新型轻钢龙骨体系桁架梁有限元分析
- 格式:pdf
- 大小:394.33 KB
- 文档页数:6
第30卷 第7期2008年7月武 汉 理 工 大 学 学 报JOURNA L OF WUHAN UNIVERSIT Y OF TECHN OLOG Y Vol.30 No.7 J ul.2008新型轻钢房屋体系楼盖梁试验及有限元分析郭耀杰1,陈焰周1,翟 伟1,徐厚军2,沈 鑫3(1.武汉大学土木建筑工程学院,武汉430072;2.中南建筑设计院,武汉430071;3.迈特建筑科技(武汉)有限公司,武汉430056)摘 要: 对宝钢G 550MPa 高强钢材制作的新型轻钢结构房屋体系楼盖梁(桁架梁)进行试验研究及有限元分析。
结果表明,桁架梁上弦杆受力易出现局部屈曲,其特点是腹板内凹处翼缘外翘,腹板外凸处翼缘内收,不符合刚周边假定和平截面假定;整体破坏由上弦中间段局部屈曲的过度变形引起,破坏过程迅速,为脆性破坏。
分析表明ANSYS 能够比较真实地模拟桁架梁的受力过程。
关键词: 高强钢材; 楼盖梁(桁架梁); 局部屈曲; 试验研究; 有限元分析中图分类号: TU 392.1文献标识码: A 文章编号:167124431(2008)0720049204Experiment and Finite Element Analysis for Floor Beams inN e w Light w eight Steel H ousing SystemGU O Y ao 2jie 1,CH EN Y an 2z hou 1,ZHA I Wei 1,X U Hou 2j un 2,S H EN Xi n3(1.School of Civil Engineering ,Wuhan University ,Wuhan 430072,China ;2.Central 2south Architectural Design Institute ,Wuhan 430071,China ;3.Met Frame Construction Technology (Wuhan )Co ,L TD ,Wuhan 430056,China )Abstract : A research of the experiment and finite element analysis was carried out with floor beams (truss beams )made by high 2strength steel (G 550MPa )from Baosteel in the new lightweight steel housing system.Experiments showed that the mid 2dle of the top chords prone to appearance local buckling.In the same local buckling section ,when the web became concave the flange became outside warp and when the web became prominence the flange became inside shrinkage ,the section no longer meets with the assume of stiffness circum ,overall damage was caused from the excessive deformation of local buckling in the top chord and the destruction process is quickly.Analysis showed that ANSYS can accurately simulate the force process of the truss beam.K ey w ords : high 2strength steel ; roof beams (trussed beam ); local buckling ; experiment ; finite element analysis 收稿日期:2008202209.作者简介:郭耀杰(19622),男,教授,博导.E 2mail :whuguoyaojie @近年来,随着新型轻钢结构体系的迅速发展,壁厚小于1mm 、屈服强度达550MPa 的高强冷弯薄壁型钢结构在国外低层轻钢住宅和冷弯型钢门式刚架体系中开始应用。
ansys桁架和梁的有限元分析————————————————————————————————作者:————————————————————————————————日期:桁架和梁的有限元分析第一节基本知识一、桁架和粱的有限元分析概要1.桁架杆系的有限元分析概要桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。
桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。
由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。
2.梁的有限元分析概要梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。
梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
二、桁架和梁的常用单元桁架和梁常用的单元类型和用途见表7-1。
通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。
第128页第二节桁架的有限元分析实例案例1--2D桁架的有限元分析问题人字形屋架的几何尺寸如图7—1所示。
杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。
条件人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。
解题过程制定分析方案。
材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。
建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。
1.ANSYS分析开始准备工作(1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。
结合有限元分析的大跨度钢桁架整体提升过程变形与应力监测施工工法大跨度钢桁架整体提升过程是指将钢桁架整体吊装至设计位置的施工过程。
由于钢桁架的自重较大,整体提升过程中会出现变形和应力集中的问题,因此需要进行监测并采取合适的施工工法。
首先,在进行整体提升前,需要进行预应力张拉,以减小整体提升过程中的变形。
预应力张拉可以利用钢缆或钢束进行,在整体提升前将钢缆或钢束安装在钢桁架上,然后张拉预应力,以减小整体提升过程中的变形。
在整体提升过程中,需要进行变形与应力的监测。
常用的监测方法有测量位移、测量应变和测量应力。
测量位移可以采用传感器测量桁架上的一些特定点的位移情况,可以得到整体的位移变形情况。
测量应变可以采用光纤传感器或导线传感器测量桁架上的应变情况,可以得到整体的应变变形情况。
测量应力可以采用应力应变片、拉力计或压力计进行测量,可以得到整体的应力集中情况。
根据监测结果,可以根据变形和应力的情况调整整体提升的工艺。
若发现变形较大,可以减小提升速度或采取局部支撑的方式,以减小变形。
若发现应力过大,可以加强结构的支撑,或局部加固,以减小应力集中,确保结构的安全性。
在整体提升过程中,还需要注意施工工法。
可以采取采用临时支撑的方法,在整体提升过程中为钢桁架提供临时支撑,以减小整体变形。
临时支撑可以采用钢管或钢梁进行,需要根据钢桁架的结构特点和提升过程的实际情况进行合理布置。
同时,还需要控制提升速度,避免过快引起结构的变形和应力集中。
总而言之,大跨度钢桁架整体提升过程中的变形与应力监测施工工法需要结合有限元分析进行,通过预应力张拉、测量位移、测量应变和测量应力等方法进行变形与应力的监测,并根据监测结果调整提升工艺,同时采取临时支撑和控制提升速度等施工工法,以减小整体变形和应力集中,确保钢桁架整体提升的施工安全和结构稳定。
第9章桁架和梁的有限元分析第1节基本知识一、桁架和梁的有限元分析概要1.桁架杆系的有限元分析概要桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。
桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。
由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。
2.梁的有限元分析概要梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。
梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
二、桁架和梁的常用单元桁架和梁常用的单元类型和用途见表9-1。
通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。
第2节 桁架的有限元分析实例一、案例1——2D 桁架的有限元分析图9-1 人字形屋架的示意图 问题人字形屋架的几何尺寸如图9-1所示。
杆件截面尺寸为0.01m 2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。
条件人字形屋架两端固定,弹性模量为2.0×1011 N/m 2,泊松比为0.3。
解题过程制定分析方案。
材料弹性材料,结构静力分析,属2D 桁架的静力分析问题,选用Link1单元。
建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N 的力作用。
1.ANSYS 分析开始准备工作(1)清空数据库并开始一个新的分析 选取Utility>Menu>File>Clear & Start New ,弹出Clears database and Start New 对话框,单击OK 按钮,弹出Verify 对话框,单击OK 按钮完成清空数据库。
安徽建筑中图分类号:U448.21+1文献标识码:A文章编号:1007-7359(2024)3-0162-03DOI:10.16330/ki.1007-7359.2024.3.059为了使传统钢桁架桥在结构体系上更趋合理、经济性能更具竞争力,钢-混凝土组合桁梁桥应运而生。
其主要通过剪力连接件将混凝土桥面板和钢桁架上弦杆组合在一起共同受力,目前国内外普遍采用有限元分析对钢桁架-混凝土组合结构的力学性能进行研究。
在模拟方法及模型建立方面,王军文等[1]采用了空间杆系梁单元来模拟钢桁架梁,矩形板壳单元模拟公路桥面板;朱海松[2]运用有限元程序SAP-5进行分析,对主桁架分别采用空间刚接梁单元和空间铰接杆单元两种形式进行建模,对混凝土桥面板则亦采用板壳单元建立;周惟德和陈辉求[3]将组合桁架划分为四个单元,混凝土面板采用板单元,钢桁架的上下弦杆采用钢架单元,腹杆则采用杆单元。
不同学者根据所建得的不同模型得出了有关钢桁架-混凝土组合结构的各种研究成果,为后人提供了坚实的基础和有益的参考。
本文基于有限元软件ABAQUS6.10,依托天津滨海新区西外环海河特大桥主桥(95+140+95)m ,建立有限元模型,比较分析钢桁架-混凝土组合梁桥和纯钢桁架梁桥的力学性能。
1研究对象依托工程为上承式钢桁架-混凝土组合梁桥。
立面简图见图1,节点间距及腹杆高度见表1。
图1组合桁架立面简图2计算模拟方法及模型的建立为了保证模型的收敛性,将桁架杆件均划分为梁单元,将桥面板离散为板壳单元。
混凝土桥面板被看成是各向同性的均质材料,且不考虑钢筋的作用,桥面板既可承受压力亦可承受拉力,且不会开裂而导致刚度降低。
所有构件均在弹性范围内工作,其应力-应变关系符合胡可定律,所有由于加工制造和安装原因导致的缺陷、偏心和残余应力影响均不考虑。
分别计算纯钢桁架结构和钢桁架混凝土组合结构在结构自重+活载(汽车荷载)下的位移和应力。
对结构自重(包括结构附加重力),可按结构构件的设计尺寸与材料的重力密度计算确定,桥梁结构的整体计算采用车道荷载,车道荷载由均布荷载和集中荷载组成。
钢-混凝土组合桁架节点受力性能试验研究和有限元分析的开题报告一、研究背景和意义:钢-混凝土组合结构是近年来兴起的一种新型结构体系,具有承载力强、刚度大、耐久性好等优点,被广泛应用于建筑工程领域。
其中,钢-混凝土组合桁架是一种常见的组合结构体系。
它由混凝土构件(一般为混凝土支座或垫层)与钢构件(一般为钢桁架)组合而成。
其结构形式较为灵活,可以根据建筑设计的需要进行设计和加工,并且该结构可以充分利用两种材料的优势,使结构体系的承载能力得到提高。
然而,由于钢-混凝土组合结构具有结构形式复杂、连接节点受力分布不均匀、受力性能难以直接测量等特点,使其在实际工程中应用时存在一定的风险。
因此,对钢-混凝土组合桁架节点的受力性能进行深入研究,对保证钢-混凝土组合结构的安全性、可靠性和耐久性具有重要意义。
二、研究内容:本文将重点研究钢-混凝土组合桁架节点的受力性能。
具体包括以下内容:1、钢-混凝土组合桁架节点的结构形式和受力特点,包括节点的构造类型、受力模式及其特点等方面的分析;2、针对不同节点受力模式,进行试验研究,获取节点的受力性能数据,这些数据包括节点的应力-应变特性、承载能力、滞回性质等;3、采用有限元分析法对钢-混凝土组合桁架节点的受力性能进行模拟分析,验证试验结果的可靠性。
三、研究方法和步骤:1、文献查阅:从国内外期刊、会议论文和专利数据库中查阅相关的钢-混凝土组合结构的研究成果和应用案例;2、试验研究:通过设计并加工出不同类型的钢-混凝土组合桁架节点试件,进行受力试验,并对试验数据进行分析和处理;3、有限元分析:采用现有的有限元软件对钢-混凝土组合桁架节点进行数值模拟,并与试验结果进行比对和验证。
四、预期研究结果:1、深刻理解钢-混凝土组合桁架节点在不同的受力情况下的受力规律和特点;2、获得节点在承载能力、滞回性质、衔接刚度等方面的性能参数;3、对试验结果进行可靠性验证,提高钢-混凝土组合桁架结构的设计和应用水平。
钢桁架-混凝土组合梁空间有限元分析的开题报告
一、选题背景和意义
钢桁架-混凝土组合梁是由钢桁架和混凝土组成,结构具有高度的刚度和承载能力,广泛应用于大跨度建筑结构中。
通过将钢桁架和混凝土
组合起来,可以提高结构的刚度和强度,在一定程度上减少结构自重,
降低建筑物的成本,且具有较好的防震性能。
因此,对钢桁架-混凝土组
合梁的研究具有重要的理论和应用价值。
本文以空间有限元分析方法为基础,结合实际工程项目,对钢桁架-混凝土组合梁的受力情况进行模拟和分析,探究其内部受力特点和变形
规律,为钢桁架-混凝土组合梁的设计和应用提供科学依据和参考。
二、研究内容和方法
本文首先对钢桁架-混凝土组合梁的结构和材料进行介绍和分析,结合实际工程项目,确定其受外力作用下的受力状态和变形规律。
然后,
采用ANSYS有限元软件对钢桁架-混凝土组合梁进行空间有限元分析,研究其内部应力和变形分布情况,包括弯曲应力、剪切应力、轴向应力及
位移等,探究各部分之间的受力关系和相互作用。
最后,将分析结果与
实际工程状况进行比对,验证分析结果的准确性和可靠性。
三、预期成果和意义
本文的研究成果将为钢桁架-混凝土组合梁的设计和应用提供科学依据和参考。
通过对其内部受力特点和变形规律的探究,可以提高结构的
安全性和可靠性,为工程的实际施工和运用奠定基础。
在建筑结构领域,钢桁架-混凝土组合梁是一项新型结构,本文的研究成果将对其推广和应
用产生积极的影响,具有重要的理论和应用价值。
结合有限元分析的大跨度钢桁架整体提升过程变形与应力监测施工工法结合有限元分析的大跨度钢桁架整体提升过程变形与应力监测施工工法一、前言大跨度钢桁架是一种常见的工程结构,其在搭建和安装过程中往往需要进行整体提升。
在提升过程中,变形和应力会对结构产生影响,因此需要使用有限元分析来监测和控制这些影响。
本文将介绍一种工法,即结合有限元分析的大跨度钢桁架整体提升过程变形与应力监测施工工法。
二、工法特点该工法的特点是结合了有限元分析和监测技术,对大跨度钢桁架在提升过程中的变形和应力进行实时监测,以确保结构的安全稳定。
通过监测数据分析和处理,可以及时调整施工参数,控制结构的变形和应力,提高施工效率和质量。
三、适应范围该工法适用于各种大跨度钢桁架的整体提升工程,包括体育馆、展览馆、机场航站楼等建筑。
无论结构的尺寸和形状如何,都可以通过有限元分析来实时监测和控制变形和应力。
四、工艺原理该工法的工艺原理是通过有限元分析建立结构的数学模型,根据施工参数和实际施工环境,模拟结构在提升过程中的变形和应力。
通过监测仪器采集的数据,与有限元分析模型进行比对和分析,判断结构的变形和应力是否超过了设计要求。
如果超过了设计要求,可以及时调整施工参数,以减小变形和应力。
五、施工工艺该工法的施工工艺包括以下几个阶段:1. 建立有限元分析模型:根据结构的实际尺寸和材料特性,利用有限元软件建立结构的数学模型,并设置相应的边界条件和加载方式。
2. 搭建支撑系统:根据结构的特点和施工要求,搭建适当的支撑系统,以确保结构的稳定和安全。
3. 安装监测仪器:在结构的关键部位安装监测仪器,包括应变计、加速度计等,以实时监测结构的变形和应力。
4. 提升结构:根据施工计划,采用适当的起重设备和提升工具,对结构进行整体提升。
5. 监测数据采集和分析:在提升过程中,通过监测仪器采集数据,并与有限元分析模型进行比对和分析,判断结构的变形和应力是否满足设计要求。
6. 调整施工参数:如果监测数据发现结构的变形和应力超过了设计要求,可以及时调整施工参数,以减小变形和应力。
4典型结构有限元分析结构有限元分析是一种重要的工程分析方法,用于确定和评估各种结构的力学行为。
桁架和梁结构是常见的结构形式之一,下面将介绍这两种结构的有限元分析方法及其应用。
1.桁架结构有限元分析桁架结构是由桁架梁和节点组成的三维刚性体系,广泛应用于大跨度建筑和桥梁等工程中。
桁架结构的有限元分析方法有以下几个步骤:步骤一:建立有限元模型首先,需要建立桁架结构的有限元模型,可以使用各种商用有限元软件。
桁架梁可以用梁单元进行建模,节点可以用节点单元进行建模。
根据实际情况,可以选择不同的单元类型和网格划分方法。
步骤二:施加边界条件和荷载根据实际情况,需要给模型施加合适的边界条件和荷载。
边界条件包括固支、铰支和滑移支等。
荷载可以是点荷载、线荷载或面荷载。
步骤三:求解有限元方程根据桁架结构的几何和力学特性,可以得到有限元方程。
然后,利用数值计算方法求解有限元方程,确定桁架结构的位移、应力和反力等。
步骤四:分析和评估结果分析和评估有限元分析结果,可以得到桁架结构的应力分布、变形情况和稳定性等。
根据评估结果,可以进行优化设计和加强措施的制定。
2.梁结构有限元分析梁结构是由梁和支座组成的一维刚性体系,广泛应用于各种工程中,如建筑、桥梁和机械等。
梁结构的有限元分析方法有以下几个步骤:步骤一:建立有限元模型首先,需要建立梁结构的有限元模型,可以使用各种商用有限元软件。
梁可以用梁单元进行建模,支座可以用支座单元进行建模。
根据实际情况,可以选择不同的单元类型和网格划分方法。
步骤二:施加边界条件和荷载根据实际情况,需要给模型施加合适的边界条件和荷载。
边界条件包括固支、铰支和滑移支等。
荷载可以是点荷载、线荷载或面荷载。
步骤三:求解有限元方程根据梁结构的几何和力学特性,可以得到有限元方程。
然后,利用数值计算方法求解有限元方程,确定梁结构的位移、应力和反力等。
步骤四:分析和评估结果分析和评估有限元分析结果,可以得到梁结构的应力分布、变形情况和稳定性等。