微弱电流信号检测记录精品文档71页
- 格式:doc
- 大小:3.55 MB
- 文档页数:70
微弱电流信号检测记录(2012-02-14 11:19:12)标签:杂谈目录零、序一、微弱电流测试器的指标二、微弱电流测试所需要的条件三、微弱电流计四、高阻电阻五、微弱电流计放大器的基本电路六、微弱电流标准源七、微弱电流计的测试八、微弱电流测试仪器DIY汇总九、微弱电流测试器DIY十、改进与应用二、微弱电流计放大器的基本电路1、微弱电流放大的基本电路弱电流的基本电路是反向放大器的形式,即I-V转换电路。
先看一个实例,来自ICH8500的数据表。
图片:Amp0.gif放大器接成典型的反向放大器,但没有输入电阻,其实是一个电流-电压变换器,并有几点不同:a、有保护(Guard,作用见下)b、反馈电阻Rfb非常大,为10的12次方欧姆,即1Tc、有个反馈电容Cfb,用来与输入等效电容分压,提高响应时间。
在一个实际采用ICH8500的电路板上,该电容采用了470pF的聚苯乙烯(反馈电阻用了30G)图片:DSCN5966s.jpg反馈电阻Rf(或叫Rfb)的选择。
这是一个关键元件,一方面取决于所要求的灵敏度和噪音,另一方面与其他元件和电阻的来源情况有关。
上述电路的Rfb非常大达到1T,因此1pA的输入电流就会引起1V的输出,即灵敏度是1V/pA,这样用2V的电压表,就可以实现满度2pA的微电流计,甚至可以用200mV的电压表事项满度200fA的超微电流计。
Rfb也与电流噪音密切相关,越大则理论噪音越小,很多静电计选100G,这样理论噪音极限大概是0.25fArms,而K642选择了1000G,噪音就更小了。
当然,Rfb不能取得太大,因为运放的偏置电流Ib是完全流过这个电阻的,产生压降,也产生噪音、温度系数等弊病,所以Rfb要与运放匹配,最好Ib×Rfb小于满度输出的1%,至少<10%。
否则,当没有输入的时候,Ib就要全部流过Rfb,1pA就产生了1V的假输出,这是不允许的。
另一方面,大的电阻不仅价格贵、买不到,而且可能存在性能上的问题。
软正交矢量型LIA 在微弱信号检测中的应用摘要:本文利用软件相移技术得到相互正交的参考正弦波信号;通过互相关算法,完成了软正交矢量型LIA 相关器的具体实现;利用该方法实现了对微弱信号幅值和相位的检测,有效地抑制干扰,减少了硬件电路成本。
通过Matlab 仿真,验证了该算法具有一定的优越性。
关键词:软件相移;正交;互相关一、互相关原理设混有随机噪声的信号:()()()sin()()s t x t n t A t n t ωθϕ=+=+++其中:()x t 为有用信号且其重复周期或频率已知,()n t 为随机噪声信号;参考信号为:()sin()y t B t ωθ=+,'()cos()y t B t ωθ=+且()y t 和'()y t 相位差为90︒。
则有:011(0)()()d cos()2T xy R s t y t t AB T ϕ==⎰ (1) 2011(0)()()d 2T yy R y t y t t B T ==⎰ (2)''011(0)()()d sin()2T xy R s t y t t AB T ϕ==⎰ (3)求解式(1)式(2)和式(3)可以得到:B = (4)'(0)arctan(0)yy sy R R ϕ= (5)2(0)cos()sy R A B ϕ=(6)由上可见,利用互相关原理可以测得被测信号的幅值和相位。
同时,因为信号要经过A/D 采集卡才能存储到计算机中,所以得到的是检测信号序列()s k 和参考序列()y k ,即将上述互相关运算公式离散化,得:11(0)()()Nsy k R s k y k N ==∑ (7)11(0)()()Nyy k R y k y k N ==∑ (8)''11(0)()()Nsy k R s k y k N ==∑ (9)依旧可以使用式(4)(5)(6)计算求的被测信号的幅值和相位。
2012年四川省大学生电子设计TI杯竞赛设计报告制作题目:微弱信号检测装置(A题)作者:日期:本装置是基于超外差原理对微弱信号进行幅值检测,主要由PGA,低通滤波器,DDS,带通滤波器,高精度A/D,恒增益运算放大器,峰值检波,MSP430-Launchpad组成。
其中,由恒增益放大器与单片机进行第一次检测判断并控制PGA放大倍数,再将PGA产生信号与DDS信号进行混频,经带通滤波器后,由峰值检波检测峰值,交由A/D 检测,并由单片机显示结果。
关键词:超外差;微弱信号;幅值检测AbstractThis device detected the weak signal amplitude based on the superheterodyne principle.It is formed mainly of the PGA,low-pass filter,DDS,band-pass filter,high-precision A/D,fixed-gain operational amplifier peak detector and MSP430-Launchpad.During this prosession,the MCU and fixed-gain operational amplifier detected the signal amplitude at first and determine the magnification of PGA.Next,the signal witch is produced by the mixing of the signal which are formed of DDS and the output of PGA.And,the mixed signal whitch has been dealed byband-pass filter is detected by peak detector to got the number of the st,the MCU display the peak by the detection of A/D.Key words:Superheterodyne;weak signals;amplitude detection一.方案论证--------------------------------------------41.方案比较和选择信号提取方式---------------------------------------4A/D选取-------------------------------------------4信号峰值获取---------------------------------------5波形产生-------------------------------------------52.总体方案设计---------------------------------------5二.理论分析与计算--------------------------------------61.超外差电路设计-------------------------------------62.峰值检测设计---------------------------------------7三.电路设计混频电路-------------------------------------------7峰值检测电路---------------------------------------8滤波器电路-----------------------------------------8系统软件与流程框图---------------------------------8四.测试方案与测试结果----------------------------------10测试仪器-------------------------------------------10测试方案及数据记录---------------------------------10五.总结------------------------------------------------11六.参考文献--------------------------------------------11一.方案论证1.方案比较和选择(1)信号提取方式:方案一:采用锁相放大器原理。
微弱信号检测电路实验报告课程名称: 微弱信号检测电路专业名称:电子与通信工程___年级:_______学生姓名:______学号:_____任课教师:_______微弱信号检测装置摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大.该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。
其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测.本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。
经最终的测试,本系统能较好地完成微小信号的检测。
关键词:微弱信号检测锁相放大器相敏检测强噪声1系统设计1。
1设计要求设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。
整个系统的示意图如图1所示。
正弦波信号源可以由函数信号发生器来代替.噪声源采用给定的标准噪声(wav文件)来产生,通过PC机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制.图中A、B、C、D和E分别为五个测试端点。
图1 微弱信号检测装置示意(1)基本要求①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。
②微弱信号检测电路的输入阻抗R i≥1 MΩ。
③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。
(2)发挥部分①当输入正弦波信号V S 的幅度峰峰值在20mV ~2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。
②扩展被测信号V S的频率范围,当信号的频率在500Hz ~2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。
微弱电流信号检测记录(2012-02-14 11:19:12)标签:杂谈目录零、序一、微弱电流测试器的指标二、微弱电流测试所需要的条件三、微弱电流计四、高阻电阻五、微弱电流计放大器的基本电路六、微弱电流标准源七、微弱电流计的测试八、微弱电流测试仪器DIY汇总九、微弱电流测试器DIY十、改进与应用二、微弱电流计放大器的基本电路1、微弱电流放大的基本电路弱电流的基本电路是反向放大器的形式,即I-V转换电路。
先看一个实例,来自ICH8500的数据表。
放大器接成典型的反向放大器,但没有输入电阻,其实是一个电流-电压变换器,并有几点不同:a、有保护(Guard,作用见下)b、反馈电阻Rfb非常大,为10的12次方欧姆,即1Tc、有个反馈电容Cfb,用来与输入等效电容分压,提高响应时间。
在一个实际采用ICH8500的电路板上,该电容采用了470pF的聚苯乙烯(反馈电阻用了30G)反馈电阻Rf(或叫Rfb)的选择。
这是一个关键元件,一方面取决于所要求的灵敏度和噪音,另一方面与其他元件和电阻的来源情况有关。
上述电路的Rfb非常大达到1T,因此1pA的输入电流就会引起1V的输出,即灵敏度是1V/pA,这样用2V的电压表,就可以实现满度2pA的微电流计,甚至可以用200mV的电压表事项满度200fA的超微电流计。
Rfb也与电流噪音密切相关,越大则理论噪音越小,很多静电计选100G,这样理论噪音极限大概是0.25fArms,而K642选择了1000G,噪音就更小了。
当然,Rfb不能取得太大,因为运放的偏置电流Ib是完全流过这个电阻的,产生压降,也产生噪音、温度系数等弊病,所以Rfb要与运放匹配,最好Ib×Rfb小于满度输出的1%,至少<10%。
否则,当没有输入的时候,Ib就要全部流过Rfb,1pA就产生了1V的假输出,这是不允许的。
另一方面,大的电阻不仅价格贵、买不到,而且可能存在性能上的问题。
从目前情况看,Rfb最大选择100G比较合适,除非你想PK吉时利,可以选1T或更大。
静电运放的选择,上面提到,最重要的参数就是Ib。
要想做微电流测试,Ib必须选择小的。
实际上。
Ib总是存在的,也可以进行补偿、调零、抵消。
当然,不如Ib小的好,因为Ib本身是很不稳定的,会带来电流噪音和,尤其是其温度系数很大,会在很大程度上干扰测试结果。
另一方面,运放的正负输入之间的失调电压Vos,多少也会影响准确测试。
Vos,是直接叠加到输出信号上去的。
假设Vos=10mV,那么本来是1V输出,叠加后就有1.01V了,形成1%的误差。
假设输入电流小,为0.1pA,那么计算输出只有0.1V,实际输出0.11V,影响就更大了,达到10%。
所以,Vos还是小了好。
后面将会看到,由于在产生微小电流的时候,需要小的电压,Vos所占的比例就更突出了,这样也要求运放的Vos小。
Vos如果不够小,可以通过补偿电路来大部分抵消。
但是,Vos是有温度系数的,温度一变最后的输出也跟找变了,这也使得Vos的温度系数成文重要指标之一。
反馈电容Cf的选择。
Cf的作用有两个,一个是抵消输入电容、提高阶越的响应速度:另一个作用是与Rf一起决定了电路自由时间常数。
有关Cf的选择,LMC662的手册里有详尽的描述。
德国微电流板,在Rf=30G的情况下选择了Cf=470pF,非常大,时间常数达到了15秒。
从实际测试情况看,减少这个电容,尽管提高了相应速度,但会增加输出噪音。
例如在Cf=470pF的场合,输出1秒间隔的阿伦方差只有0.19fA,但增大到22pF后(此时时间常数为0.67秒),阿伦方差上升到了2.5fA。
因此,这个德国的电路是牺牲了响应速度换取的稳定性,看来是用来测试缓慢变化的微电流信号。
电路上看,电流合成点,就是一个虚地。
只要运放在工作状态,这个地方就能保持地电位。
当有输入电流的时候,这个电流不会流入运放的负端(因为Ib非常小而且基本不变),所以全部的电流都流进Rfb里了,造成输出端下降,下降的电压就是输入电流与该电阻的乘积。
所以这一点也就是电流合成点,多个电流可以在这点相加的,但这一点的电压不随输入电流而变,总是保持在地点位,因此才称为虚地。
也可以看出,这个虚地也特别脆弱,任何电路板漏电流都会对结果产生直接影响。
为了减少或免除这些影响,可采取如下措施:a、采用悬空办法,让绝缘电阻大得多的空气替代电路板。
b、采用保护布线的办法,让漏电路径的电位差计量小。
c、采用特殊运放,其输入脚间距大、有屏蔽脚,以便减少内部漏电。
也许有人会问,为什么不采用T型反馈电路,这样可以大大降低Rf反馈电阻的阻值?T型反馈是一种折中方法,只对理想放大器有用。
如果实际动手做过,或者进行过理论分析,就能看出,这电路牺牲了太多的精度,增加了太多的噪音。
此电路在采用一个分压电阻对在降低反馈电阻的阻值后,Vos的影响也成比例的被扩大了,噪音也被放大,同时R2选择了小电阻其电流噪音也增大。
而计量弱电流放大一般都同时需要高精度,因此不适合此处的极端场合。
2、测试微电流的其它方法测试微电流,还可以用其它很多方法,比如:电流-频率变换法。
由于常见的频率范围特别宽,也容易产生,因此这种方法动态范围很大,并且可以远距离传输而无走样。
这种方法做好了精度也非常高。
有一款光探测IC TSL230,就可以直接把光电流转换成频率,在一个不换档的量程里轻易取得6个数量级的动态范围,我实际测试达到7个数量级,最小可以响应0.1pA的电流。
静电累计法,或者叫电容充电法。
选用漏电超低、介质特性良好的电容小电容例如10pF,通过积分电路让被测试电流向电容充电,就可以通过不断采集输出电压,得到电压的上升率,换算出电流来:电流=电容×电压上升率这个电路的特点,一个是可以较高精度的测试到非常小的电流,只不过越小的电流需要越长的时间;另一个特点是干扰小,因为是积分效应,最后结果是累积的、不是偶然的。
当然,如果电容充电达到一定电压后,必须放电才能工作。
这种放电方法一般不能采用电子开关,这样就会有漏电影响。
一般是采用机械的方法,用一段金属+F4尖端的复合材料给电容短路,让这电容放电就可以重新测试。
这种电路的弱点是复杂些,测试时间较长,需要特殊电容。
另外,运放的漏电流是与测试电流叠加的,测试的时候需要先测试一下没有外加电流时的自身Ib,然后再相减。
3、常见的静电放大运放IC从指标上看,Ib最小的,当属Intersil早年的ICH8500A,Ib不大于10fA!但是,这个运放比较粗糙,Vos达到50mV,其温度系数大约1mV/C也非常大,因此根本谈不上精密,这样也对输入要求就比较高,最好是恒流的或电压较高的。
也就是说,这款IC放大弱电流非常有效,但放大微电压不行,要求被放大对象有很高的内阻,测试电压也要高,例如绝缘材料测试。
其次是LMP7721,这是一款近期的产品。
指标Ib不大于20fA,典型值达到3fA,相当不错,尤其是其Vos<0.18mV,在静电领域可以算成精密运放了。
电流噪音原数据表是10fA,这怎么可能?1Hz下比典型Ib都大了,应该是笔误,因此我自作主张改成了0.10fA.。
该放大器与众不同的地方,包括了独特的引脚输出方法和保护。
再就是LMC6001A,这是大约1995年推推出的。
指标Ib不大于25fA,也是相当不错的,Vos<0.35mV,也比较小了,其温度系数2.5uV/C也并不很大,其电压噪音和电流噪音都非常小,这样就能测试更小的微弱信号,并有较好的重复。
AD549L,是个老运放,Ib <60fA,稍有偏大,但Vos<0.5mV也算不错,其温度系数5uV/C,中等。
这款常被用来做简单的静电计或相关应用。
ADI 公司还有其它几款类似的,例如AD515AL,Ib <75fA。
OPA128L,比较经典的老运放了,Ib <75pA,也稍偏大了,其它特性与AD549L 很类似(尽管BB自吹比AD549L强)。
另外,BB的东西还有个弱点,就是贵一些。
AD515,最好的L后缀,也是Ib<75fA,Vos不算大,1mV。
LMC6042A,尽管Ib保证最小值不算小(4pA),但典型值超低,达到惊人的2fA。
另外,尽管Vos偏大但其温度系数1.3uV/C并不大。
这个IC价格低、耗电少(只有20uA),很适合做成电池供电的静电计。
通过挑选,可以找到性能不错的。
另外,国半还有几款典型Ib为2fA的运放,比如LMC6041/4、LPC661/2、LMC660/1/2。
还有几款典型Ib为10fA的,例如LMC6061/2/4、LMC6081/2/4,都可以用作相同目的。
最后,在一篇文献(《最新集成电路应用300例》,pp107),介绍两款Ib不超过0.01pA的运放,一个是3430K,另一个是4M-7592,但根本找不到资料,也没见过实物,因此就排除在外。
怀疑3430K的前缀是CA,也怀疑4M是LM的笔误,但都无结果。
补充,3430K找到了一点资料:厂家:Linear形式:单运放Ib max:10fAVos max:10uVPins:10http://americanmicrosemi/information/spec/?ss_pn=3430K4、MOS管与静电运算放大器也许注意到了,商品的静电计,几乎都采用了MOS管做前级,而DIY的基本都采用静电运放。
MOS管由于功能单一,可选范围大,有些输入偏流非常小,可以低达1fA 以下,另外噪音水平和比较好,因此有可能做出高性能的放大器来。
当然,用MOS管的话自己麻烦多一些,例如要增加二极管保护部分(这也许是好事,因为可以自由选管),另外MOS管的失调电压比较高,即便是对管。
单级MOS管放大倍数有限,需要后续继续放大,电路比较复杂。
自己做静电放大器,还是简单一些为好。
静电领域不定的因素多,如果电路搞复杂了,出了点问题都不好确认到底是哪里来的。
另一方面,目前可选的的静电放大IC也非常多了。
基本足够。
如果想DIY MOS管的,也建议先做个IC的。
•六、微弱电流标准源1、为什么要产生标准微弱电流?很简单,给我们的弱电流测试仪测试用的。
同时,也应该具有校准输出功用、互相对比作用。
所以,弱电流不仅要能产生出来,而且还要很精确的产生出来。
2、微弱电流标准的产生方法1,电压+高阻法即把一个高阻R接到已知电压V上,电流满足I=V/R。
这是一种最简单的弱电流产生办法。
电压一般可以做的比较精确,因此关键在于高阻的准确和稳定。
例如要产生1pA的电流,可以用如下电压-电阻组合:1V、1T0.1V、100G10mV、10G除了简单外,产生的电流很容易通过调节电压来调节,对于高阻不标准的场合(例如100G实际上是110G),可以通过改变电压来适应。