圆的切线的判定定理和性质定理
- 格式:docx
- 大小:11.58 KB
- 文档页数:6
切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可. 证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.图1图2证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质--与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么?解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .图3 OABCD2 31∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD。
切线的判定和性质
切线的性质与判定
1.主要性质
(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于经过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心;
(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
其中(1)是由切线的定义得到的,(2)是由直线和圆的位置关系定理得到的,(6)是由相似三角形推得的,也就是切割线定理。
2.判定
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
圆的切线垂直于这个圆过切点的半径。
圆的切线的判定定理和性质定理
教学目标:
知识与技能目标:
(1)能判断一条直线是圆的切线。
(2)会过圆上一点画已知圆的切线。
(3)能运用圆的切线的判定定理和性质定理解决问题。
过程与方法目标:通过直线和圆位置关系,以关系中的“ d=r推出直线和圆相切” 为依据,探究切线的判定定理和性质定理。
情感、态度与价值观:经历探究圆与直线的位置关系,掌握图形的基础知识和基本技能,并解决简单的问题。
教学重点:探索圆的切线的判定定理和性质定理;并能运用它解决问题。
教学难点:探究圆的切线的判定定理。
教具准备:自制教具,课件
教学活动设计:
板书设计:
切线
切线的判定定理:
切线的性质定理:
课后反馈:
本节内容,教材作为一课时教学根本不科学,完全有点顾头不顾尾的做法。
如果安排成三节课,那么对于学生的双基训练还是数学思想和能力的培养都是很有效果的。
如果真的要一节课完成,只要是要真是的达到教学效果,还是能够完成,但是学生的活动量是根本不够的。
而且,根据多年的教学经验,我认为学生学习方法的内容在第一课时,而使用较多的是切线的性质定理。
如果一节课完成,时间安排上也应该倾斜在性质的掌握和使用上。
我希望开发教材的老师们和专家们多听听以下教师的教学感受在设计课时,像这种鸡肋般的安排尽量得到改善。
教材不仅仅是面向北京地区,不是面向城区学生,也不是仅仅面向聪明的学生,更应该面向大部分学生。
教材的开发要以多数学生的学习基础和学习能力为基础。
不然。
再怎么该只有徒劳国家的经费而已。