第7章 图论 -5二部图、平面图
- 格式:pdf
- 大小:1.13 MB
- 文档页数:45
目录第一章图的基本概念 (1)二路和连通性 (3)第二章树 (3)第三章图的连通度 (4)第四章欧拉图与哈密尔顿图 (5)一,欧拉图 (5)二.哈密尔顿图 (6)第五章匹配与因子分解 (9)一.匹配 (9)二.偶图的覆盖于匹配 (10)三.因子分解 (11)第六章平面图 (14)二.对偶图 (16)三.平面图的判定 (17)四.平面性算法 (20)第七章图的着色 (24)一.边着色 (24)二.顶点着色 (25)第九章有向图 (30)二有向树 (30)第一章图的基本概念1.点集与边集均为有限集合的图称为有限图。
2.只有一个顶点而无边的图称为平凡图。
3.边集为空的图称为空图。
4.既没有环也没有重边的图称为简单图。
5.其他所有的图都称为复合图。
6.具有二分类(X, Y)的偶图(或二部图):是指该图的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。
7.完全偶图:是指具有二分类(X, Y)的简单偶图,其中X的每个顶点与Y 的每个顶点相连,若|X|=m,|Y|=n,则这样的偶图记为Km,n8. 定理1 若n 阶图G 是自补的(即),则n = 0, 1(mod 4)9. 图G 的顶点的最小度。
10. 图G 的顶点的最大度。
11. k-正则图: 每个点的度均为 k 的简单图。
例如,完全图和完全偶图Kn,n 均是正则图。
12. 推论1 任意图中,奇点的个数为偶数。
13.14. 频序列:定理4 一个简单图G 的n 个点的度数不能互不相同。
15. 定理5 一个n 阶图G 相和它的补图有相同的频序列。
16.17.18. 对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1)19. 定义: 联图 在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G220. 积图:积图 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u =(u1,u2)和v = (v1,v2),当(u1 = v1和 u2 adj v2) 或 (u2 = v2 和 u1 adj v1) 时就把 u 和 v 连接起来所得到的图G 称为G1和G2积图。
离散数学图论作业7-二部图匹配Problem1证明:一个无回路的简单连通图最多只有一个完美匹配。
(完美匹配指能饱和所有顶点的匹配)Problem2从下图G=(A,B,E)中,找出相对于匹配M(粗边的集合)的任意三条交错路径(alternating path)和至少两条增广路径(augmenting path),然后利用增广路径扩大M来找到最大匹配。
a0 a1 a2 a3 a4 a5b0 b1 b2 b3 b4 b5Problem3对于哪些n值来说,下列图是存在完美匹配的二部图?a)K nb)C nc)Q n对于每一个二部图G=(A,B,E),判断G是否有饱和A的匹配。
如果没有,请说明理由。
(1)(2)(3)(4)Problem5令k为一整数。
对于任意有限集合,证明对它的任意两个k划分都存在一个相同的代表集。
•集合的k划分指划分为大小相同的互不想交的k个子集,为简便起见,设集合的大小为k的整数倍从而每个子集均有相同个元素。
•一个划分的代表集指从每个子集中取出一个元素而构成的集合。
举例:集合{1,2,3,4}的一个2划分为A:{1,2}{3,4}。
此划分的代表集有{1,3},{2,3},{1,4},{2,4},但{1,2}不是其代表集。
集合的另外一个划分为B:{2,3}{1,4}。
易见,A与B存在相同的代表集{1,3}。
Problem6假设某校计算机系学生选导师时出现了这样的情况:对于每一位学生,至少对k名导师感兴趣;对于每一位导师,至多有k名学生对他感兴趣。
假设每位导师只能指导1名学生,且每位学生也只能选择1名导师。
试证明:存在这样的匹配,使得每位学生都能选到自己感兴趣的导师。
证明一个6×6的方格纸板挖去左上角和右下角后不能用剪刀裁剪成若干1×2的小矩形。
*7.5 二部图及匹配7.5.1二部图在许多实际问题中常用到二部图,本节先介绍二部图的基本概念和主要结论,然后介绍它的一个重要应用—匹配。
定义7.5.1 若无向图,G V E =的顶点集V 能分成两个子集1V 和2V ,满足(1)12V V V = ,12V V φ= ;(2)(,)e u v E ∀=∈,均有1u V ∈,2v V ∈。
则称G 为二部图或偶图(Bipartite Graph 或Bigraph),1V 和2V 称为互补顶点子集,常记为12,,G V V E =。
如果1V 中每个顶点都与2V 中所有顶点邻接,则称G 为完全二部图或完全偶图(Complete Bipartite Graph),并记为,r s K ,其中12,r V s V ==。
由定义可知,二部图是无自回路的图。
图7-55中,(),(),(),(),(a b c d e 都是二部图,其中(),(),(),(b c d e 是完全二部图1,32,32,43,3,,,K K K K 。
图7-55二部图示例显然,在完全二部图中,r s K 中,顶点数n r s =+,边数m rs =。
一个无向图如果能画成上面的样式,很容易判定它是二部图。
有些图虽然表面上不是上面的样式,但经过改画就能成为上面的样式,仍可判定它是一个二部图,如图7-56中()a 可改画成图()b ,图()c 可改画成图()d 。
可以看出,它们仍是二部图。
图7-56二部图示例定理7.5.1 无向图,G V E =为二部图的充分必要条件为G 中所有回路的长度均为偶数。
证明 先证必要性。
设G 是具有互补节点子集1V 和2V 的二部图。
121(,,,,)k v v v v 是G 中任一长度为k 的回路,不妨设11v V ∈,则211m v V +∈,22m v V ∈,所以k 必为偶数,不然,不存在边1(,)k v v 。
再证充分性。
设G 是连通图,否则对G 的每个连通分支进行证明。
图论复习题第一章图主要内容:1.图的基本概念和基本定理(重点是完全图、二部图、图的同构、握手定理等)2.轨道和圈(最长轨理论)练习题目:1.5阶无向完全图的边数为__10_____。
2.图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的_充分必要条件______。
3.图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的_充分必要条件______。
4.设无向简单图的顶点个数为n,则该图最多有_n(n-1)/2_ 条边。
5.一个有n个结点的图,最少有___1____个连通分支。
6.有三个顶点的所有互不同构的简单无向图有___4____个。
7.单连通无向图G有12条边,G中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求G中有多少个结点.试作一个满足该条件的简单无向图.解:设G中有x各结点,则3度的结点有x-7根据握手定理有,1x2+2x2+4x3+3x(x-7)=2x12解得x=9,故G中有9个结点。
满足条件的图如下:8.单连通无向图G有9条边,G中有4个3度结点,2个1度结点,其余结点度数为2.求G中有多少个结点.试作一个满足该条件的简单无向图.9.面上有n个点S={x1,x2,……,x n},其中任两个点之间的距离至少是1,证明在这n个点中距离为1的点对数不超过3n。
(38题)10.若图G是简单图,且(1)(2)2p pq-->,则G连通。
(42题)11.如果G是具有m条边的n阶简单图,证明:若G的直径为2且△= n-2,则m≥2n-4。
(50题)12.证明:在任何图中,奇度点个数为偶数。
(推论1.1)13.证明:图G是二部图当且仅当G无奇圈。
(定理1.2)14.证明:每个顶点度数都大于等于2的简单图必有圈。
(例1.9)15.证明:每个顶点度数都大于等于3的简单图必有偶圈。
(例1.11)16.画出4个顶点的不同构的图(包括连通和不连通图)。
第二章 树主要内容:1.树的定义和简单性质; 2.树的几个等价条件;3.生成树的个数(Cayley 公式)练习题目:1.设树T 中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T 中有____片树叶。
第七部分图论方法第十六章图论模型图论是应用数学的一个分支,它的概念和结果来源非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的哥尼斯堡七桥问题,以及在民间广泛流传的一些游戏难题,如迷宫问题、博弈问题、棋盘上马的行走路线问题等.这些古老的难题,当时吸引了很多学者的注意.在这些问题研究的基础上又继续提出了著名的四色猜想和汉米尔顿(环游世界)数学难题.1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出越来越大的作用.在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题的有力工具之一,图论模型属于离散类数学模型,是数学模型中比较容易为学生接受的一类模型,具有直观性、趣味性和简洁性,深得大学生的青睐。
另外,图论模型属于较为近代的前沿性数学知识,又具有强烈的,易于为学生接受的数学建模味道,对于培养学生通过建模解决实际问题的能力与学习兴趣都是不可多得的知识内容,因此越来越受到数学家和建模工作者的喜爱.我们所学的这一章只是介绍一些基本概念、原理以及一些典型的应用实例,目的是在今后的学习研究时,可以把图论的基本知识、方法作为工具.本章先介绍图论的基本概念,然后通过哥尼斯堡七桥问题、最短路径问题、中国邮递员问题、人员分派问题、稳定匹配问题、竞赛图等例子介绍图论的具体应用。
16.1 图的基本概念图是一个有序对<V,E>,V是结点集,E是边集,以表示结点数目,表示边的数目,则当∣V∣和∣E∣有限时,<V,E>称为有限图;否则称无限图.无向边, 与无序结点对(v, u)相关联的边;有向边,与有序结点对<v, u>相关联的边;无向图,每条边都是无向边的图,记作G=<V,E>; 有向图,每条边都是有向边的图,记作D=<V,E>.混合图,既有有向边,也有无向边的图.平凡图,仅有一个结点的图;零图,边集为空集的图<V, ∅>,即仅有结点的图.自回路(环),关联于同一个结点的边.无向平行边,联结相同两个结点的多于1条的无向边;有向平行边,联结两个结点之间的多于1条且方向相同的有向边.简单图,不含平行边和自回路的图.在有向图D=<V,E>中,以v(∈V)为起点的边之条数为出度deg+(v);以v(∈V)为终点的边之条数为入度deg-(v).在无向图G=<V,E>中,与结点v(∈V)关联的边数,即为结点度数deg(v)或d(v).;在有向图中,结点v的出度和入度之和为度数.最大度数,∆(G)=max{deg(v)∣v∈V};最小度数,δ(G)=min{deg(v)∣v∈V}有n个结点的且每对结点都有边相连的无向简单图,称为无向完全图.此时有)1(21-=n n E ;有n 个结点的且每对结点之间都有两条方向相反的边相连的有向简单图为有向完全图. 此时有)1(-=n n E 。
《图论》复习提纲1、 图(1) 图的概念:图的定义;空图;平凡图;简单图;完全图;二部图;完全二部图;星;轮;补图;正则图(k--正则图);同构;图的分类。
(2) 子图:子图的概念;真子图;G 的生成子图;G 的导出子图;主子图;G 的边导出子图。
(3) 顶点的度:顶点v 的度;奇顶点;偶顶点;握手定理;握手定理的推论。
(4) 道路与连通性:途径;链;道路;圈;圈的分类;连通图;非连通图;测地线;u 与v 之间的距离;G 的围长;G 的周长;G 的直径;G 是二部图的充要条件。
(5) 图的运算: 图 和的并;交;差;环和。
2、 树(1) 树的特性:树的定义;树的六个等价命题。
(2) 割边与割点:割边;割点;圈和割边的关系;树和割边的关系;如何判断树中的割点;不可分图;割点的三个等价命题;割边的三个等价命题。
(3) 生成树:生成树的定义;图有生成树的充要条件;判断一棵生成树的充要条件;求生成树的两种方法。
3、 欧拉图和哈密顿图(1)环路:环路;环路中顶点的度满足什么条件;图G 是连通环路的充要条件;什么是开链;多个环路的环和。
(2) 欧拉图:欧拉图和欧拉链;闭链、环路和欧拉图的关系;图G 是连通欧拉图的充要条件;两个欧拉图的环和。
(3) 哈密顿图:哈密顿圈和哈密顿图;哈密顿图的必要条件;哈密顿图的充分条件;满足什么条件G 是哈密顿图的充要条件是G+uv 为哈密顿图;图G 的闭包;简单图的闭包和哈密顿图的关系。
4、 割集(1)割集与断集:割集;断集;设T 是连通图G 的一棵生成树,并且e 是任一树枝,则:连枝集中是否包含G 的割集,T e +包含G 的几个割集;割集和生成树之间的关系是什么?(2)关联集:关联集;任一断集和关联集的关系;任一顶点的关联集和其余顶点关联集的关系。
5、连通性(1)连通度和边连通度:顶点割;点连通度;边连通度;点连通度、边连通度和最小度之间有什么关系;点连通度和边连通度的范围是多少;在什么条件下,边连通度和最小度相等;(2)2-- 连通图:块;P 和Q 是内部不相交的;图G 是2—连通的充要条件;图是不可分的几个等价命题。
图论简介图论属于拓扑学topology。
拓扑学分为一般拓扑学和代数拓扑学,前者来源于数学分析,最终研究一般的拓扑空间和一般的拓扑结构,而后者来源于几何,实际上是一种几何学的分支。
我们主要讨论后者,重点是利用图形的几何拓扑性质。
拓扑性质,就是几何图形在弯曲、变形、拉大、缩小下仍然保持的性质,只是这种变形要求原来不再一起的点不能粘在一起,原来一起的点也不能断开,也就是图形变换前后每点附近的点还是在附近。
这种变换和它的逆变换都是连续的一一对应,称为同胚。
一个图形和它同胚的图形称为拓扑等价。
拓扑学就是研究图形的拓扑性质。
也就是图形经过连续变换下,保持不变的性质。
图论以图为研究对象的数学分支。
图论中的图指的是一些点以及连接这些点的线的总体。
通常用点代表事物,用连接两点的线代表事物间的关系。
图论则是研究事物对象在上述表示法中具有的特征与性质的学科。
看一些例子:一、哥尼斯堡七桥问题。
当时的图论问题是盛行的迷宫问题和游戏问题。
最有代表性的工作是著名数学家L.Euler于1736年解决的哥尼斯堡七桥问题(Konigsberg Seven Bridges Problem)。
东普鲁士的哥尼斯堡城(现今是俄罗斯的加里宁格勒,在波罗的海南岸)位于普雷格尔(Pregel)河的两岸,河中有一个岛,于是城市被河的分支和岛分成了四个部分,各部分通过7座桥彼此相通。
如同德国其他城市的居民一样,该城的居民喜欢在星期日绕城散步。
于是产生了这样一个问题:从四部分陆地任一块出发,按什么样的路线能做到每座桥经过一次且仅一次返回出发点。
这就是有名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题看起来不复杂,因此立刻吸引所有人的注意,但是实际上很难解决。
瑞士数学家(Leonhard Euler)在1736年发表的“哥尼斯堡七桥问题”的文章中解决了这个问题。
这篇论文被公认为是图论历史上的第一篇论文,Euler也因此被誉为图论之父。
欧拉把七桥问题抽象成数学问题---一笔画问题,并给出一笔画问题的判别准则,从而判定七桥问题不存在解。