夫琅禾费衍射
- 格式:ppt
- 大小:3.89 MB
- 文档页数:36
圆孔的夫朗和费衍射1、圆孔的夫朗和费衍射:根据几何光学,平行光经过球面凸透镜后将会聚于透镜焦平面上一点。
但实际上,由于光的波动性,平行光经过小圆孔后也会产生衍射现象,称为圆孔的夫朗和费衍射。
圆孔的夫朗和费衍射图样为一个圆形的亮斑(称为爱里斑),在爱里斑的周围还有一组明暗相间的同心圆环。
由于光学仪器中所用的孔径光阑、透镜的边框等都相当于一个透光的圆孔,所以圆孔的夫朗和费衍射对光学系统的成像质量有直接影响。
爱里斑光强约占总光强的84% 。
而其1级暗环的角宽度(即爱里斑半角宽度)满足D 22.1R610.0sin 1λλθ==式中R 、D 为小圆孔的半径和直径。
2、光学仪器的分辨本领:由于圆孔衍射现象的限制,光学仪器的分辨能力有一个最高的极限。
下面通过光学仪器分辨本领的讨论,说明为什么有一个分辨极限,并给出分辨极限的大小。
当两个物点S 1、S 2很靠近时(设S 1、S 2光强相等),两个爱里斑将互相重叠而无法分辨。
对一个光学仪器来说,若一个点光源产生的爱里斑的中央刚好与另一个点光源产生的爱里斑瑞的1级暗环相重合,这时两个爱里斑重合部分的光强约为单个爱里斑中央光强的80%左右,一般人眼刚好能分辨出这是两个光点的像。
因此,满足上述条件的两个点光源恰好能被该光学仪器所分辨。
这一条件称为瑞利分辨判据。
(见下图)恰能分辨时两光源发出的光线对透镜光心的夹角Δθ 称为最小分辨角,用δθ表示。
由上讨论可知,最小分辨角δθ等于爱里斑的半角宽度θ1:)D 22.1arcsin(1λθδθ==尤其当θ1 ~ 0D 22.1λδθ≈(或称分辨率),用R 表示:λδθ22.1D 1R ==讨论:⑴ 增大透镜的直径D 可提高镜头的分辨率。
光学天文望远镜的镜头孔径可达数米! ⑵ 设r 、d 为爱里斑的半径和直径,则:f 2d f r D 22.1===λδθ即:D f44.2d λ=f D称为镜头的相对孔径(越大越好)。
如照相机镜头上所标示的502:1字样,即表示镜头的焦距mm 50f =,而镜头的孔径mm 25D =。
夫琅禾费衍射公式
公式的表达式如下:
I = I_0 * ( (sin(θ/2)) / (θ/2))^2
其中,I表示衍射光的强度,I_0表示入射光的强度,θ表示入射光
线和衍射光线的夹角。
夫琅禾费衍射公式是从亚波长单缝衍射的强度分布推导出来的。
对于
亚波长的单缝衍射,入射光线经过狭缝衍射后,会在屏幕上形成一系列明
暗相间的干涉条纹。
夫琅禾费衍射公式描述了这些干涉条纹的强度分布。
公式中的θ是入射光线与衍射光线的夹角,夹角越大,光线的干涉效应
越弱,干涉条纹的强度也相应减小。
夫琅禾费衍射公式的应用十分广泛。
除了单缝衍射,该公式还可以用
来描述其他几何形状的物体或孔隙的衍射现象,如双缝衍射、光栅衍射等。
通过该公式,可以计算出衍射光在不同夹角下的强度分布,进而研究光的
传播和干涉现象。
总之,夫琅禾费衍射公式是分析和描述衍射现象的重要数学工具。
通
过该公式,可以计算和预测衍射光的强度分布,深入理解光的波动性质和
光学系统的特性,进一步推动光学领域的研究和应用。
夫琅禾费衍射原理一、引言夫琅禾费衍射原理是物理学中的一个重要概念,它是研究光波传播和衍射现象的基础。
夫琅禾费衍射原理是由法国物理学家夫琅禾费和英国物理学家衍射所提出的,它揭示了光通过小孔或障碍物时会发生衍射现象。
二、什么是夫琅禾费衍射原理夫琅禾费衍射原理指出:当一束平面波垂直入射到一个平面狭缝或圆孔上时,光线会在孔周围弯曲,并向前形成一组同心圆环,这种现象称为夫琅禾费衍射。
三、夫琅禾费衍射原理的实验1.实验装置:用激光器产生一束平行光,然后将其通过一个狭缝或圆孔,在屏幕上观察到光的分布情况。
2.实验结果:在屏幕上可以看到一组同心圆环,中心亮度最大,向外逐渐变暗。
四、夫琅禾费衍射原理的解释1. 光的波动性:夫琅禾费衍射原理的解释需要用到光的波动性。
当光通过狭缝或圆孔时,它会发生弯曲并向前形成一组同心圆环,这是因为光具有波动性。
2. 光的干涉:夫琅禾费衍射现象还可以用光的干涉来解释。
当光通过狭缝或圆孔时,它会在孔周围形成一些干涉条纹,这些条纹是由于不同波峰和波谷相遇而产生的干涉现象。
3. 衍射角度:夫琅禾费衍射现象还与衍射角度有关。
当入射光线与狭缝或圆孔的边缘成一定角度时,会出现更多的干涉条纹。
五、夫琅禾费衍射原理的应用1. 显微镜和望远镜中使用。
2. 电子显微镜中使用。
3. X射线晶体学中使用。
六、结论夫琅禾费衍射原理是物理学中一个重要概念,它揭示了光通过小孔或障碍物时会发生衍射现象。
夫琅禾费衍射原理的解释需要用到光的波动性和干涉现象,它在显微镜、望远镜、电子显微镜和X射线晶体学等领域得到广泛应用。