弹塑性理论习题课-答案
- 格式:pdf
- 大小:1.29 MB
- 文档页数:16
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
工程弹塑性力学课后答案【篇一:弹塑性力学思考题答案】一点的应力状态?答:通过一点p 的各个面上应力状况的集合⒉一点应变状态?答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。
]代表一点 p 的邻域内线段与线段间夹角的改变⒊应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量j2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。
答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合??x?xy?xz???????????yxyyz???zx?zy?z???。
其中:?=?,?=?,?=?。
xzzxxyyxyzzy应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即j1,j2,j3是不变量,不随着坐标轴的变换而发生变化。
所以j1,j2,j3分别被称为应力张量的第一、第二、第三不变量。
应力张量可分解为两个分量0???x-?m?xy?xz???m0??+???ij??0?0????mymyz?,等式右端第一个张量称为应力球张量,第二个张量称为应???yx?0?m??zy?z??m??0????zx?力偏张量。
应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。
应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力11平均应力:?m?(?x??y??z)?(?1??2??3),?m为不变量,与坐标无关。
33偏应力第二不变量j2的物理意义:形状变形比能。
单向应力状态:两个主应力为零的应力状态。
纯剪应力状态的应力张量:给出应力分分量,计算第一,第二不变量。
(带公式)⒋应变张量?应变张量的不变量?应变球张量?体积应变?平均应变?应变偏张量?应变张量:几何方程给出的应变通常称为工程应变,这些应变分量的整体,构成一个二阶的对称张版权所有,翻版必究量,称为应变张量,记为:即。
第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
附录Ⅱ习题解答提示与参考答案第二章应力理论2-1 ζn=ζ1l2+ζ2m2,;式中l、m、n为斜截面外法线的方向余弦。
2-2 p=111.5A;ζn=26A;ηn=108.5A2-3 提示:平面Ax+By+C z+D=0的外法线的方向余弦为:(式中i=1,2,3或A,B,C)答案:2-4 略2-5 (a)ζ1=738.5;ζ2=600;ζ3=-338.5;ηmax=538.5;应力单位为MPa。
(b)ζ1=700;ζ2=600;ζ3=-600;ηmax=650;应力单位为MPa。
2-6 ζ1=3.732η0;ζ2=-0.268η0;α=15º。
2-7 (材料力学解) 应力单位为MPa。
(弹塑性力学解) 应力单位为MPa。
2-8 ζ1=107.3a;ζ2=44.1a;ζ3=-91.4a;ζ1主方向:(±0.314,0.900,0.305);ζ2主方向:(±0.948,±0.282,±0.146);ζ3主方向:(0.048,±0.337,0.940)。
2-9;ζ2=0;ζ3=-ζ1。
2-10、2-11 略2-12 (1)略;(2)ζ8=ζm=5.333MPa;η8=8.654MPa。
2-13 p8=59.5;ζ8=25.0a;η8=54.1a。
2-14上式中S为静矩。
材料力学解不满足平衡微分方程和边界条件。
2-15,Q为梁横截面上的剪力。
提示:利用平衡微分方程求解。
2-16 ζ1=17.083×103Pa;ζ2=4.917×103Pa;ζ3=0,∂=40º16′。
2-17 略2-18 2。
2-19 提示:将三个主方向的三组方向余弦分别两两一组代人式(2-12)证之。
2-20 。
2-21 在AA′上:ζx=-γy,ηxy=0;在AB上:ηxy=0,ζy=-γh;在BB′上:l1=cosα,l2=-sinα,l3=0;则应力分量满足关系式:2-22 。
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
应用弹塑性力学习题解答目录第二章习题答案 (2)第三章习题答案 (6)第四章习题答案 (9)第五章习题答案 (27)第六章习题答案 (38)第七章习题答案 (50)第八章习题答案 (55)第九章习题答案 (59)第十章习题答案 (60)第十一章习题答案 (63)第二章习题答案2.6设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。
解该平面的法线方向的方向余弦为而应力矢量的三个分量满足关系而法向分量满足关系最后结果为2.7利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。
解求出后,可求出及,再利用关系可求得。
最终的结果为2.8已知应力分量为,其特征方程为三次多项式,求。
如设法作变换,把该方程变为形式,求以及及的关系。
解求主方向的应力特征方程为式中:是三个应力不变量,并有公式代入已知量得为了使方程变为形式,可令代入,正好项被抵消,并可得关系代入数据得,,2.9已知应力分量中,求三个主应力。
解在时容易求得三个应力不变量为,,特征方程变为求出三个根,如记,则三个主应力为记2.10已知应力分量,是材料的屈服极限,求及主应力。
解先求平均应力,再求应力偏张量,,,,,。
由此求得然后求得,,解出然后按大小次序排列得到,,2.11已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。
解特征方程为记,则其解为,,。
对应于的方向余弦,,应满足下列关系(a)(b)(c)由(a),(b)式,得,,代入(c)式,得,由此求得对,,代入得对,,代入得对,,代入得2.12当时,证明成立。
解由,移项之得证得第三章习题答案3.5取为弹性常数,,是用应变不变量表示应力不变量。
解:由,可得,由,得3.6物体内部的位移场由坐标的函数给出,为,,,求点处微单元的应变张量、转动张量和转动矢量。
解:首先求出点的位移梯度张量将它分解成对称张量和反对称张量之和转动矢量的分量为,,该点处微单元体的转动角度为3.7电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。
弹塑性理论习题课
一、图示为一矩形截面水坝,其右侧面受静水压力(水的密度为ρ)、顶部受集中力P作用,试写出水坝的应力边界条件。
二、试列出下图所示问题的全部边界条件。
在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。
三、列出图示变截面平板梁的应力边界条件,其中上边界受线性分布的荷载作用,下边界受均匀分布的剪力作用,左端部受剪力和弯矩的作用,固定端不必考虑。
四、图示为处于平面应力状态下的细长薄板条,除上、下边界受均布力q 作用外,其余边界上均无面力作用,试说明A 、B 、C 点处的应力状态。
五、如图所示矩形截面简支梁受三角形分布荷载作用,试取应力函数,
求简支梁的应力分量(体力不计)。
Fxy Ex Dxy y Cx Bxy y
Ax +++++=33353
3
ϕ
六、曲梁及悬臂梁的受力情况如图所示,试分别写出其在极坐标系中的应力边界条件,固定端不必写出。
七、半平面体表面上受有均布水平力q,试用应力函数
求解应力分量。
(ϕ
ϕ
ρC
Φ2
sin
=
B+
2)
八、楔形体两侧面受铅垂方向均匀分布的荷载q1、q2作用,不计体力,试用量纲分析法求其应力分量。
弹塑性理论习题课
参考答案
一、图示为一矩形截面水坝,其右侧面受静水压力(水的密度为ρ)、顶部受集中力P作用,试写出水坝的应力边界条件。
二、试列出下图所示问题的全部边界条件。
在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。
解:对于图a的所示问题
三、列出图示变截面平板梁的应力边界条件,其中上边界受线性分布的荷载作用,下边界受均匀分布的剪力作用,左端部受剪力和弯矩的作用,固定端不必考虑。
四、图示为处于平面应力状态下的细长薄板条,除上、下边界受均布力q作用外,其余边界上均无面力作用,试说明A、B、C点处的应力状态。
五、如图所示矩形截面简支梁受三角形分布荷载作用,试取应力函数,
求简支梁的应力分量(体力不计)。
Fxy Ex Dxy y Cx Bxy y Ax +++++=333533
ϕ
六、曲梁及悬臂梁的受力情况如图所示,试分别写出其在极坐标系中的应力边界条件,固定端不必写出。
七、半平面体表面上受有均布水平力q,试用应力函数
求解应力分量。
(ϕ
ρC
ϕ
sin
Φ2
B+
=
2)
八、楔形体两侧面受铅垂方向均匀分布的荷载q1、q2作用,不计体力,试用量纲分析法求其应力分量。
2014.11.2。