山东建筑大学概率论作业纸答案
- 格式:ppt
- 大小:1.36 MB
- 文档页数:3
概率作业纸答案概率论与数理统计标准作业纸答案第一章随机事件及其概率§1.1随机事件§1.2随机事件的概率§1.3古典概率一、单选题1.事件ab表示(c)(a)事件a和事件B同时发生(B)事件a和事件B不发生(c)事件a和事件B不同时发生(d)上述情况均不成立2.事件a,b,有a?b,则a?b?(b)(a) a(b)b(c)ab(d)a?B3.设随机事件a和b同时发生时,事件c必发生,则下列式子正确的是(c)(a) p(c)?p(ab)(b)p(c)?p(a)?p(b)(c)p(c)?p(a)?p(b)?1(d)p(c)?p(a)?p(b)?14.已知P(a)?p(b)?p(c)?11,p(ab)?0,p(ac)?p(公元前)那么事件a、416b和C不发生的概率为(b)5623(a)(b)(c)(d)已知事件a和B是否满足条件P(AB)?P(AB)和P(a)?p、那么p(b)?(a)(a)1?p(b)p(c)pp(d)1?226.若随机事件a和b都不发生的概率为p,则以下结论中正确的是(c)(a) a和B同时出现的概率等于1?P(b)a和b只有一个发生概率等于1?P(c)a和B至少出现一次的概率等于1?P(d)a发生,B不发生或B发生,a不发生的概率等于1?P二、填空题1.让a、B和C代表三个随机事件,并使用a、B和C的关系和运算来表示(1)只有a 发生为:ABC;第1页对概率论与数理统计标准作业论文的回答(2)a,b,c中正好有一个发生为:abc?abc?abc;(3)a,b,c中至少有一个发生为:a?b?c;(4) a、B和C中至少有一个没有出现,表示为:a?Bc、或者ABC 2。
设定P(a)?0.3,p(a?b)?0.6,如果a?b、那么p(b)?0.6.3.设随机事件a、b及a?b的概率分别是0.4,0.3,和0.6.则p(ab)?0.3.三、简短回答问题1.任意抛掷一颗骰子,观察出现的点数.事件a表示“出现点数为偶数”,事件b表示“出现点数可以被3整除”,请写出下列事件是什么事件,并写出它们包含的基本事件.a,b,a?b,ab,?ab解:a表示“出现点数为偶数”,a??2,4,6?b表示“出现点数可以被3整除”,b??3,6?A.B表示“发生点的数量可以除以2或3”,a?B2,3,4,6?ab表示“出现点数既可以被2整除,也可以被3整除”,ab??6?A.B1,5? A.B表示“发生点的数量既不能除以2也不能除以3”四、计算题1.城市中85%的家庭安装有线数字电视,70%安装网络电缆,95%安装至少一种电缆和网络电缆。
山东建筑大学历年概率论试题汇总···········································································································装 订线··································································································山东建筑大学试卷 共 3 页 第 1 页2009至2010第 1 学期 课程名称 概率论与数理统计 试卷 (A ) 专业: 理工科各专业考试性质: 闭卷 考试时间 120 分钟 题号 一 二 三 总分 分数一、 填空题(每题3分,共24分)1、 掷两颗骰子,已知两颗骰子的点数之和为6,则其中有一颗为1点的概率为______.2、 若()0.4P A =,7.0)(=⋃B A P ,A 和B 独立,则()P B = 。
06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________. 2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________. 3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X ,且95}1{=≥X P ,则=≥}1{Y P __________.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a ab -+-;(B)(1)()(1)a a ab a b -++-;(C)a a b+;(D)2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π; ()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ; ()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y-=,其中a 、b 为常数,且0≠a ,则~Y 【 】 ()A ()222,ba b a N +-σμ; ()B ()222,ba b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率. 四、(本题满分12分)设随机变量X 的密度函数为xxee A xf -+=)(,求:(1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f求12+=X Y 的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P >.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Aey x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。
05-06-2《概率论与数理统计》试题A本试题中可能用到的标准正态分布()10,N 的分布函数()x Φ的部分值:x 19.0 29.0 14.1 09.1 645.1 71.1 96.1()x Φ5753.06141.08729.08621.09500.09564.0 9750.0一、填空题(每题4分,共20分)1、掷两颗骰子,已知两颗骰子的点数之和为6,则其中有一颗为1点的概率为________.2、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.3、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P4、设总体()p B X ,1~,()n X X X ,,, 21是从总体X 中抽取的一个样本,则参数p 的矩估计量为=pˆ_____________________. 5、设总体X ~)5,0(N ,1X ,2X ,3X ,4X ,5X 是总体的一个样本,则)(512524232221X X X X X ++++服从 分布。
二、(本题满分6分)袋中有4个白球,7个黑球,从中不放回地取球,每次取一个球.求第二次取出白球的概率.三、(本题满分8分)对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故障的概率为2p .令X 表示测试中发生故障的仪器数,求()X E 四、(本题满分12分)一房间有3扇同样大小的窗户,其中只有一扇是打开的.有一只鸟在房子里飞来飞去,它只能从开着的窗子飞出去.假定这只鸟是没有记忆的,且鸟飞向各个窗子是随机的.若令X 表示鸟为了飞出房间试飞的次数.求⑴ X 的概率函数.⑵ 这只鸟最多试飞3次就飞出房间的概率.⑶ 若有一只鸟飞进该房间5次,求有4次它最多试飞了3次就飞出房间的概率。
五、(本题满分10分)设随机变量()1,0~N X ,12+=X Y ,试求随机变量Y 的密度函数.六、(本题满分12分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤≤=其它,0142122y x y x y x f分别求出求X 与Y 的边缘密度函数;判断随机变量X 与Y 是否相互独立?七、(本题满分10分)在总体()23.652~,N X 中随机抽取一个容量为36的样本,求{}8.538.50≤≤X P . 八、(本题满分8分)设总体()24.0~,μNX ,()1621x x x ,,, 是从中抽取的一个样本的样本观测值,算得12.10=x ,求μ的置信度为0.95的置信区间。
概率论习题册答案概率论习题册答案概率论是一门研究随机事件发生规律的数学学科,它在现代科学和工程领域中具有广泛的应用。
在学习概率论的过程中,做习题是非常重要的一部分,通过解答习题可以巩固对概率论知识的理解和应用能力。
本文将为大家提供一些常见概率论习题的答案,希望能够帮助大家更好地掌握概率论知识。
1. 设A、B为两个事件,且P(A)=0.4,P(B)=0.6,求P(A并B)和P(A或B)。
解答:根据概率的定义,P(A并B)表示事件A和事件B同时发生的概率,P(A或B)表示事件A或事件B至少发生一个的概率。
由于事件A和事件B是两个独立事件,所以P(A并B)=P(A)×P(B)=0.4×0.6=0.24。
而P(A或B)=P(A)+P(B)-P(A并B)=0.4+0.6-0.24=0.76。
所以,P(A并B)=0.24,P(A或B)=0.76。
2. 有一批产品,其中10%的产品存在质量问题。
从中随机抽取5个产品,求其中至少有一个存在质量问题的概率。
解答:设事件A表示抽取的5个产品中至少有一个存在质量问题。
根据概率的定义,P(A)=1-P(没有一个存在质量问题)。
那么,P(没有一个存在质量问题)=P(第1个产品不存在质量问题)×P(第2个产品不存在质量问题)×P(第3个产品不存在质量问题)×P(第4个产品不存在质量问题)×P(第5个产品不存在质量问题)。
由于每个产品存在质量问题的概率为0.1,所以P(没有一个存在质量问题)=(1-0.1)×(1-0.1)×(1-0.1)×(1-0.1)×(1-0.1)=0.9×0.9×0.9×0.9×0.9=0.59049。
因此,P(A)=1-0.59049=0.40951。
所以,抽取的5个产品中至少有一个存在质量问题的概率为0.40951。
概率论与数理统计作业4(§2.1~§2.2)一、填空题 1. 常数b =1时,(1)k b p k k =+(其中1,2,...k =)可以作为离散型随机变量的概率分布.2. 同时掷3枚质地均匀的硬币,则至多有1枚硬币正面向上的概率为21.3.)2(~P X二、选择题 设随机变量X是离散型的,则【D 】可以成为X的分布律(A)101p p ⎛⎫ ⎪-⎝⎭(p是任意实数) (B)123450.10.30.30.20.2x x x x x ⎛⎫⎪⎝⎭(C)33{}!ne P X n n -==(1,2,.....n =) (D) 33{}!ne P X n n -==(0,1,2,...n=)三、计算题1. 一批零件中有9个合格品与3个废品。
安装机器时从中任取1个。
如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布。
解: 设X 表示取得合格品以前已取出的废品数,则X =0,1,2,3;112193)(+==k k P P P k X P .2.解: 设X 表示射击次数,则X =1,2,3;().p p k X P k--==11)(3.20个产品中有4个次品,(1)不放回抽样,抽取6个产品,求样品中次品数的概率分布; (2)放回抽样,抽取6个产品,求样品中次品数的概率分布。
解: (1) 不放回抽样,设X 表示样品中次品数,则X =0,1,2,3, 4;X ~H(6,4,20)6204164)(C CC k X P kk -==.(1) 放回抽样,设X 表示样品中次品数,则X =0,1,2,3, 4;X ~B (6,0.2)()()kkk..C k X P -==668020)(.概率分布表如下4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 设X表示抽出产品的级数,写出它的概率函数. 解: X =1,2,3;2.3)一、填空题1.设随机变量X 的密度函数01()2120x x f x xx ≤≤⎧⎪=-≤≤⎨⎪⎩其它,则()1.5PX <=0.875 ;()1.5PX ==0 . 2. 设随机变量X的密度函数为()⎪⎩⎪⎨⎧≤≤⎪⎭⎫⎝⎛-=其它021112x x k x f则=k 2 . 二、判断题 函数211x+可否是连续随机变量X 的分布函数,如果X 的可能值充满区间:(1)()+∞∞-,;解:不可以. 因().xF x 1011lim2≠=+=∞++∞→(2)()0,∞-.解:可以.()().xF ;xF x x 111lim0011lim22=+==+=∞-→-∞→且F (x )在()0,∞-上单调非减,故令()⎪⎩⎪⎨⎧>≤+=010112x x ,x x F 可以是连续随机变量X 的分布函数三、计算题 1.已知随机变量X只能取-1,0,1,2四个值,相应概率依次为cc c c 167,85,43,21,1)确定常数c ; 解:.c ,cc c c 16371167854321=∴=+++2)计算(1|0)P X X <≠;解:()()()()()()()211100101=+=+-=-==≠≠<=≠<X P X P X P X P X P X X P X X P=.cccc 258167852121=++3)求X的分布函数并做出其图像解:()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤--<=212137301037200137810x x x x x x F2. 设离散型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=31317.0114.010)(x x x x x F ,求X的分布列。
第一章 随机事件及其概率第三节 事件的关系及运算一、选择1.事件AB 表示 ( C )(A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生(C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ⊂,则=B A ( B )(A ) A (B )B (C ) AB (D )A B二、填空1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为A B C ++三、简答题1.任意抛掷一颗骰子,观察出现的点数。
事件A 表示“出现点数为偶数”,事件B 表示“出现点数可以被3整除”,请写出下列事件是什么事件,并写出它们包含的基本事件 ,,,,A B A B AB A B ++解:A 表示“出现点数为偶数”,{}2,4,6A =B 表示“出现点数可以被3整除”,{}3,6B =A B +表示“出现点数可以被2或3整除”,{}2,3,4,6A B += AB 表示“出现点数既可以被2整除,也可以被3整除”,{}6AB =A B +表示“出现点数既不可以被2整除,也不可以被3整除”,{}1,5A B +=2.向指定目标射击两次。
设事件,,,A B C D 分别表示“两次均未击中”、“击中一次”、“击中两次”、“至少击中一次”,请写出所有基本事件,并用基本事件表示事件,,,A B C D解:基本事件为 1w :“第一次击中,第二次击中”2w :“第一次未击中,第二次击中”3w :“第一次击中,第二次未击中” 4w :“第一次未击中,第二次未击中”4{}A w =,23{,}B w w =,1{}C w =,123{,,}D w w w =3.袋中有10个球,分别写有号码1---10,其中1,2,3,4,5号球为红球;6,7,8号球为白球;9,10号球为黑球。