X ∈ D 对满足 ,
F ( X ) ( X X * ) ≥ 0
*
T
注意: 注意:
不论是无约束或有约束的优化问题,在实际应用中, 不论是无约束或有约束的优化问题,在实际应用中,要证明一个 优化问题是否为凸规划,一般比较困难, 优化问题是否为凸规划,一般比较困难,有时甚至比求解优化问题本 身还要麻烦.尤其对一些工程问题,由于其数学模型的性态都比较复 身还要麻烦.尤其对一些工程问题, 杂,更难实现.因此,在优化设计的求解中,就不必花精力进行求证, 更难实现.因此,在优化设计的求解中,就不必花精力进行求证, 而通常是从几个初始点出发,找出几个局部最优解, 而通常是从几个初始点出发,找出几个局部最优解,从中选择目标函 数值最好的解. 数值最好的解.
2 2
设: 则有
cos θ1 s≡ 为单位向量. 为单位向量. cos θ 2 F = F ( x0 )T s = F ( x0 ) cos(F , s ) x s 0
梯度方向是函数值变化最快的方向,而梯度的模 梯度方向是函数值变化最快的方向, 就是函数变化率的最大值 .
x2 x0
-f(x0) 最速下降方向 下降方向 变化率为零的方向 上升方向 f(x 0) 最速上升方向
凸规划的一些性质: 凸规划的一些性质: 1)可行域 D = X g j ( X ) ≤ 0
{
j = 1, 2, , m
}
为凸集; 为凸集;
2)凸规划问题中的任何局部最优解都是全局最优解; 凸规划问题中的任何局部最优解都是全局最优解; 为凸规划问题 最优解的充分必要条件 规划问题的 可微, 3 ) 若 F ( X ) 可微 , 则 X* 为凸规划问题的 最优解的充分必要条件 为: 对任意
0