生存分析与Cox回归
- 格式:ppt
- 大小:1.53 MB
- 文档页数:81
Cox回归模型【⽣存分析】参考:《复杂数据统计⽅法——基于R的应⽤》吴喜之在⽣存分析中,研究的主要对象是寿命超过某⼀时间的概率。
还可以描述其他⼀些事情发⽣的概率,例如产品的失效、出狱犯⼈第⼀次犯罪、失业⼈员第⼀次找到⼯作、青少年第⼀次吸毒等等。
⽣存函数S(t):S(t)=P(T>t)=1-P(T<=t),t>0T:表⽰寿命的随机变量t:特定时间综合⽣存函数图:⽤到包survival案例:⼝腔癌数据实验分成两组:TX=1:仅放疗TX=2:放疗+化疗#读取数据u=read.csv("pharynx1.csv")#因⼦化定性变量x=1:11(x=x[-c(5,11)]) #去掉第五个和第11个(定性变量的下标)for(i in x) u[,i]=factor(u[,i]) #把定性变量从数值型转换成因⼦型#回归分析a=lm(TIME~.,data=u)summary(a)R2和调整R2不⾼,结果不理想。
同时正态性条件不满⾜,所以检验得到的p-值也没有多⼤意义。
对TIME做指数变换,Box-Cox变换是统计建模中常⽤的⼀种数据变换,⽤于连续的响应变量不满⾜正态分布的情况。
MASS包中的boxcox()函数可以寻找λ。
#BOX-COX变换library(MASS)b=boxcox(TIME~.,data=u)I=which(b$y==max(b$y)) #which⽤于找到值在数组中的位置使对数似然最⼤的λ位置b$x[I]尝试⽤TIME的0.4次⽅作为因变量来拟合数据a=lm(TIME^0.4~INST+SEX+TX+AGE+COND+T.STAGE+N.STAGE+STATYS,data=u)b=step(a)summary(b)anova(b)shapiro.test(b$res)拟合并不好。
cox回归系数-回复中括号内的主题是"cox回归系数",下面是一篇关于cox回归系数的1500-2000字的文章。
标题:Cox回归系数解析及其在生存分析中的应用导言:在医学、生物学、社会科学等领域,生存分析是一种重要的统计方法,用于研究个体在暴露于特定风险因素的情况下生存的概率。
Cox回归是生存分析中最常用的方法之一,它通过估计危险比来研究不同因素对生存时间的影响。
本文将详细介绍Cox回归系数的概念、计算方法以及在生存分析中的应用。
第一部分:Cox回归系数的概念和原理Cox回归是一种半参数模型,它基于部分概率比假设,既可以考虑危险度函数的形状又可以估计其与协变量之间的关系。
Cox回归模型中的关键参数是回归系数,它表示与协变量相关的风险因素对生存时间的影响大小。
回归系数可以理解为协变量影响生存时间变化速率的权重。
第二部分:Cox回归系数的计算方法Cox回归模型是基于最大似然估计的方法计算回归系数。
在使用Cox回归进行生存分析时,需要选择合适的协变量,并利用Cox回归模型估计回归系数。
估计过程中,通过将观察样本的生存时间和危险状态与协变量进行比较,计算每个协变量的风险比,然后利用最大似然估计法来估计回归系数。
最终,可以得到每个协变量的Cox回归系数及其对应的置信区间。
第三部分:Cox回归系数在生存分析中的应用Cox回归系数的应用十分广泛,特别是在生存分析中。
通过分析回归系数,可以确定哪些协变量对生存时间有显著影响。
例如,在医学研究中,Cox 回归系数可以用来评估不同因素对患者生存率的影响,以制定个性化的治疗方案;在社会科学研究中,可以通过回归系数分析探讨各种社会因素对个体生存时间的影响。
此外,Cox回归系数还可用于预测生存概率和制定风险评估模型。
结论:Cox回归系数是生存分析中重要的统计量,它能够量化不同协变量对生存时间的影响,为研究人员提供了深入了解个体生存概率的工具。
无论在医学、生物学还是社会科学领域,Cox回归系数的应用都非常广泛。
第十二章生存分析及COX回归在临床医学中, 对病人治疗效果的考查. 一方面可以看治疗结局的好坏,另一方面还可以通过治疗时间的长短来衡量。
例如某种疾病治愈的时间, 某癌症病人手术后的存活时间等, 把这类与时间有关的资料统称为生存资料。
生存资料一般通过随访收集,从某标准时刻(发病、手术或出院等)开始,按某种相等或不等时间间隔,对观察对象定期观察预定项目所得的资料,它的结局是死亡,治愈、复发、阳性等。
但在临床上,往往由于各种原因:(1)因迁移原因失去联系;(2)死于其他原因而造成失访;(3)预定终止结果迟迟不发生,致使在一定时期内,一部分病例得不到确切的生存期,但它们提供了其生存期长于观察期的信息,这种数据称为删失数据,也称截尾数据或终检值(censored data),包含终检值的数据即为不完全数据。
处理这类数据的统计分析方法称为生存分析。
它包括三个方面的内容1)生存过程的描述,主要是生存率的估计;2)生存过程的比较;3)影响因素的分析。
§12.1 生存率的估计生存率估计常用的有两种方法乘积极限法和寿命表法。
1乘积极限法又称Kaplan-Meier 法适用于小样本资料。
基本思想:将生存时间由小到大依次排列,在每个死亡点上,计算其期初人数、死亡人数、死亡概率、生存概率和生存率。
CHISS实现:点击重复测量→生存分析→乘积极限法应用举例:例12-1某疗法治疗白血病后的存活月数为: 2+,13,7+,11+,6,1,11,3,17,7。
试估计其生存率。
带“+”为存活终检值。
解步骤:1 进入数据模块此数据库已建立在CHISS\data文件夹中,文件名为:a9_0生存分析.DBF。
打开数据库点击数据→文件→打开数据库表找到文件名为:a9_0生存分析.DBF →确认2 进入统计模块进行统计计算点击重复测量→生存分析→乘积极限法时间变量: time 终检值指标:censor→确认3 进入结果模块查看结果点击结果乘积限估计法生存分析, 数据来自文件: C:\CHISS\Data\a9_0生存分析.DBF数据过滤条件:━━━━━━━━━━━━━━━━━━━秩观察死亡观察生存率次时间序号数生存率标准误(i) t(i) (j) n(i) S(j) Ss(j)───────────────────0 0 0 10 1.0000 ...1, 1 1 10 0.9000 0.09492, 2+ ... 9 ... ...3, 3 2 8 0.7875 0.13404, 6 3 7 0.6750 0.15515, 7 4 6 0.5625 0.16516, 7+ ... 5 ... ...7, 11 5 4 0.4219 0.17378, 11+ ... 3 ... ...9, 13 6 2 0.2109 0.172610, 17 7 1 0.0000 ...━━━━━━━━━━━━━━━━━━━注:删失数据为1。
生存分析之COX回归分析1.生存分析,是将终点事件出现与否与对应时间结合起来分析的一种统计方法;2.生存时间,是从规定的观察起点到某一特定终点事件出现的时间,如膀胱癌术后5年存活率研究,及膀胱癌手术为观测起点,死亡为事件终点,两点为生存时间;3.完全数据,观测起点到终点事件所经历的时间,上述例子即膀胱癌手术到因膀胱癌死亡的时间;4.删失数据,因失访、研究结束终点事件未发生或患者死于规定的终点事件以外的原因而终止观察,不能确定具体生存时间的一类数据;5.生存概率,表示某时段开始存活的个体到该时段结束仍存活的概率,p=活满某时段的人数/该时段期初有效人口数;6.生存率,为观察起点起到研究时间点内各个时段的生存概率的累积概率,S(tk)=p1.p2.pk=S(tk-1).pk;7.生存曲线,以生存时间为横轴,将各个时间点的生存率连在一起的曲线图;8.中位生存期,又称半数生存期,表示50%的个体存活的时间;9.PH假定(等比例风险假定),某研究因素对生存的影响不随时间的改变而改变,是COX回归模型建立的前提条件。
1.Cox回归分析及其SPSS操作方法概述前面我们已经讲过生存分析及KM法的内容,详细可以回复数字26-28查看。
但有对统计不太熟悉的“微粉”还不太明白生存分析与一般统计的区别,不知道如何区别Cox回归与Logistic回归。
在我们做研究时,有时我们不仅关心某种结局是否出现,还会关心结局出现的时间,例如肺部手术后观察五年生存率,一个有在1年之后死亡,另外一个人在在4.5后死亡,如果只看第5年时的结局,两者是一样的(均死亡),但是实际我们认为后者的治疗效果可能优于前者,即生存分析同时考虑结局和结局出现的时间,而一般分析只考虑结局。
另外在队列随访时,可能有人在没有到5年时就失访了,如迁徙或者电话更改,我们不了解其结局如何,在一般的分析中这种病例无法使用,而中间失访的病例结局可能更差,如果直接扔掉,可能会产生偏倚;而用生存分析,这种病例可以给我们提供部分资料,即我们记录最后一次随访时病例的状态,失访前的资料可以用于分析。
⽣存分析(六)如何判断你的⽣存数据能否⽤cox回归——等⽐例风险假定判断前⾯两篇⽂章分别介绍了两种参数回归,可⽤于相应分布的⽣存数据。
但实际中,据我所知,绝⼤多数⼈更喜欢⽤的是cox回归。
起码在⽂章中,⼏乎99%可能⼤家都在⽤cox回归做⽣存数据的多因素分析。
为什么⼤家这么喜欢cox回归,我个⼈感觉主要原因是:cox回归不⽤考虑⽣存数据的分布,拿起来就⽤。
其实这也是所有⾮参数⽅法的优点。
但我发现⼀个⽭盾的现象:在组间⽐较中,⼤家更喜欢⽤t检验或⽅差分析等参数检验,不喜欢⽤⾮参数的秩和检验,觉得⾮参数不靠谱;然⽽在⽣存数据分析中,⼤家却喜欢⽤⾮参数的cox回归,反⽽参数的weibull回归等⼤家不喜欢⽤。
也许,其实很多临床⼈员并不是喜欢或不喜欢参数或⾮参数本⾝,我想,⼤家选择⽅法的时候,可能就是基于⼀个原则:简单易⽤。
然⽽,尽管cox回归不⽤考虑⽣存数据分布,但有⼀点还是得明确,cox回归绝不是适⽤于所有⽣存数据的多因素分析。
⾄少有⼀个条件,cox回归必须考虑,也必须满⾜,这就是:等⽐例风险(Porportional hazards)。
所谓等⽐例风险,其实简单来说很容易理解:它表⽰,在研究期间内,某因素对⽣存的影响在任何时间都是相同的,不随时间的变化⽽变化。
如吸烟对肿瘤的影响,不管是第⼀年、第⼆年、……,对肿瘤的危险都是相同的。
其实现实中很少有因素能够完全满⾜这⼀条件,但也不⽤担⼼,统计学本⾝就没那么严格。
其实统计学中所有的各种条件,没有⼀个是⾮常严格的。
⽐如正态性,只要不是很偏态就可以了;⽅差齐性,只要两组⽅差差别不是很⼤就好了;同样这个等⽐例风险也是⼀样,只要因素的风险在不同时间差不多就⾏了。
然⽽,尽管要求相对宽松,却也必须验证之后才知道,否则怎么知道你的因素是否满⾜这⼀条件呢?或者换句话说,你的因素有没有违背这⼀条件呢?如果违背了,⽤cox回归就危险了。
任何⽅法都有前提,cox回归也不例外。
cox回归分析Cox回归分析是一种常用的统计学方法,用于分析生存时间数据和生存分析。
它在医学研究、生物学领域以及工程和社会科学等诸多领域得到广泛应用。
本文将介绍Cox回归分析的概念、原理、使用方法以及在实际问题中的应用。
Cox回归分析是由英国统计学家David Cox提出的一种统计方法。
它是基于风险比(Hazard Ratio)的概念,用于估计某个变量对事件发生概率的影响。
所谓“风险比”即某个因素发生后,事件发生概率相对于该因素不发生时的比值。
Cox回归分析的核心思想是通过构建一个风险函数来描述某个因素对事件发生的影响。
具体而言,风险函数是生存时间的密度函数和基准风险函数的乘积。
基准风险函数是指在没有任何因素作用时,事件发生的概率密度函数。
Cox回归分析的目标是估计出各个因素的风险函数,进而计算出它们的风险比。
在进行Cox回归分析时,首先需要收集相关的数据。
数据包括生存时间和事件发生情况,以及可能的影响因素,如年龄、性别、治疗方式等。
然后,通过Cox回归模型,可以估计出每个因素的风险比及其置信区间。
Cox回归分析可以通过不同的方法进行模型拟合和参数估计。
常用的方法包括偏似然估计、梯度下降算法和牛顿-拉夫逊算法等。
根据模型拟合的结果,可以得到每个因素的风险比及其显著性检验结果。
Cox回归分析在实际问题中有广泛的应用。
以医学研究为例,研究者常常希望了解某种治疗方式对患者生存时间的影响。
通过Cox回归分析,可以估计出不同治疗方式的风险比,并判断其是否显著。
这样就可以为临床医生提供有关治疗选择的科学依据。
另外,Cox回归分析也可以用于预测生存时间。
在预测模型中,可以考虑多个因素的影响,并计算出每个因素的权重。
通过对新样本的观测数据进行Cox回归分析,可以基于已知因素的权重预测出其生存时间。
除了医学研究外,Cox回归分析还可以应用于其他领域。
例如,在金融领域,可以使用Cox回归分析来研究某个因素对违约概率的影响;在社会科学中,可以使用Cox回归分析来分析某个因素对离婚率的影响。
生存分析和COX回归生存分析是一种统计分析方法,用于研究人们在不同时间点发生一些特定事件(如死亡、疾病复发、结婚等)的概率。
COX回归(也称为比例风险模型)是生存分析中最常用的一种方法,它允许我们在考虑其他协变量(如年龄、性别、治疗方式等)的影响下,评估不同因素对事件发生时间的影响。
生存分析主要关注两个重要的概念,一个是生存函数,另一个是危险函数。
生存函数(Survival Function)描述了在给定时间t内,一些个体没有经历特定事件(如死亡)的概率。
危险函数(Hazard Function)描述了在给定时间t内,一些个体经历特定事件的概率,它是事件发生概率与未经历事件的个体数量之比,还可以理解为在一段时间内每个时刻发生事件的速率。
COX回归是一种用于分析比例风险的方法,它使用半参数模型,不需对基础风险函数做出任何具体的假设,因此非常灵活。
COX回归的基本原理是将危险函数分解为一个基础风险函数和一个与协变量相关的相对风险函数的乘积。
这种分解形式使得我们可以在不对基础风险函数做出假设的情况下,通过估计相对风险函数来评估协变量对风险的影响。
COX回归有以下几个主要的优点:1.它可以同时考虑多个协变量对生存时间的影响,且不需要对基础风险函数做出具体的假设。
这使得COX回归适用于各种不同的生存分析场景。
2.COX回归可以通过估计相对风险函数的参数,提供有关各个协变量的相对风险比较。
这有助于研究者了解哪些因素对事件发生时间具有重要的影响。
3.COX回归可以对不完整的数据进行分析,即使在存在丢失观测值的情况下,也能给出合理的结果。
4.COX回归是一种非参数方法,不需要假设数据的分布性质,因此具有很高的灵活性。
使用COX回归进行生存分析的步骤通常包括以下几个:1.收集生存数据,包括事件发生时间(如死亡时间)和相关协变量(如年龄、性别等)。
3.进行参数估计,通常使用最大似然估计法来估计相对风险函数的参数。
通过最大似然估计,可以得到与协变量相关的风险比较。
Cox回归模型与对数线性回归模型在生存分析中应用的比较上海医科大学陈文俞顺章提要运用Cox回归模型和对数线性回归模型对1689例肝癌病人生存时间的分析,发现Cox回归模型能够提供主要的预后影响因素,其结果与特定的参数回归模型相接近,使临床上能够快速地获得预后的影响因素。
关键词Cox回归模型对数线性回归模型生存分析肝癌在临床随访研究中,我们着重收集病人出现某种结果(痊愈、复发、失败或死亡等所经历的时间,以便比较不同诊治或处理措施的远期效应的优劣。
生存分析就是研究多种影响因素与生存时间有无联系以及联系程度的大小。
Cox回归模型与对数线性回归模型是生存分析中常用的两种方法,尤其是在处理有截尾数据的生存资料时更为实用。
由于Cox回归模型与对数线性回归模型有不同的适用条件,通过比较分析,明确两者的不同使用条件与环境,能为临床预后因素的获得与确定提供更为准确的依据。
Cox回归模型比例风险模型——Cox回归分析是一种半参数回归模型,它对基准分布没有特殊要求,其不依赖于时间的“比例风险假设”,可以用下式来表达〔1〕:h(t,x1 h(t,x2=h o(t・g(x1h o(t・g(x2=g(x1g(x2即任意两个个体风险率的比与基准分布没有关系。
11Cox回归模型的基本结构为:h(t,x=h o(t・exp(b1X1+b2X2+…+ b p X p上式中X1,X2…,X p为影响预后的因素,h (t,x为危险度,即时点t的死亡率;h o(t 为当所有因素(自变量X k都取0时的危险度,是时点t的本底死亡率;exp(B k X k表示第k个因素X k所产生的作用,此项作用就是使死亡率h o (t增至h o(t・exp(b k X k,k=1,2,…,p。
21参数Β采用极大似然法进行估计,对数似然函数为:L L=L nL=∑di=1〔ΒX i-ln∑j∈Riexp(ΒX j〕31Cox模型可估计相对危险度,RR=exp (Βi。
【1032】生存分析K-M法与COX回归结论不一致怎么办?
精鼎45/46期SPSS统计软件实战训练营
如题,首先我们来看看上述上述两种方法:
1.Kaplan-Meier
一般分析单个因素不同水平间的比较,如果是计量资料,还得分类化才可以,可以采用三种算法:
1)LogRank法:各时点权重为1。
2)Breslow法:各时点权重为各时点前的尚存人数。
3)Tarone-Ware法:权重介于上面两种方法之间,为2)的平方根。
实际应用中,前2者常见。
2.cox回归
当研究因素较多时,就超出了K-M法的范围,可以同时对多个因素,包括计量和计数变量,考察多个因子对生存的影响。
但必须满足比例风险才行。
2.不一致时
真理只有一个,当不一致时,我们如何抉择,松哥谈谈自己的理解,不妥处大家讨论,可能有如下情况:
1)K-M类似t检验,而COX类似于F检验,K-M处理因素少,
COX处理因素多。
当出现不一致,我可能偏向选择COX结果,因为你采用K-M法只研究单因素,没有考虑其他因素对研究结局的影响。
2)如果你K-M法只研究一个因素,而COX也只研究同一个因素,如果出现差异,那只能是算法之间的差异了。
但也要知道,COX回归是半参数法,K-M法是非参数法。
而众所周知,在符合条件的情况下,参数检验的检验效力要高于非参数检验。
3)另应该考虑COX应该符合比例风险模型,如果不符合,应该采用竞争风险模型,同时COX回归还包括时间依存变量的COX。
4)同时,一个好的实验分析结果,是在正确的科研设计、数据采集基础之上的。
好了,松哥掰到这里,不妥处大家讨论!。