生存分析与Cox回归
- 格式:ppt
- 大小:1.53 MB
- 文档页数:81
Cox回归模型【⽣存分析】参考:《复杂数据统计⽅法——基于R的应⽤》吴喜之在⽣存分析中,研究的主要对象是寿命超过某⼀时间的概率。
还可以描述其他⼀些事情发⽣的概率,例如产品的失效、出狱犯⼈第⼀次犯罪、失业⼈员第⼀次找到⼯作、青少年第⼀次吸毒等等。
⽣存函数S(t):S(t)=P(T>t)=1-P(T<=t),t>0T:表⽰寿命的随机变量t:特定时间综合⽣存函数图:⽤到包survival案例:⼝腔癌数据实验分成两组:TX=1:仅放疗TX=2:放疗+化疗#读取数据u=read.csv("pharynx1.csv")#因⼦化定性变量x=1:11(x=x[-c(5,11)]) #去掉第五个和第11个(定性变量的下标)for(i in x) u[,i]=factor(u[,i]) #把定性变量从数值型转换成因⼦型#回归分析a=lm(TIME~.,data=u)summary(a)R2和调整R2不⾼,结果不理想。
同时正态性条件不满⾜,所以检验得到的p-值也没有多⼤意义。
对TIME做指数变换,Box-Cox变换是统计建模中常⽤的⼀种数据变换,⽤于连续的响应变量不满⾜正态分布的情况。
MASS包中的boxcox()函数可以寻找λ。
#BOX-COX变换library(MASS)b=boxcox(TIME~.,data=u)I=which(b$y==max(b$y)) #which⽤于找到值在数组中的位置使对数似然最⼤的λ位置b$x[I]尝试⽤TIME的0.4次⽅作为因变量来拟合数据a=lm(TIME^0.4~INST+SEX+TX+AGE+COND+T.STAGE+N.STAGE+STATYS,data=u)b=step(a)summary(b)anova(b)shapiro.test(b$res)拟合并不好。
cox回归系数-回复中括号内的主题是"cox回归系数",下面是一篇关于cox回归系数的1500-2000字的文章。
标题:Cox回归系数解析及其在生存分析中的应用导言:在医学、生物学、社会科学等领域,生存分析是一种重要的统计方法,用于研究个体在暴露于特定风险因素的情况下生存的概率。
Cox回归是生存分析中最常用的方法之一,它通过估计危险比来研究不同因素对生存时间的影响。
本文将详细介绍Cox回归系数的概念、计算方法以及在生存分析中的应用。
第一部分:Cox回归系数的概念和原理Cox回归是一种半参数模型,它基于部分概率比假设,既可以考虑危险度函数的形状又可以估计其与协变量之间的关系。
Cox回归模型中的关键参数是回归系数,它表示与协变量相关的风险因素对生存时间的影响大小。
回归系数可以理解为协变量影响生存时间变化速率的权重。
第二部分:Cox回归系数的计算方法Cox回归模型是基于最大似然估计的方法计算回归系数。
在使用Cox回归进行生存分析时,需要选择合适的协变量,并利用Cox回归模型估计回归系数。
估计过程中,通过将观察样本的生存时间和危险状态与协变量进行比较,计算每个协变量的风险比,然后利用最大似然估计法来估计回归系数。
最终,可以得到每个协变量的Cox回归系数及其对应的置信区间。
第三部分:Cox回归系数在生存分析中的应用Cox回归系数的应用十分广泛,特别是在生存分析中。
通过分析回归系数,可以确定哪些协变量对生存时间有显著影响。
例如,在医学研究中,Cox 回归系数可以用来评估不同因素对患者生存率的影响,以制定个性化的治疗方案;在社会科学研究中,可以通过回归系数分析探讨各种社会因素对个体生存时间的影响。
此外,Cox回归系数还可用于预测生存概率和制定风险评估模型。
结论:Cox回归系数是生存分析中重要的统计量,它能够量化不同协变量对生存时间的影响,为研究人员提供了深入了解个体生存概率的工具。
无论在医学、生物学还是社会科学领域,Cox回归系数的应用都非常广泛。
第十二章生存分析及COX回归在临床医学中, 对病人治疗效果的考查. 一方面可以看治疗结局的好坏,另一方面还可以通过治疗时间的长短来衡量。
例如某种疾病治愈的时间, 某癌症病人手术后的存活时间等, 把这类与时间有关的资料统称为生存资料。
生存资料一般通过随访收集,从某标准时刻(发病、手术或出院等)开始,按某种相等或不等时间间隔,对观察对象定期观察预定项目所得的资料,它的结局是死亡,治愈、复发、阳性等。
但在临床上,往往由于各种原因:(1)因迁移原因失去联系;(2)死于其他原因而造成失访;(3)预定终止结果迟迟不发生,致使在一定时期内,一部分病例得不到确切的生存期,但它们提供了其生存期长于观察期的信息,这种数据称为删失数据,也称截尾数据或终检值(censored data),包含终检值的数据即为不完全数据。
处理这类数据的统计分析方法称为生存分析。
它包括三个方面的内容1)生存过程的描述,主要是生存率的估计;2)生存过程的比较;3)影响因素的分析。
§12.1 生存率的估计生存率估计常用的有两种方法乘积极限法和寿命表法。
1乘积极限法又称Kaplan-Meier 法适用于小样本资料。
基本思想:将生存时间由小到大依次排列,在每个死亡点上,计算其期初人数、死亡人数、死亡概率、生存概率和生存率。
CHISS实现:点击重复测量→生存分析→乘积极限法应用举例:例12-1某疗法治疗白血病后的存活月数为: 2+,13,7+,11+,6,1,11,3,17,7。
试估计其生存率。
带“+”为存活终检值。
解步骤:1 进入数据模块此数据库已建立在CHISS\data文件夹中,文件名为:a9_0生存分析.DBF。
打开数据库点击数据→文件→打开数据库表找到文件名为:a9_0生存分析.DBF →确认2 进入统计模块进行统计计算点击重复测量→生存分析→乘积极限法时间变量: time 终检值指标:censor→确认3 进入结果模块查看结果点击结果乘积限估计法生存分析, 数据来自文件: C:\CHISS\Data\a9_0生存分析.DBF数据过滤条件:━━━━━━━━━━━━━━━━━━━秩观察死亡观察生存率次时间序号数生存率标准误(i) t(i) (j) n(i) S(j) Ss(j)───────────────────0 0 0 10 1.0000 ...1, 1 1 10 0.9000 0.09492, 2+ ... 9 ... ...3, 3 2 8 0.7875 0.13404, 6 3 7 0.6750 0.15515, 7 4 6 0.5625 0.16516, 7+ ... 5 ... ...7, 11 5 4 0.4219 0.17378, 11+ ... 3 ... ...9, 13 6 2 0.2109 0.172610, 17 7 1 0.0000 ...━━━━━━━━━━━━━━━━━━━注:删失数据为1。
生存分析之COX回归分析1.生存分析,是将终点事件出现与否与对应时间结合起来分析的一种统计方法;2.生存时间,是从规定的观察起点到某一特定终点事件出现的时间,如膀胱癌术后5年存活率研究,及膀胱癌手术为观测起点,死亡为事件终点,两点为生存时间;3.完全数据,观测起点到终点事件所经历的时间,上述例子即膀胱癌手术到因膀胱癌死亡的时间;4.删失数据,因失访、研究结束终点事件未发生或患者死于规定的终点事件以外的原因而终止观察,不能确定具体生存时间的一类数据;5.生存概率,表示某时段开始存活的个体到该时段结束仍存活的概率,p=活满某时段的人数/该时段期初有效人口数;6.生存率,为观察起点起到研究时间点内各个时段的生存概率的累积概率,S(tk)=p1.p2.pk=S(tk-1).pk;7.生存曲线,以生存时间为横轴,将各个时间点的生存率连在一起的曲线图;8.中位生存期,又称半数生存期,表示50%的个体存活的时间;9.PH假定(等比例风险假定),某研究因素对生存的影响不随时间的改变而改变,是COX回归模型建立的前提条件。
1.Cox回归分析及其SPSS操作方法概述前面我们已经讲过生存分析及KM法的内容,详细可以回复数字26-28查看。
但有对统计不太熟悉的“微粉”还不太明白生存分析与一般统计的区别,不知道如何区别Cox回归与Logistic回归。
在我们做研究时,有时我们不仅关心某种结局是否出现,还会关心结局出现的时间,例如肺部手术后观察五年生存率,一个有在1年之后死亡,另外一个人在在4.5后死亡,如果只看第5年时的结局,两者是一样的(均死亡),但是实际我们认为后者的治疗效果可能优于前者,即生存分析同时考虑结局和结局出现的时间,而一般分析只考虑结局。
另外在队列随访时,可能有人在没有到5年时就失访了,如迁徙或者电话更改,我们不了解其结局如何,在一般的分析中这种病例无法使用,而中间失访的病例结局可能更差,如果直接扔掉,可能会产生偏倚;而用生存分析,这种病例可以给我们提供部分资料,即我们记录最后一次随访时病例的状态,失访前的资料可以用于分析。
⽣存分析(六)如何判断你的⽣存数据能否⽤cox回归——等⽐例风险假定判断前⾯两篇⽂章分别介绍了两种参数回归,可⽤于相应分布的⽣存数据。
但实际中,据我所知,绝⼤多数⼈更喜欢⽤的是cox回归。
起码在⽂章中,⼏乎99%可能⼤家都在⽤cox回归做⽣存数据的多因素分析。
为什么⼤家这么喜欢cox回归,我个⼈感觉主要原因是:cox回归不⽤考虑⽣存数据的分布,拿起来就⽤。
其实这也是所有⾮参数⽅法的优点。
但我发现⼀个⽭盾的现象:在组间⽐较中,⼤家更喜欢⽤t检验或⽅差分析等参数检验,不喜欢⽤⾮参数的秩和检验,觉得⾮参数不靠谱;然⽽在⽣存数据分析中,⼤家却喜欢⽤⾮参数的cox回归,反⽽参数的weibull回归等⼤家不喜欢⽤。
也许,其实很多临床⼈员并不是喜欢或不喜欢参数或⾮参数本⾝,我想,⼤家选择⽅法的时候,可能就是基于⼀个原则:简单易⽤。
然⽽,尽管cox回归不⽤考虑⽣存数据分布,但有⼀点还是得明确,cox回归绝不是适⽤于所有⽣存数据的多因素分析。
⾄少有⼀个条件,cox回归必须考虑,也必须满⾜,这就是:等⽐例风险(Porportional hazards)。
所谓等⽐例风险,其实简单来说很容易理解:它表⽰,在研究期间内,某因素对⽣存的影响在任何时间都是相同的,不随时间的变化⽽变化。
如吸烟对肿瘤的影响,不管是第⼀年、第⼆年、……,对肿瘤的危险都是相同的。
其实现实中很少有因素能够完全满⾜这⼀条件,但也不⽤担⼼,统计学本⾝就没那么严格。
其实统计学中所有的各种条件,没有⼀个是⾮常严格的。
⽐如正态性,只要不是很偏态就可以了;⽅差齐性,只要两组⽅差差别不是很⼤就好了;同样这个等⽐例风险也是⼀样,只要因素的风险在不同时间差不多就⾏了。
然⽽,尽管要求相对宽松,却也必须验证之后才知道,否则怎么知道你的因素是否满⾜这⼀条件呢?或者换句话说,你的因素有没有违背这⼀条件呢?如果违背了,⽤cox回归就危险了。
任何⽅法都有前提,cox回归也不例外。