数的数叫做偶数。
1、最小的奇数是1,最小的偶数是0。
2、2、3、5倍数的特征:①个位上是0,2,4,6,8的数都是2的倍数。
②个位上是0或5的数,是5的倍数。
③一个数各位上的数的和是3的倍数,这个数就是3的倍数。
④如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
⑤同时是2、3、5的倍数:个位上是0并且各位上的数的和是3的倍数⑥同时是2、3、5的倍数中,最大的两位数是90,最小的两位数是30,最小的三位数是120。
(三)自然数按因数的个数来分:质数、合数、1.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7,11,13,17,19……都是质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
如4,6,8,9,10,12,14,15,16,18,20,22,26,49……都是合数。
1、合数至少有三个因数,包括1、它本身和别的因数2、数1:只有1个因数。
“1”既不是质数,也不是合数。
3、最小的质数是2,最小的合数是4。
4、20以内的质数:有8个(2、3、5、7、11、13、17、19)(1)所有的奇数都是质数。
不对,因为9是奇数,但不是质数,而是合数。
(2)所有的偶数都是合数。
不对,因为2是偶数,但不是合数,是质数。
小学五年级数学因数与倍数讲义-非常经典
的讲义
龙文教育学科讲义
教师:学生:日期:2013-03-09星期:六时段:08:00—10:00
(3)属于因数和倍数关系的等式是()
A、2×0.25=0.5
B、2×25=50
C、2×0=0
【知识点3】没有前提条件确定倍数与因数
例如:36的因数有()。
确定一个数的所有因数,我们应该从1的乘法口诀一次找出。
如:1×36=36、2×18=36、3×
12=36、4×9=36、6×6=36因此36的所有因数为:1、2、3、4、6、9、12、18、36重复的和相同的只算一个因数。
一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。
例如:7的倍数()。
确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……还有很多。
因此7的倍数有:7、14、21、28、35、42……
一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。
练习:
(1)20的因数有:
(2)45的因数有:
(3)24的倍数有:
(4)17的倍数有:
(5)下面的数,因数个数最多的是()。
A、18
B、 36
C、40
(6)判断并改正:14比12大,所以14的因数比12的因数多()
1是1,2,3,4,5…的因数()
一个数的最小因数是1,最大因数是它本身。
()
一个数的最小倍数是它本身()
12是4的倍数,8是4的倍数,12与8的和也是4的倍数。
()
凡是8的倍数也一定是2的倍数。
()
(7)幼儿园里有一些小朋友,王老师拿了32颗糖平均分给他们,正好分完。
小朋友的人数可能是多少?
(8)小红到超市买日记本,日记本的单价已看不清楚,他买了3本同样的日记本,售货员阿姨说应付35元,小红认为不对。
你能解释这是为什么吗?
【知识点4】有前提条件的情况下确定倍数与因数
例如:25以内5的倍数有( 5、10、15、20、25 )。
特别注意前提条件是25以内!
例如:5、1、20、35、40、10、140、2
以上各数中,是20的因数的数有();是20的倍数的数有();既是20的倍数又是20的因数的数有()。
首先我们应该明确20的因数有哪些,然后在上面的数中一次找出,特别注意没有在以上数字中出现的因数是不能填入括号的!
练习:
(1)100以内19的倍数有:
(2)在4,6,8,10,12,16,18,20,22,24,28,32,36 中4的倍数:。