地层压力-地层破裂压力-地层坍塌压力预检测
- 格式:doc
- 大小:175.50 KB
- 文档页数:11
地层破裂压力和坍塌压力预测摘要地层破裂压力和地层坍塌压力是钻井工程设计的重要依据,对确定合理的钻井液密度和其他钻井参数有重要意义。
在参考了一些书籍和相关论文的基础上,对地层破裂压力和坍塌压力的预测方法做出了较为系统的总结。
地层破裂压力的预测主要有H-W模式和H-F模式,包括伊顿法、黄荣樽法、安德森法等;地层坍塌压力的预测主要基于井壁岩石剪切和拉伸破坏的原理。
关键词:破裂压力;坍塌压力;预测第一章前言地层破裂压力是指使地层产生水力裂缝或张开原有裂缝时的井底流体压力。
它是钻井和压裂设计的基础和依据。
如何准确地预测地层破裂压力,对于预防漏、喷、塌、卡等钻井事故的发生及确保油气井压裂增产施工的成功有着重要的意义。
地层坍塌压力是指随着钻井液密度的降低,井眼围岩的剪应力水平不断提高,当超过岩石的抗剪强度时,岩石发生剪切破坏时的临界井眼压力。
它的确定对于确定合理的钻井液密度和钻井设计及施工有重要意义。
地层三项压力研究历史及发展现状:✧八十年代以前,地层孔隙压力以监测为主,地层破裂压力预测处于经验模式阶段,如马修斯-凯利模式、伊顿模式等。
没有地层坍塌压力的概念。
✧八十年代,提出了地层坍塌压力的概念,从理论上对地层三个压力进行了公式推导。
✧九十年代以来,一般根据岩石力学的基本原理由地应力和地层的抗拉强度预测地层的破裂压力,进入实用技术开发阶段。
目前,地层三项压力预测技术已经得到广泛的重视,也从各个方面对其进行了研究和应用:●室内实验研究方法(研究院)●地震层速度法(石大北京)●常规测井资料法(华北钻井所、石大)●页岩比表面积法(Exxon)●人造岩心法(Norway)●岩屑法(Amoco、石油大学)●LWD、SWD法(厂家)●经验模式法(USA)第二章 地层三项压力预测机理2.1 地应力模型1、各向同性模型利用电缆地层测试或压力恢复测试资料,在不考虑构造应力影响情况下,各向同性模型计算水平应力公式为:()p p b x P P P PR PR αασ+-⎪⎪⎭⎫⎝⎛-=01(2-1) 式中:PR — 泊松比;Pob — 上覆岩层压力;Pp — 孔隙流体压力;α — Biot 常量。
地层破裂压力试验方法一、地层破裂(漏失)压力概念二、确定地层破裂压力的方法三、地层试漏曲线分析四、地层破裂(漏失)压力计算五、地层破裂(漏失)压力试验目标一、了解地层破裂(漏失)压力概念,会分析地层试漏曲线。
二、掌握地层破裂(漏失)压力试验方法及步骤及曲线绘制。
三、掌握地层破裂(漏失)压力及允许关井套压计算方法。
地层破裂压力是指某一深度地层发生破碎和裂缝时所能承受的压力。
当达到地层破裂压力时,地层原有的裂缝扩大延伸或无裂缝的地层产生裂缝。
一、地层破裂压力一般情况(遵循压实规律)下,地层破裂压力随着井深的增加而增大。
在钻井时,钻井液柱压力的下限要保持与地层压力相平衡,实现压力控制。
而其上限则不能超过地层的破裂压力,以避免压裂地层造成井漏。
一、地层破裂压力地层漏失压力是指某一深度的地层产生钻井液漏失时的压力。
对于正常压力的高渗透性砂岩、裂缝性地层以及断层破碎带处,往往地层漏失压力比破裂压力小得多,而且对钻井安全作业危害很大。
一、地层漏失压力习惯上以地层漏失压力作为确定井控作业的关井压力依据。
这样更加趋于安全。
一、地层漏失压力1、预测法——应用经验公式预测地层破裂压力,作为钻井设计的依据。
2、验证法——在下套管固井后,必须进行试漏试验,以验证预测的破裂压力。
二、确定地层破裂(漏失)压力的方法在做地层破裂压力试验时,在套管鞋以上钻井液的静液压力和地面回压的共同作用下,使地层发生破裂而漏失1、漏失压力(PL)从图中可以看到:一开始,立压变化几乎与注入量成一直线关系,这说明井下尚无漏失现象。
但从L点发生转折,试验曲线偏离直线,呈曲线变化,但压力继续上升。
表明此时地层的骨架颗粒开始分离,但未形成裂缝,钻井液开始漏失(但漏速小于注入量)。
试验曲线偏离直线的点,是地层开始漏失的点,这时地层所承受的压力称为地层漏失压力。
三、典型试漏曲线分析2、破裂压力(PF)从图中可以看到:从L点发生转折后,呈曲线变化,但压力仍继续上升,至最大峰值F点后下降,这时地层破裂,形成裂缝,钻井液向裂缝中漏失(漏速大于注入量),其后压力将下降。
地层破裂压力和地层坍塌压力预测新算法地层岩石作为一种多孔两相固体物质,其应力分析与普通单相固体物质是有区别的,但是,在我们目前所使用的地层岩石应力分析模型、理论中,都有意或无意地使用了单相固体应力分析的方法。
为了分析两者的区别,在这里我们首先引入有效应力的概念。
有效应力的概念是由李传亮老师首先提出来的,该理论认为岩石由两个有效应力:本体有效应力和结构有效应力。
本体有效应力决定岩石的本体变形,结构有效应力决定岩石的结构变形。
p s P .1Φ+-=σφσ)( (1)p s P P .)1(eff φσσφσ-=-= (2)p c c c P .1φσφσ+-=)( (3) p c c c s P .)1( eff φσσφσ-=-= (4)式中:σ——上覆地层压力;s σ——岩石骨架应力; c σ——岩石接触应力;eff P σ——岩石本体有效应力;eff s σ——岩石结构有效应力;φ——岩石孔隙度;c φ——岩石触点孔隙度;(φ=c φ)P p ——岩石空隙流体压力。
有效应力通过孔隙度把普通材料和多孔介质统一起来了,有效应力计算公式中的孔隙度反映了孔隙压力对有效应力的贡献权值。
在地应力分析中,我们所指的应力是结构有效应力。
(1)借助结构有效应力公式,我们首先分析在非均匀地应力作用下井眼周围周向结构有效应力和径向结构有效应力分布规律。
θφσφσφσφσσθ2cos )31(2).().()1(2).().(4422rr p p r r p p wp c h p c H w p c h p c H eff s +---++-+--=(5)式中:θσeff s ——距井轴r 距离并与H σ按逆时针方向成θ角处的周向结构有效应力。
p C p C b H P P P A .).)(1(0φφμμσ+-+-= (6)p C p C b h P P P B .).)(1(0φφμμσ+-+-= (7)μ——岩石泊松系数;A ,B ——构造应力系数(构造应力系数对于不同的地质构造是不同的,但在统一构造断块内部,它是一个常数,且不随地层深度变化);P P ——地层孔隙流体压力; bP 0——上覆地层压力。
利用测井资料预测孔隙压力、破裂压力和坍塌压力郭桂生;蔺敬旗;张仲华;吴丛文;侯庆宇【摘要】钻井液漏失、井喷、井壁坍塌和油气层受污染等异常情况,主要受地层孔隙压力、破裂压力和坍塌压力(以下简称"三压力")控制,是钻井技术人员经常面临的问题.钻前建立"三压力"剖面,就可以设计出钻井液安全密度窗口.保证油田勘探开发生产中的钻井施工安全.电缆地层测试直接获取较为精确的地层孔隙压力,利用偶极声波测井方法能预测出破裂压力和坍塌压力,建立其连续剖面.最终建立了准噶尔盆地"三压力"成果数据库和网上查询系统.【期刊名称】《新疆石油地质》【年(卷),期】2011(032)002【总页数】3页(P187-189)【关键词】偶极声波;电缆地层测试;孔隙压力;破裂压力;坍塌压力;精细评价【作者】郭桂生;蔺敬旗;张仲华;吴丛文;侯庆宇【作者单位】中国石油新疆油田分公司开发公司,新疆,克拉玛依,834000;中国石油,西部钻探公司,测井公司,新疆,克拉玛依,834000;中国石油新疆油田分公司开发公司,新疆,克拉玛依,834000;中国石油新疆油田分公司陆梁油田作业区,新疆,克拉玛依,834000;中国石油,西部钻探公司,测井公司,新疆,克拉玛依,834000【正文语种】中文【中图分类】P631.824研究和预测地层地应力、孔隙压力、破裂压力和坍塌压力,对钻井泥浆设计、压裂施工参数选择有着重要的意义。
目前世界范围内针对裸眼井提供电缆地层测试的主要油田服务公司有贝克-阿特拉斯公司、哈里伯顿公司、BPB公司、斯伦贝谢公司等,从经济价值、技术性能和实用价值考虑,斯伦贝谢公司电缆式地层测试器(RFT)采用石英和应变压力计测量流线压力,其中石英压力计精度可以达到0.69 kPa,基本满足钻井液设计的精度要求,RFT测井费用比较低,因此,电缆式地层测试器是求取孔隙压力比较理想的测井工具,适合于大面积使用[1]。
海拉尔地区三个地层压力的预测与计算王晓旭【摘要】根据已钻井的测井资料,对海拉尔油田的几个主要区块进行了地层孔隙压力、地层破裂压力和井壁坍塌压力的分析和计算,并建立了不同区块的单井压力的变化及本区块压力随深度变化的剖面图.分析研究发现,使用声波时差方法预测地层压力可以取得准确的预测值:破裂压力计算应用了伊顿模式、史蒂芬模式、黄荣樽模式和测井资料法,然后对各种方法进行对比分析发现黄荣樽法破裂压力预测数据准确;而坍塌压力则可以通过莫尔-库仑准则得到满足工程需要的精度.最后综合考虑确定出各个区块的合理安全泥浆密度窗口.【期刊名称】《探矿工程-岩土钻掘工程》【年(卷),期】2010(037)008【总页数】6页(P13-18)【关键词】地层压力;破裂压力;坍塌压力;压力预测;海拉尔油田【作者】王晓旭【作者单位】大庆油田有限责任公司钻探工程公司钻井工程技术研究院,黑龙江,大庆,163413【正文语种】中文【中图分类】TE271海拉尔油田处于海拉尔盆地贝尔湖凹陷,地质沉积情况复杂,地层压力区域变换大,给钻井工作造成很大困难。
为保障正常钻井和安全稳定开发,3个压力(地层孔隙压力、地层破裂压力和井壁坍塌压力)的计算和预测显得更加重要。
以前钻井设计钻井液密度主要是在预测的地层压力基础上再乘以一个安全系数就可以确定,而很少考虑其它的影响因素。
现今,地层破裂压力有了一系列的方法进行预测,它的大小作为钻井液压力的上限,若较少考虑用坍塌压力来设计钻井液密度,这就将导致在钻井过程中有时没有发生井涌或井漏事故,但却发生井壁坍塌的现象,在不十分严重的井段,我们可以在井径测井曲线上发现,井眼直径变为不规则,较严重的情况就会发生卡钻的现象。
所以说,在钻井设计过程中,钻井液密度的设计应即考虑地层压力和破裂压力,又应该考虑井壁不发生坍塌时的钻井液密度。
1 海拉尔地区地层孔隙压力计算图1是海拉尔地区贝16井的正常压实趋势线图,可以看出在2000 m附近实测曲线明显的偏离了正常压实曲线,并且实测声波时差值比正常值向着声波时差值增大的方向逐渐增大,这说明在这个地方地层的声波传播速度减小,即传播时间增加,由此可推断出该地区在这个层位可能存在异常高压层段。
地层破裂压力试验详解!一、地层破裂压力和地层漏失压力地层破裂压力是指某一深度地层发生破碎和裂缝时所能承受的压力。
当达到地层破裂压力时,地层原有的裂缝扩大延伸或无裂缝的地层产生裂缝。
一般情况(遵循压实规律)下,地层破裂压力随着井深的增加而增大。
在钻井时,钻井液柱压力的下限要保持与地层压力相平衡,实现压力控制。
而其上限则不能超过地层的破裂压力,以避免压裂地层造成井漏。
地层漏失压力是指某一深度的地层产生钻井液漏失时的压力。
对于正常压力的高渗透性砂岩、裂缝性地层以及断层破碎带处,往往地层漏失压力比破裂压力小得多,而且对钻井安全作业危害很大。
习惯上以地层漏失压力作为确定井控作业的关井压力依据。
这样更加趋于安全。
二、确定地层破裂(漏失)压力的方法1、预测法——应用经验公式预测地层破裂压力,作为钻井设计的依据。
2、验证法——在下套管固井后,必须进行试漏试验,以验证预测的破裂压力。
1、钻头提至套管鞋以上,井内灌满钻井液,关井。
2、采用从钻具水眼或环空两种方式中的一种用选定小排量向井内泵入钻井液。
3、每间隔20~50L(选定一个固定量)泵入量或每间隔10~20s (泵速恒定、选择一个固定时间间隔)记录一次相应泵压和注入量或时间。
4、当泵压开始下降时,停泵。
若不要求计算地层最小水平主地应力及试漏层岩石抗拉强度时,则试验结束。
否则继续下部试验。
5、停泵1~2min,每间隔10~20s记录一次泵压。
6、待泵压相对稳定后,重新开泵1-2min,每间隔10~20s记录一次重张压力。
7、作出下图所示的典型漏失试验曲线。
图中偏离直线之点的压力PL则为漏失压力。
破裂压力当量密度(Υf)为:Υf=Υm+100Pl/H式中:Υm:试验所用泥浆密度,g/cm3;Pl:漏失压力,MPa;H:裸眼段中点井深,m。
该地层破裂压力梯度(Gf)则为:Gf = 0.01Υm+Pl/H单位:MPa/m值得注意的是,在直井与定向井中对同一地层作的液压试验所得到的数据不能互用。
地层破裂压力和坍塌压力预测摘要地层破裂压力和地层坍塌压力是钻井工程设计的重要依据,对确定合理的钻井液密度和其他钻井参数有重要意义。
在参考了一些书籍和相关论文的基础上,对地层破裂压力和坍塌压力的预测方法做出了较为系统的总结。
地层破裂压力的预测主要有H-W模式和H-F模式,包括伊顿法、黄荣樽法、安德森法等;地层坍塌压力的预测主要基于井壁岩石剪切和拉伸破坏的原理。
关键词:破裂压力;坍塌压力;预测第一章前言地层破裂压力是指使地层产生水力裂缝或张开原有裂缝时的井底流体压力。
它是钻井和压裂设计的基础和依据。
如何准确地预测地层破裂压力,对于预防漏、喷、塌、卡等钻井事故的发生及确保油气井压裂增产施工的成功有着重要的意义。
地层坍塌压力是指随着钻井液密度的降低,井眼围岩的剪应力水平不断提高,当超过岩石的抗剪强度时,岩石发生剪切破坏时的临界井眼压力。
它的确定对于确定合理的钻井液密度和钻井设计及施工有重要意义。
地层三项压力研究历史及发展现状:✧八十年代以前,地层孔隙压力以监测为主,地层破裂压力预测处于经验模式阶段,如马修斯-凯利模式、伊顿模式等。
没有地层坍塌压力的概念。
✧八十年代,提出了地层坍塌压力的概念,从理论上对地层三个压力进行了公式推导。
✧九十年代以来,一般根据岩石力学的基本原理由地应力和地层的抗拉强度预测地层的破裂压力,进入实用技术开发阶段。
目前,地层三项压力预测技术已经得到广泛的重视,也从各个方面对其进行了研究和应用:●室内实验研究方法(研究院)●地震层速度法(石大北京)●常规测井资料法(华北钻井所、石大)●页岩比表面积法(Exxon)●人造岩心法(Norway)●岩屑法(Amoco、石油大学)●LWD、SWD法(厂家)●经验模式法(USA)第二章 地层三项压力预测机理2.1 地应力模型1、各向同性模型利用电缆地层测试或压力恢复测试资料,在不考虑构造应力影响情况下,各向同性模型计算水平应力公式为:()p p b x P P P PR PR αασ+-⎪⎪⎭⎫⎝⎛-=01(2-1) 式中:PR — 泊松比;Pob — 上覆岩层压力;Pp — 孔隙流体压力;α — Biot 常量。
2、各向异性模型pM y x y x pM r P P P P αθσασθ---++=-=2cos )σσ(2)σσ( (2-2)第三章 地层破裂压力预测方法3.1 地层破裂压力预测常用方法为准确地预测地层破裂压力,国内外学者提出了许多不同的数学模型和方法,它们都各有其优点和局限性。
在破裂压力预测模型中,常使用的有H-W 模式和H-F 模式。
3.1.1 H-W 模式1、休伯特&威斯利方法1957年休伯特和威斯利根据岩石水力压裂机理和实验做出推论,在发生断层作用的地质区域,地下应力状态以三维不均匀主应力状态为特征,且三个主应力相互垂直。
最大主应力σ1为垂直方向,大小等于有效上覆岩层压力(即骨架应力),最小主应力σ3和中间应力σ2在水平方向相互垂直。
则地层破裂压力应当满足:1p 3)2/13/1(p σσ-+=+=p f p p (3-1)休伯特&威斯利方法从理论和技术上为监测地层压力奠定了基础。
但是由于很少在正断层区域钻井,因此该理论在工业应用中收到限制。
2、马修斯&凯利方法1967年马修斯和凯利选择最小破裂压力等于地层压力与上覆岩层压力之和,并与克服骨架应力有关。
则有:D K D p G pf 3i σ+= (3-2)式中:G f —地层压力梯度,MPa/m ;K i —骨架应力系数,无因次;σ—骨架应力,Mpa 。
3、伊顿法伊顿在1969年发表了更合适的计算地层破裂压力的方法。
把上覆岩层压力梯度作为一个变量来考虑,并引入泊松比:DD p G p f σμμ)1(-+= (3-3) 研究发现,由于上覆岩层压力梯度的变化,岩石的泊松比随深度成非线性变化。
在破裂压力的计算中,若能求得上覆岩层压力的准确增量,可提高破裂压力的计算精度。
4、黄荣樽法石油大学黄荣遵教授在总结分析国外各种计算底层破裂压力方法的基础上,综合考虑各种影响因素,进行了严格的推导和室内试验,提出了预测底层破裂压力的新模式:rt p v ss p S )p -p )(12(p p +--+=K f μμ (3-4) 式中:K SS —构造应力系数,无因次;S rt —岩石的抗拉强度,Mpa 。
黄荣遵法认为地层的破裂是由井壁上的应力状态决定,并考虑了非均匀地应力场的作用和地层的抗拉强度影响。
5、Holbrook 法Holbrook 法适用于胶结较差、岩层的抗拉强度可以忽略、井眼与地层间的连通性好的砂岩地层,其计算公式为:p p o f p p p p +--=))(1(φ (3-5)6、安德森法安德森法考虑井壁上应力集中的影响,假定无构造应力,地层抗张强度为零,取均匀水平应力的条件,且认为砂岩中的泥质含量对泊松比及砂岩的变形有明显影响:))(12(0p s s p f p p p p αμμα--+= (3-6)安德森方法首次提出由测井资料计算破裂压力,避免了反算过程需要大量实际压裂资料和模型缺陷带来误差,但其均匀水平地应力的假设不符合多数地区的地应力状态。
3.1.2 H-F 模式Haimson 与Fairhurst 认为裂缝的产生是由井壁应力集中所引起,增大井内流体压力会改变井壁应力状态,当应力超过井壁岩石抗张强度时地层被压裂。
在储层均质各向同性和弹性变形的假定下,考虑了水平主地应力在两个方向上不相等和压裂液向地层内达西渗流的影响。
结合有效应力原理推导破裂压力预测模型为:vv S p tf ---+-=1212321ασσ (3-7) 2000年,李传亮根据多孔介质双重有效应力理论,发展了H-F 模式:vv p v v p c p f ---+---+-=12111213112ϕϕϕσσσ (3-8)3.1.3 液压实验法液压实验法,也称漏失实验,是在下完一层套管,注入完水泥和钻过水泥塞之后进行的。
液压实验时地层的破裂压力易发生在套管鞋处,因套管鞋处的地层压实程度比下部地层差。
液压实验法的步骤如下:a) 循环调节钻井液性能,保证钻井液性能稳定,上提钻头至套管鞋内,关闭防喷器。
b) 用较小排量(0.66-1.32L/s )向井内注入钻井液,并记录各个时期的注入量及立管压力。
c) 作立管压力与累计泵入量的关系曲线,如图3-1所示。
d) 从图上确定各个压力值,漏失压力为开始偏离直线的压力,其后压力继续上升; e) 压力上升到最大值,即为开裂压力;最大值过后压力下降并趋于平缓,称为传播压力。
f) 求地层破裂压力当量密度:)00981.0/(m D p L f +=ρρ (3-9)图3-1 典型液压实验漏失曲线液压实验法适用于砂泥岩为主的地层,对石灰岩、白云岩等硬地层的液压实验有待于进一步实验研究。
实验压力不应超过地面设备和套管的承载能力,否则可提高实验用钻井液密度。
3.1.4 地层破裂压力预测的其他模型1、地层破裂压力的多元回归模型根据地层破裂压力和岩石力学参数的关系可从测井资料提取E 、K 、u 参数值, 结合所对应的地层深度和实测地层破裂压力值,建立的地层破裂压力预测模型。
该统计模型形式简单直观,易于使用,地层破裂压力P f 与E 、K 、u 参数之间的关系简单明确。
2、建立地层破裂压力BP 神经网络预测模型用BP 神经网络法预测地层破裂压力涉及“学习建模”和“参数预测”两个过程。
其选用由输入层、隐含层和输出层所组成的3 层BP 网络算法参主要包括学习率(A)、冲量系数(B)、绝对误差(ED)、全局代价函数值(ED2)及迭代次数(Tn)等。
3.2 特殊条件下的地层破裂压力预测3.2.1、浅部地层破裂压力研究国内外学者和现场作业工程师在预测浅层破裂压力时通常没有充分考虑井眼形态和地层的强度各向异性。
这就导致了下列工程问题:二开底部地层为维持井壁稳定或控制溢流,提高钻井液密度而导致上部地层发生井漏;浅部地层造斜,发生意料不到的井漏;浅部油层压裂作业中,由于不能掌握起裂形态,常常导致压裂失败。
假设地层是均匀各向同性、线弹性多孔材料,并认为井眼周围的岩石处于平面应变状态,则垂直缝破裂压力:(3-10)水平缝破裂压力:(3-11)则,地层破裂压力: }p ,min{p p hf v f f 3.2.2、高温高压地层破裂压力预测方法高温高压地层胶结疏松,安全钻井液密度窗口窄,钻井及固井过程中极易发生井漏,造成一系列井下复杂情况和事故,严重影响钻井进程及固井质量。
导致高温高压地层破裂漏失的主要原因之一是钻井过程中井壁上往往难以形成致密的低渗泥饼,钻井液及其滤液向地层渗流,在井周形成渗流附加应力场,导致井周有效周向应力和地层破裂压力降低另外,高温高压地层在钻井及循环过程中,井壁温度降低, 井周地层产生收缩应力,也会导致地层破裂压力降低。
因此,为解决高温高压地层的井壁稳定性问题,准确确定安全钻井液密度窗口,必须综合考虑温度和井壁渗流等因素的影响。
依据井壁拉伸破裂强度准则和RH=-St井壁应力,并带入考虑渗流时井壁上空隙压力表达式)p-pD(-pppwwL=可得到高温高压底层破裂压力表达式:]1)21()[1(1)]()1(3[]}1)21()[1({3AfMMADTTMEApfMMADADStRHRhpWmpf--------+----+-+-=(3-12)由于钻井及循环过程中井壁和地层温度及孔隙压力不断变化, 井壁和地层应力状态也随时变化, 井壁应力状态没有解析解. 为了研究温度压力影响下的井壁稳定规律, 必须进行数值求解, 因此根据以上模型需要借助高温高压地层破裂压力预测软件。
第四章 地层坍塌压力预测方法4.1 考虑渗透作用时的地层坍塌压力适用于渗透性好的地层,考虑钻井液向地层中的渗透,把井壁近似看作渗透井壁。
此时地层坍塌压力的计算公式为:[]D a B a CB p B p p p h b 100)1()1(2)(322H 1----+--+---=φξηφφφξσσηρ (4-1) 4.2 拉伸崩落条件下的坍塌压力适用于井筒钻井液压力小于地层孔隙压力时的过渡带欠压实超压低渗泥页岩。
)(1002t p b S P D-=ρ (4-2) 井壁坍塌受剪切和拉伸崩落两种坍塌机理控制,地层坍塌压力当量密度应取两者中的较大值,即12max{}b b b ρρρ=、。
第五章总结在此次研究性学习中,通过课本、文献以及石油与天然气标准等资料,对“地层破裂压力和坍塌压力的预测”做了较为详细的学习与总结,并对其预测方法做了较为系统的整理。
地层破裂压力的预测方法较多,随着认识的发展研究人员不断增加新的影响因素并提出针对性的模型,目前以形成了H-W模式和考虑渗流的H-F模式,包括马修斯-凯利法、伊顿法、安德森法等一系列的方法。