图论第四章 平面图及着色讲解
- 格式:ppt
- 大小:520.50 KB
- 文档页数:56
图的平面性与图的着色问题在图论中,图的平面性与图的着色问题是两个重要的研究方向。
图的平面性指的是一种特殊的图的布局方式,使得图的边不相交。
而图的着色问题是指如何给图的顶点进行染色,使得相邻的顶点颜色不相同。
本文将分别介绍图的平面性和图的着色问题,并对其进行详细讨论。
一、图的平面性(Planarity of Graphs)图的平面性是图论中一个经典的问题,研究的是如何将一个图画在平面上,使得图的边不相交。
具体而言,如果一个图可以被画在平面上,且不同边的交点只有顶点,那么我们称该图是一个平面图。
而对于不能在平面上画出来的图,则被称为非平面图。
定理1:一个图是平面图,当且仅当它不包含任何的子图同构于以下两种图之一:K5(五个没有共同边的顶点)或K3,3(六个节点,其中任意两个节点之间都有边相连但不交叉)。
这个定理被称为Kuratowski定理,它为我们判断一个图是否是平面图提供了一个有效的方法。
根据Kuratowski定理,我们可以使用该定理的逆否命题,即如果一个图中包含K5或K3,3,则该图一定是非平面图。
除了Kuratowski定理之外,还有一种判断图的平面性的方法,称为Euler公式。
Euler公式表达了平面图的顶点数、边数和面数之间的关系:V - E + F = 2其中V表示顶点数,E表示边数,F表示面数。
根据Euler公式,对于简单连接图(无环,无孤立点),如果它的顶点数大于等于3且边数大于等于3,且满足Euler公式,则该图是一个平面图。
二、图的着色问题(Graph Coloring)图的着色问题是指如何给一个图的顶点进行染色,使得相邻的顶点颜色不相同。
这里的相邻指的是有边相连的顶点。
在图论中,颜色通常表示为正整数,颜色数则表示为给定图所需的最小颜色数。
对于任意图G,G的最小颜色数被称为G的色数。
如果图G的色数为k,则称图G是可k着色的。
求解一个图的最小色数是一个复杂的问题,称为顶点着色问题(Vertex Coloring Problem),它是一个NP 完全问题。
图的平面图与图的着色在图论中,图是由边和顶点组成的数学结构,用来描述事物之间的联系和关系。
图论是一门重要且广泛应用的数学分支,涉及到许多重要的概念和问题,其中包括图的平面图与图的着色。
一、图的平面图在图论中,平面图是指可以被画在平面上而不相交的图。
也就是说,图的边不能相交,且在同一个点上,至多只能有两条边相接。
平面图的研究起源于哥尼斯堡七桥问题。
经过数学家的研究,他们发现了一些重要的结论。
如Euler公式,它是平面图论的基础定理之一。
该定理表明,对于连通的平面图,其顶点数、边数和面数之间存在如下关系:v-e+f=2。
其中v代表顶点数,e代表边数,f代表面数。
除了Euler公式,平面图还有其他一些重要的性质,如四色定理。
四色定理指出,任何一个平面图都可以用不超过四种颜色进行着色,使得任意相邻的两个顶点使用不同的颜色。
二、图的着色图的着色是指给图的每个顶点分配一个颜色,使得相邻的顶点颜色不同。
图的着色问题是图论研究中的一个经典问题,在计算机科学和应用领域有广泛的应用。
在图的着色问题中,有两个重要的概念:色数和色法。
色数是指给图的顶点着色所需使用的最少颜色数目,可以用来衡量图的某种特性。
色法是指给图的所有顶点着色的具体方法。
图的着色问题是一个NP完全问题,也就是说,对于大规模的图,要找到一个最佳的着色方案是非常困难的。
因此,人们通常采用一些启发式算法或者近似算法来解决这个问题。
三、图的平面图与图的着色的应用图的平面图与图的着色在实际生活中有着广泛的应用。
在地图设计中,平面图的概念可以帮助我们设计出不相交的道路、铁路和河流等,使得地图更加直观和易于理解。
在电路设计中,平面图的概念可以帮助我们避免电路中的交叉线,从而简化电路的设计和布线。
在时间表安排中,图的着色可以帮助我们安排不同的任务和活动,使得它们之间没有冲突和重叠。
在频谱分配中,图的着色可以帮助我们将不同的无线电信号分配到不同的频段中,以避免信号之间的干扰。
图是离散数学中的重要概念,而平面图和平面图的着色是图论中的两个关键概念。
平面图是指在平面上绘制的图形,使得图中的边不会相交。
平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。
平面图的概念最早由欧拉在1736年提出。
他发现,如果一个图是可以在平面上绘制而不会边相交的,那么这个图是一个平面图。
欧拉还引入了一个重要的公式,即欧拉定理,它描述了平面图中的顶点、边和面的关系:V - E + F = 2,其中V代表顶点数,E代表边数,F代表面数。
对于平面图的着色问题,四色定理是一个非常重要的结果。
四色定理指出,任何一个平面图,在不考虑多重边和自环的情况下,最多只需要使用四种颜色就能够对图的顶点进行染色,使得相邻的顶点不会有相同的颜色。
这个定理在1976年被由英国数学家Tomás Oliveira e Silva使用计算机辅助证明,被认为是图论史上的一大突破。
对于平面图的着色,有一种特殊的染色方法叫做四色标号。
四色标号是指对于任意一个平面图,都可以给图中的每个顶点赋予一个自然数,使得相邻的顶点之间的差值不超过3。
这种染色方法保证了相邻的顶点不会被染成相同的颜色,同时最多只需要使用四种颜色。
平面图的着色不仅在图论中有着重要的应用,同时在现实生活中也有很多实际的应用。
比如,考虑地图上的城市,如果我们希望将城市标记成不同的颜色,以表示它们的关系,那么可以利用平面图的着色来实现。
另外,平面图的着色还有很多其他的实际应用,比如在工程规划中用于规划电路的布线、在计算机科学中用于处理图像等等。
总之,离散数学中的图的平面图与平面图的着色是图论中的两个重要概念。
平面图是指在平面上绘制的图形,使得边不会相交;平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。
四色定理是平面图着色的重要结果,它指出任意一个平面图可以使用最多四种颜色进行着色。
平面图的着色在现实生活中有着广泛的应用,是离散数学中的一个重要研究领域。
图论维基百科,自由的百科全书跳转到:导航、搜索一个由6个顶点和7条边组成的图图论(Graph theory)是数学的一个分支,它以图为研究对象,研究顶点和边组成的图形的数学理论和方法。
图是区域在头脑和纸面上的反映,图论就是研究区域关系的学科。
区域是一个平面,平面当然是二维的,但是,图在特殊的构造中,可以形成多维(例如大于3维空间)空间,这样,图论已经超越了一般意义上的区域(例如一个有许多洞的曲面,它是多维的,曲面染色已经超出了平面概念)。
图论中的图是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用顶点代表事物,用连接两顶点的边表示相应两个事物间具有这种关系。
图论起源于著名的柯尼斯堡七桥问题。
图论的研究对象相当于一维的拓扑学。
目录[隐藏]∙ 1 历史∙ 2 图论问题o 2.1 图的计数o 2.2 子图相关问题o 2.3 染色o 2.4 路径问题o 2.5 网络流与匹配o 2.6 覆盖问题∙ 3 重要的算法∙ 4 参见[编辑]历史柯尼斯堡七桥问题一般认为,于1736年出版的欧拉的关于柯尼斯堡七桥问题的论文是图论领域的第一篇文章。
此问题被推广为著名的欧拉路问题,亦即一笔画问题。
而此论文与范德蒙德的一篇关于骑士周游问题的文章,则是继承了莱布尼茨提出的“位置分析”的方法。
欧拉提出的关于凸多边形顶点数、棱数及面数之间的关系的欧拉公式与图论有密切联系,此后又被柯西等人进一步研究推广,成了拓扑学的起源。
1857年,哈密顿发明了“环游世界游戏”(icosian game),与此相关的则是另一个广为人知的图论问题“哈密顿路径问题”。
“图”这一名词是西尔维斯特在于1878年发表在《自然》上的一篇论文中提出的。
欧拉的论文发表后一个多世纪,凯莱研究了在微分学中出现的一种数学分析的特殊形式,而这最终将他引向对一种特殊的被称为“树”的图的研究。
由于有机化学中有许多树状结构的分子,这些研究对于理论化学有着重要意义,尤其是其中关于具有某一特定性质的图的计数问题。