地层压力检测技术知识讲解
- 格式:ppt
- 大小:253.50 KB
- 文档页数:16
地层破裂压力试验详解!一、地层破裂压力和地层漏失压力地层破裂压力是指某一深度地层发生破碎和裂缝时所能承受的压力。
当达到地层破裂压力时,地层原有的裂缝扩大延伸或无裂缝的地层产生裂缝。
一般情况(遵循压实规律)下,地层破裂压力随着井深的增加而增大。
在钻井时,钻井液柱压力的下限要保持与地层压力相平衡,实现压力控制。
而其上限则不能超过地层的破裂压力,以避免压裂地层造成井漏。
地层漏失压力是指某一深度的地层产生钻井液漏失时的压力。
对于正常压力的高渗透性砂岩、裂缝性地层以及断层破碎带处,往往地层漏失压力比破裂压力小得多,而且对钻井安全作业危害很大。
习惯上以地层漏失压力作为确定井控作业的关井压力依据。
这样更加趋于安全。
二、确定地层破裂(漏失)压力的方法1、预测法——应用经验公式预测地层破裂压力,作为钻井设计的依据。
2、验证法——在下套管固井后,必须进行试漏试验,以验证预测的破裂压力。
1、钻头提至套管鞋以上,井内灌满钻井液,关井。
2、采用从钻具水眼或环空两种方式中的一种用选定小排量向井内泵入钻井液。
3、每间隔20~50L(选定一个固定量)泵入量或每间隔10~20s (泵速恒定、选择一个固定时间间隔)记录一次相应泵压和注入量或时间。
4、当泵压开始下降时,停泵。
若不要求计算地层最小水平主地应力及试漏层岩石抗拉强度时,则试验结束。
否则继续下部试验。
5、停泵1~2min,每间隔10~20s记录一次泵压。
6、待泵压相对稳定后,重新开泵1-2min,每间隔10~20s记录一次重张压力。
7、作出下图所示的典型漏失试验曲线。
图中偏离直线之点的压力PL则为漏失压力。
破裂压力当量密度(Υf)为:Υf=Υm+100Pl/H式中:Υm:试验所用泥浆密度,g/cm3;Pl:漏失压力,MPa;H:裸眼段中点井深,m。
该地层破裂压力梯度(Gf)则为:Gf = 0.01Υm+Pl/H单位:MPa/m值得注意的是,在直井与定向井中对同一地层作的液压试验所得到的数据不能互用。
第五节随钻地层压力检测“正常”的地层流体压力大致等于流体液柱中的静水压力。
地层流体压力有时比静水压力高,有时比静水压力低。
两种“不正常”的压力条件都能引起钻井事故,而工业生产中最为关心的是异常高压,有时称之为地质压力。
一、基本概念1、静水压力(Hydrostatic Pressure)静水压力是指单位液体重量与静液柱垂直高度的乘积。
与液柱的直径和形状无关。
静水压力的计算公式如下:10dH Ph ⨯=式中P h-静水压力,kg/cm2d-钻井液重量,g/cm3H-垂直深度,m2、帕斯卡定律(Pascal’s Law)帕斯卡定律阐述了静止流体中任何一点上各个方向的静水压力大小相等。
通过流体可以传递任何施加的压力,而不随距离的变化而降低。
根据帕斯卡定律,静水压力在液柱中给定的深度上,作用于任何方向上。
3、静水压力梯度(Hydrostatic Pressure Gradient )静水压力梯度是指每单位深度上静水压力的变化量。
这个值描述了液体中压力的变化,表示为单位深度上所受到的压力。
其计量单位是kgF/cm 2/m 。
录井人员常用体积密度(g/cm3)来描述静水压力梯度,以便于同钻井液密度相对比。
静水压力梯度的计算公式如下:10V h PGP H P H == 式中 H PG -静水压力梯度,kg/cm 2/mP h -静水压力,kgf/cm 2 P v -单位体积质量,g/cm 3 H -实际垂直深度,m 。
应用体积密度(g/cm 3)时,静水压力梯度H G 的计算公式如下:V hG P LP H ==10 式中 H G -静水压力梯度,g/cm 34、地层孔隙压力(Pore Pressure )地层孔隙压力是指作用在岩石孔隙中流体上的压力。
对于现场计算,孔隙压力与流体液柱的密度及垂直深度有关。
对于正常压力系统的地层,给定深度的真实孔隙压力等于液柱压力与流体流动的压力损失及温度效应的总和。
计算孔隙压力的公式为:10H d P f F ⨯=式中 P F -孔隙压力,kg/cm 2d f -流体密度,g/cm 3 H -真实垂直深度,m5、地层孔隙压力梯度(Pore Pressure Gradient )地层孔隙压力梯度是指单位深度上地层孔隙压力的变化量。
地层压力检测钻进时,井内压力的掌握是使井眼压力处在地层孔隙压力和地层裂开压力之间。
既不发生井喷,又不压破地层,钻井的整个过程中要随时测试地层孔隙压力、井内液柱压力和地层裂开压力的平衡状况。
一、压力完整性测试1、dc 指数法dc 指数法是通过分析钻进动态数据来检测地层压力的一种方法。
其原理是钻进速度在钻头类型;钻头直径;水眼尺寸;钻头磨损;钻压;转速;钻井液类型;钻井液密度;钻井液粘度;固相含量、颗粒大小及在钻井液中的分布;泵压;泵速相对不变的条件下和地层压力、地层岩性有关。
正常状况下,随井深的增加岩石的强度增大,钻速下降,但进入特别压力过渡带,正常趋势发生变化。
这是由于地层的欠压实作用,地层的空隙度大硬度小,所以利用随井深钻速的变化能检测特别高压层的到来。
依据钻速模式:R=aN(W/D)d式中:R-钻速,ft/h;a-可钻性系数,对于大段页岩,视为1;N-转数,r/min;W-钻压,klbf; D-钻头直径,in;d-指数,无因次。
由钻速方程,可得出 d 指数的表达式为:d 指数可用来检测从正常到特别压力的过渡带。
但没有考虑钻井液密度的影响现场上用修正 d 指数,式中:ρn-地层水密度〔从当地地层水含盐量中查出〕g/cm3Ρm-所用密度g/cm3d 用下式表达式中:R-钻速m/h; N -转速r/min;W-钻压t;D-钻头直径mm;L-进尺m;T-钻时min 。
假设W的单位用KN( 千牛),则由于0.0547R N 一般小于1,所以在 d 中,R增大,则 d 减小,故 d 反映地层的压实状况与P。
压实差、孔隙多,地层压力大,P减小,钻速可增加。
运用d c指数求地层压力可按下述方法进展:(1)、列表,预备记录和计算表的内容包括:井深H,进尺L,钻时T,钻速R,转速N,井径D,钻压W,地层水密度ρ0,钻井液密度ρm 大,dc 地层压力PP 。
(2)、取点记录, 计算dc, 填入表内.在钻速慢的地层每1m-3m 取1 点,在钻速快的地层,可5、10 、15 、30m 取1 点。
地层压力单位地层是地球的外壳构成的一层岩层,通过含水层、油气层以及矿床等自然地质要素来挖掘资源。
因此,地层压力是在地质过程中必须考虑的因素,需要对其进行实际的测量和监测。
一、地层压力的定义和意义地层压力是指地下岩石和水压力的总和,其大小是由岩层自身的性质和深度等因素所影响的。
地层压力的重要性在于它直接影响着石油、天然气等矿物资源的开发,因此其准确的测量和分析对于石油工业的发展和实践具有重要的意义。
二、地层压力的测量方法1.测量钻孔重量法该方法是通过在不同深度的钻孔中进行砂袋重量和上部钻杆重量的测量,利用重力方程确定地层压力的大小。
此方法的优点是测量结果可靠且测量精度高,但是操作复杂,需要大量的实地测试和精密仪器的支持。
2.地形压力计法地形压力计法是一种比较常用的测量方法,其基本原理是通过将应力计的感应层置于加卸载器中,测定不同深度下的地层压力。
此方法操作简单、实用性强,广泛应用于矿山和建筑领域中的开发工作。
3.地震勘探法通过利用传统的地震勘探原理,确定在不同地质结构中的速度、密度和波速等参数,运用反演算法计算出地层压力。
此方法适用于大规模区域的测量要求,具有较高的精度和准确性。
三、地层压力单位的表示方法地层压力的单位通常用兆帕斯(MPa)或者磅力/平方英尺(PSF)来表示。
其中,1兆帕斯等于1百万帕斯卡,1磅力/平方英尺等于约47.8帕斯卡。
四、地层压力的影响因素1.地质环境由于不同地质环境中地层物性不同,例如密度、岩性、含水量等因素的差异会造成地层压力的变化。
2.地表载荷地表载荷主要指建筑、桥梁等人工建筑物及其相关设备、交通工具的荷载,其质量和分布均会影响地层压力。
3.地震和地质活动地震和地质活动会引起地层产生变形、断裂和塌陷等现象,进而影响地层压力的产生和变化。
五、地层压力的应用地层压力的研究对于油气开发、矿床勘探、地下水开采、工程建设等领域都有着重要的应用价值。
特别是在石油工业中,对地层压力的测量和分析是进行油田勘探、钻井、完井、生产以及二次开发等工作的基础和前提。
地层压⼒地层压⼒⼀、基本概念1、静液压⼒:是由钻井液柱重量引起的压⼒。
2、地层压⼒:是指作⽤在岩⽯孔隙内流体(油⽓⽔)上的压⼒,也称为地层孔隙压⼒。
3、上覆地层压⼒:指覆盖在地层以上的地层基质(岩⽯)和孔隙中流体(油⽓⽔)的总重量造成的压⼒。
4、破裂压⼒:在井中⼀定深度处的地层,其承受压⼒的能⼒是有限的,当压⼒达到某⼀值时会使地层破裂,这个压⼒称为地层的破裂压⼒。
5、压⼒系数:是地层原始压⼒与同⼀深度地层⽔静⽔柱压⼒的⽐值(实际仍是当量密度,只是去掉密度量纲)。
6、当量钻井液密度:某深度处的钻井液液柱压⼒(包括循环阻⼒和波动压⼒等)等于该深度的地层压⼒时的钻井液密度(ECD=101.97*压⼒梯度)7、静⽔压⼒(Hydrostatic Pressure):指单位液体重量与静液柱垂直⾼度的乘积。
ph = (g*ρ*H )/1000 ≈ (ρ*H)/1000ph------ 静⽔压⼒ Mpag ------ 重⼒加速度 9.81m/s2ρ ------ 钻井液密度 g/cm3H ------ 垂深 m8、静⽔压⼒梯度(HydrostaticPressureGradient):静⽔压⼒梯度是指每单位深度上静⽔压⼒的变化量。
Hpg = ph/H ≈ρ*g/1000Hpg ------ 静⽔压⼒梯度 MPaρ ------ 单位体积质量 g/cm3体积密度法:Hpg =(103* ph)/g*H9、地层孔隙压⼒(Pore Pressure):指作⽤地岩⽯孔隙中流体上的压⼒。
对于现场计算,孔隙压⼒与流体液柱的密度及垂直深度有关pf = (ρf*g*H)/1000pf ------- 地层孔隙压⼒ MPaρf ------- 地层流体密度 g/cm310、地层孔隙压⼒梯度( Pore Pressure Gradiet):指单位深度上地层孔隙压⼒的变化量。
pfg = pf/H ≈ρf*g/1000体积密度法:pfg =(103* pf)/g*H孔隙压⼒梯度等于或接近于静⽔压⼒梯度时称为正常孔隙压⼒梯度;低于静⽔压⼒梯度时称为低压⼒异常孔隙压⼒梯度,简称低压⼒异常。
随钻地层压力检测随钻地层压力检测是钻井中非常重要的一项技术,它通过对钻井过程中地层压力的实时监测,可以帮助钻井工程师做出正确的钻井决策,降低钻井事故发生率,提高钻井效率和钻井质量。
本文将对随钻地层压力检测的原理、方法和应用进行详细介绍。
一、随钻地层压力检测的原理随钻地层压力检测的原理与杨氏模量定律有关。
杨氏模量是固体材料的一种弹性模量,在应力作用下,杨氏模量越小,则固体的周围表面变形越大。
在钻井过程中,地层中的岩石是固体材料,当钻头在岩石上钻进去时,会产生应力作用,使得周围的岩石受到压缩,形成应力。
如果地层中的岩石属于非均质性地层,那么不同深度、不同类型的岩石受到的应力也会不同,因此在进行钻井时,如果能够实时监测到地层中不同深度的压力值,就可以更加精确地判断地层类型和性质,从而做出正确的钻井决策。
二、随钻地层压力检测的方法随钻地层压力检测的方法主要有两种:一种是通过钻井液循环监测地层压力,另一种是通过安装随钻地层压力感应器实时监测地层压力。
1、通过钻井液循环监测地层压力在钻井过程中,钻井液不仅能起到润滑和冷却的作用,还可以通过变化的压力来反映地层的压力情况。
在液循环系统中,钻井液的流动速度和压力大小是可以通过仪器进行实时监测的。
当钻头钻进地层时,压力的变化就能够反映出地层中的压力情况。
通过对液压系统中高低压差的监测,可以得到地层压力值的近似估算。
2、通过安装随钻地层压力感应器实时监测地层压力随钻地层压力感应器一般是安装在钻杆上,可以实时测量地层压力,输出地层压力数据,包括静态压力和动态压力。
静态压力是指钻头不受力时钻柱内的压力,用来确定地层结构和压力的水平梯度;动态压力则是指钻头在不同深度下钻进岩石时所受到的压力,用来判断岩石类型和性质。
通过随钻地层压力感应器的安装,可以对地层压力进行高精度、实时的监测和分析,为钻井工程师提供重要的决策依据。
三、随钻地层压力检测的应用随钻地层压力检测可以应用于多个方面,比如确定井筒下端孔段位置、预测地层高压区、识别地层异常、评价井壁稳定性、判断地质条件和可钻性等。
第三章地层压力检测大量的勘探实践表明,异常高压地层的存在具有普遍性,而且钻遇到高压地层比低压地层更为常见。
这些广泛分布的异常高压地层首先影响钻井的安全,钻井中,如果未能预测到可能钻遇到的异常高压地层,使用的钻井液液柱压力小于地层压力,可能会导致严重的井喷甚至井喷失控。
因此,在石油钻井中,对地层压力的评价是非常重要的,对保护油气层,保证井控安全具有重要意义。
一压力检测的目的及意义1 压力检测和定量求值指导和决定着油气勘探、钻井和采油的设计与施工。
2 对钻井来说,它关系到高速、安全、低成本的作业甚至钻井的成败。
3 只有掌握地层压力,地层破裂压力等地层参数,才能正确合理的选择钻井液密度,设计合理的井身结构。
4 更有效地开发、保护和利用油气资源。
二异常地层压力的形成机理1压实作用:随着埋藏深度的增加和温度的增加,孔隙水膨胀,而孔隙空间随地静载荷的增加而缩小。
因此,只有足够的渗透通道才能使地层水迅速排出,保持正常的地层压力。
如果水的通道被堵塞或严重受阻,增加的上覆岩层压力将引起孔隙压力增加至高于水静压力,孔隙度亦将大于一定深度时的正常值。
2 构造运动构造运动是地层自身的运动。
它引起各地层之间相对位置的变化。
由于构造运动,圈闭有地层流体的地层被断层、横向滑动、褶皱或侵入所挤压。
促使其体积变小,如果此流体无出路,则意味着同样多的流体要占据较小的体积。
因此,压力变高。
3 粘土成岩作用成岩指岩石矿物在地质作用下的化学变化。
页岩和灰岩经受结晶结构的变化,可以产生异常高的压力。
例如在压实期间蒙脱石向伊利石转化。
有异常压力,必有上覆压力密封层。
如石膏(CaSO4·2H2O)将放出水化水而变成无水石膏(CaSO4),它是一种特别不渗透的蒸发岩,从而引起其下部异常高压沉积。
4 密度差的作用当存在于非水平构造中的孔隙流体的密度比本地区正常孔隙流体密度小时,则在构造斜上部,可能会形成异常高压。
这种情况在钻大斜度气层时常见到。