点集拓扑试卷2
- 格式:doc
- 大小:471.50 KB
- 文档页数:5
点集拓扑练习题及答案点集拓扑练习题及答案点集拓扑练习题一、单项选择题(每题1分) 1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T ③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:②3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T ③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T 答案:①4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T ③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:② 5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T ③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T 答案:④ 6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T ③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:③7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( ) ①φ ② X ③ {}b ④ {,,}b c d 答案:④ 8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④ 9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( ) ①φ ② X ③ {}a ④ {}b 答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b 答案:④ 11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:② 12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d 答案:④ 13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4 答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4 答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 0 ②1 ③2 ④3 答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1 ② 2 ③ 3 ④ 4 答案:④18、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②19、在实数空间中,有理数集Q 的内部Q 是( ) ① φ ② Q ③ R -Q ④ R 答案:① 20、在实数空间中,有理数集Q 的边界()Q ∂是( ) ① φ ② Q ③ R -Q ④ R 答案:④ 21、在实数空间中,整数集Z 的内部Z是( ) ① φ ② Z ③ R -Z ④ R 答案:① 22、在实数空间中,整数集Z 的边界()Z ∂是( ) ① φ ② Z ③ R -Z ④ R 答案:② 23、在实数空间中,区间[0,1)的边界是( ) ① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:③ 24、在实数空间中,区间[2,3)的边界是( ) ① φ ② [2,3] ③ {2,3} ④ (2,3) 答案:③25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④26、设X 是一个拓扑空间,A ,B 是X的子集,则下列关系中错误的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A= 答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B-=-③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④29、已知X是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是( ) ① ()d A φ= ② ()d A X A =- ③ ()d A A = ④()d A X= 答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( ) ① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =- ③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠答案:④ 31、已知X是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( ) ① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X=③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A =答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ②{X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基. ① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }答案:② 35、离散空间的任一子集为( ) ① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③ 36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④ 37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭 答案:② 38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ ② R ③ A ∪{0} ④ A 答案:③ 39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集 答案:① 40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集 ③ 无理数集 ④ 整数集Z 的补集Z ' 答案:④ 41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个 ① 3 ② 5 ③ 7 ④ 9 答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( ) ①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈ 答案:③45、在实数下限拓扑空间R 中,区间[,)a b 是( ) ① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:② 47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ= ③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③ 48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( )① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ= ③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( ) ① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( ) ① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④{,,{1}}T X φ= 答案:① 51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ= ③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ= 答案:② 52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ= ③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( ) ① {,}T Z φ= ② ()T P Z = ③ T Z = ④ {}T Z = 答案:② 54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ①A B A B ⨯≠⨯ ②A B A B ⨯=⨯ ③()A B A B ⨯≠⨯ ④()()()A B A B ∂⨯=∂⨯∂ 答案:② 61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:① 63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( ) ①不连通子集 ② 连通子集 ③ 闭集 ④ 开集 答案:② 65、设12,X X 是平庸空间,则积空间12X X ⨯是( ) ① 离散空间 ② 不一定是平庸空间 ③ 平庸空间 ④ 不连通空间 答案:③ 66、设12,X X 是离散空间,则积空间12X X ⨯是( ) ① 离散空间 ② 不一定是离散空间 ③ 平庸空间 ④ 连通空间 答案:① 67、设12,X X 是连通空间,则积空间12X X ⨯是( ) ① 离散空间 ② 不一定是连通空间 ③ 平庸空间 ④ 连通空间 答案:④ 68、实数空间R 中的连通子集E 为( ) ① 开区间 ② 闭区间 ③区间 ④ 以上都不对 答案:④69、实数空间R 中的不少于两点的连通子集E 为( )①开区间②闭区间③区间④以上都不对答案:③70、实数空间R中的连通子集E为( )①开区间②闭区间③区间④区间或一点答案:④71、下列叙述中正确的个数为()(Ⅰ)单位圆周1S是连通的;(Ⅱ){0}R-是连通的(Ⅲ)2{(0,0)}R-是连通的(Ⅳ)2R和R同胚① 1 ② 2 ③ 3 ④ 4 答案:②72、实数空间R( )①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③73、整数集Z作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③74、有理数集Q作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③75、无理数集作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③76、正整数集Z+作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理 ③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③78、2维欧氏间空间2R ( ) ① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③79、3维欧氏间空间3R ( ) ① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③ 80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 连通性 ③ 离散性 ④ 第一可数性公理 答案:②81、下列拓扑学的性质中,不具有可遗传性的是( ) ① 第一可数性公理 ② 连通性 ③ 第二可数性公理 ④ 平庸性 答案:② 82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公 ② 可分性 ③ 第二可数性公理 ④ 离散性 答案:② 83、下列拓扑学的性质中,不具有可遗传性的是( ) ① 平庸性 ② 可分性 ③ 离散性 ④ 第二可数性公理 答案:②84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:①85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:①86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 道路连通空间 答案:①87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:① 92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集, 则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:③ 93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集, 则X 是( ) ①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:③ 94、设X 是一个拓扑空间,若对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( ) ①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:① 95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:②96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间 答案:④97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间 答案:④98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正则空间 答案:④99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( ) ①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( ) ①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( ) ①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④ 102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个( )① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间 答案:③ 103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对 答案:③ 104、Hausdorff 空间中的每一个紧致子集都是( ) ① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对 答案:③ 105、紧致的Hausdorff 空间中的紧致子集是( ) ① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对 答案:③ 106、拓扑空间X 的任何一个有限子集都是( ) ① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集 答案:②107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集 答案:② 108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集 答案:② 109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )① 1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间 答案:①二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ= 3同胚的拓扑空间所共有的性质叫 ;答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________.答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X 10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{1} 12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ= 15、设{,,}X a b c =,则X 的离散拓扑为 ;答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ= 16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A =的内部为 ;答案:{1} 18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入 19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射 20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 ;答案:开映射 21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 ;答案:闭映射 22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间 23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间 24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;答案:不连通空间 25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ; 答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;答案:可商性质 28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ; 答案:有限可积性质 29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间. 30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;答案:第一可数性公理31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;答案:第二可数性公理32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;答案:可遗传性质 33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;答案:稠密子集 34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;答案:可分空间 35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;答案:Lindel Öff 空间 36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;答案:对于开子空间可遗传性质 37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;答案:对于闭子空间可遗传性质38、设X 是一个拓扑空间,如果 则称X 是一个0T 空间; 答案:X 中任意两个不相同的点中必有一个点有一个开邻域不包含另一点39、设X 是一个拓扑空间,如果则称X 是一个1T 空间; 答案:X 中任意两个不相同的点中每一点都有一个开邻域不包含另一点 40、设X 是一个拓扑空间,如果 则称X 是一个2T 空间; 答案:X 中任意两个不相同的点各自有一个开邻域使得这两个开邻域互不相交41、正则的1T 空间称为 ;答案:3T 空间 42、正规的1T 空间称为 ;答案:4T 空间43、完全正则的1T 空间称为 ;答案: 3.5T 空间或Tychonoff 空间44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 . 答案:紧致空间 45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .答案:紧致子集46、设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .答案:可数紧致空间47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .答案:列紧空间48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .答案:序列紧致空间三.判断(每题4分,判断1分,理由3分) 1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12T T ⋂不一定是集合X 的拓扑( )答案:×理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂; (2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2; (3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑. 3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√ 理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集, 所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:×理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠. 6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√ 理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂= 从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=. 8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )案:√ 理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )答案:√理由:设拓扑空间X 满足第二可数性公理,B 是它的一个可数基,对于每一个x X ∈,易知{} B B|x B x B =∈∈是点x 处的一个邻域基,它是B 的一个子族所以是可数族,从而X 在点x 处有可数邻域基,故X 满 足第一可数性公理. 10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )答案:√理由:由于X 满足第二可数性公理,所以它有一个可数基B ,因为Y 是X 的子空间,则{|}B| B Y B Y B =⋂∈是Y 的一个可数基,从而X 的 子空间Y 也满足第二可数性公理. 11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )答案:√理由:由于X 满足第一可数性公理,所以对x Y ∀∈,X 在点x 处有一个可数邻域基V x ,因为Y 是X 的子空间,则{|}V | V x Y x V Y V =⋂∈是Y 在点x 的一个可数邻域基,从而X 的子空间Y 也满足第一可数性公理. 12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )答案:×理由:因为{1,3}是X 的一个闭集,对于点2和{1,3}没有各自的开邻域互不相交,所以X 不是正则空间,从而不是3T 空间. 注:也可以说明X 不是1T 空间. 13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )答案:× 理由:因为{2,3}是X 的一个闭集,对于点1和{2,3}没有各自的开邻域互不相交,所以X 不是正则空间,从而不是3T 空间.注:也可以说明X 不是1T 空间.14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )答案:×理由:因为对于点1和点2,2没有开邻域不包含1,从而X 不是1T 空间. 注:也可以考虑点2和点3.15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )答案:×理由:因为对于点1和点2,2没有开邻域不包含1,从而X 不是1T 空间.故(,)X T 是4T 空间. 注:也可以考虑点2和点3.16、3T 空间一定是2T 空间.( )答案:√ 理由:因为3T 空间是正则的1T 空间,所以对于3T 空间X 中的任意不同的两点,x y X ∈,{}y 是X 中的闭集,由于X 是正则空间,从而对于,{}x y 它们有各自的开邻域,U V 使得U V φ⋂=,所以X 是2T 空间. 17、4T 空间一定是3T 空间.( )答案:√ 理由:因为4T 空间是正规的1T 空间,所以对于4T 空间X 中的任意点x 和不包含x 的闭集A ,由于{}x 也是一个闭集及X 是正规空间,故存在{},x A 的开邻域,U V 使得U V φ⋂=,这说明X 是正则空间,因此X 是3T 空间. 18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )答案:√理由:设A 是一个由X 中的开集构成的A B ⋃的覆盖,由于A 和B 都是X 的紧致子集,从而存在A 的有限子族 A 1 A 2 分别是A 和B 的覆盖,故12⋃A A 是A 的有限子族且覆盖A B ⋃,所以A B ⋃是紧致子集. 19、Hausdorff 空间中的每一个紧致子集都是闭集.( )答案:√理由:设A 是Hausdorff 空间X 的一个紧致子集,则对于任何x X ∈,若x A ∉,则易知x 不是A 的凝聚点,因此A A =,从而A 是一个闭集. 四.名词解释(每题2分) 1.同胚映射 答案:设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,则称f 是一个同胚映射或同胚. 2、集合A 的内点 答案:设X 是一个拓扑空间,A X ⊂.如果A 是点x X ∈的一个邻域,则称点x 是集合A 的一个内点.3、集合A 的内部 答案:设X 是一个拓扑空间,A X ⊂.则集合A 的所有内点构成的集合称为集合A 的内部.4.拓扑空间(,)T X 的基 答案:设(,)T X 是一个拓扑空间,B 是T 的一个子族.如果T 中的每一个元素是B 中的某些元素的并,则称B 是拓扑T 的一个基.5.闭包 答案:设X 是一个拓扑空间,A X ⊂.集合A 与集合A 的导集()d A 的并()A d A ⋃称为集合A 的闭包. 6、序列 答案:设X 是一个拓扑空间,每一个映射:S Z X +→叫做X 中的一个序列. 7、导集 答案:设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.8、不连通空间 答案:设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间. 9、连通子集 答案:设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个连通空间,则称Y 是X 的一个连通子集.10、不连通子集 答案:设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个不连通空间,则称Y 是X 的一个不连通子集.11、1 A 空间 答案:一个拓扑空间如果在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个满足第一可数性公理的空间,简称为1 A 空间.12、2 A 空间 答案:一个拓扑空间如果有一个可数基,则称这个拓扑空间是一个满足第二可数性公理的空间,简称为2 A 空间. 13、可分空间 答案:如果拓扑空间X 有一个可数稠密子集,则称X 是一个可分空间. 14、0T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点中必有一个点有一个开邻域不包含另一点,则称拓扑空间X 是0T 空间. 15、1T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点中每一个点都有一个开邻域不包含另一点,则称拓扑空间X 是1T 空间.16、2T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点各自有一个开邻域使得这两个开邻域互不相交,则称拓扑空间X 是2T 空间. 17、正则空间: 答案:设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各自有一个开邻域,它们互不相交,则称X 是正则空间. 18、正规空间: 答案:设X 是一个拓扑空间,如果X 中的任何两个无交的闭集都各自有一个开邻域,它们互不相交,则称X 是正规空间. 19、完全正则空间: 答案:设X 是一个拓扑空间,如果对于x X ∀∈和X 中任何一个不包含点x 的闭集B 存在一个连续映射:[0,1]f X →使得()0f x =以及对于任何y B ∈有()1f y =,则称拓扑空间X 是一个完全正则空间.20、紧致空间 答案:设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个紧致空间. 21、紧致子集 答案:设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个紧致子集.22、可数紧致空间 答案:设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个可数紧致空间.23、列紧空间 答案:设X 是一个拓扑空间. 如果X的每一个无限子集都有凝聚点,则称拓扑空间X 是一个列紧空间.24、序列紧致空间 答案:设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个序列紧致空间.五.简答题(每题4分) 1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂. 答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂. 2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---=是X 的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集. 答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集. 5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x 设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T. 答案:]}}1[],0{[]},0{[,,{Y φ= T 6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x 设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x 设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T. 答案:{,,{[1]},{[1],[1]}}T Y φ=-- 8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x 设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T. 答案:{,,{[2]},{[2],[1]}}T Y φ=--9、在实数空间R 中给定如下等价关系:。
点集拓扑试题及答案1. 定义并解释什么是拓扑空间。
拓扑空间是一个有序对(X, T),其中X是一个非空集合,T是X的子集的集合,满足以下三个条件:(1) 空集和X本身都属于T;(2) T中的任意有限个集合的并集仍然属于T;(3) T中的任意个集合的交集仍然属于T。
2. 简述连续映射的定义。
设f: X → Y是一个映射,其中X和Y是拓扑空间。
如果对于Y中的任意开集V,其原像f^(-1)(V)是X中的开集,则称f是连续的。
3. 证明如果f: X → Y和g: Y → Z是连续映射,则它们的复合映射g ∘ f: X → Z也是连续的。
证明:设W是Z中的一个开集,我们需要证明(g ∘ f)^(-1)(W)是X中的开集。
由于g是连续的,g^(-1)(W)是Y中的开集。
又因为f是连续的,f^(-1)(g^(-1)(W))是X中的开集。
因此,(g ∘ f)^(-1)(W) = f^(-1)(g^(-1)(W))是X中的开集,所以g ∘ f是连续的。
4. 什么是紧致性?请给出紧致空间的一个例子。
紧致性是指拓扑空间中的每一个开覆盖都存在有限子覆盖的性质。
一个例子是实数线R上的闭区间[0, 1],它在标准拓扑下是紧致的。
5. 描述什么是连通空间。
连通空间是指不能被分解为两个非空不相交开集的拓扑空间。
6. 证明如果X是连通空间,并且f: X → R是连续映射,那么f(X)是区间。
证明:设a = inf f(X),b = sup f(X)。
对于任意的x ∈ X,由于f是连续的,存在一个开邻域U_x ⊆ X使得f(U_x) ⊆ (a, b)。
因为X是连通的,所以X = ⋃x∈X U_x,这意味着f(X) = ⋃x∈Xf(U_x) ⊆ (a, b)。
由于f(X)是闭的,所以f(X) = [a, b]。
7. 什么是分离公理?请举例说明。
分离公理是指对于拓扑空间中的任意两个不同的点,都存在两个不相交的开集分别包含这两个点。
例如,在实数线R的拓扑中,对于任意两个不同的点x和y,可以取开区间(x - 1, x + 1)和(y - 1, y + 1)分别包含x和y,且这两个开区间不相交。
1.集合X 的一个拓扑不只一个基,一个基也可以生成若干个拓扑。
( )2.每一个度量空间都满足第一可数性公理。
( )3.拓扑空间中的连通分支是既开又闭的子集。
( )4.从拓扑空间()1,X T 到()2,X T 的恒同映射必是连续映射。
( )5.设i T 是拓扑空间i X 的拓扑()1,2i =,则12⨯T T 是积空间12X X ⨯的拓扑。
( )二、填空题(30分)1.设A 为是离散空间X 的子集,则A = 。
2.对于拓扑空间(),X T 一个子空间()1,Y T ,T 与1T 满足 。
3.设A 为是拓扑空间X 的子集,则()x d A ∈⇔ 。
4.任何一族连通空间的积空间是 空间。
5.称拓扑空间X 是可分空间,若 。
6.设12n X X X X =⨯⨯⨯是1n ≥个拓扑空间12,,,n X X X 的积空间,T 是X 的积拓扑,i T 是空间i X 的拓扑()1,2,,n i =,则积拓扑的一个子基=S 。
7.称拓扑空间X 是Lindel öff 空间,若 。
8.设R 是实数空间,Q 是有理数集,则()d =Q ,=Q 。
三、设集合X 有拓扑12,,,n T T T ,则1ni i =T 是X 的一个拓扑。
(10分) 四、设,X Y 为拓扑空间,映射:f X Y →在X 上连续的充要条件是Y 有一个基B 满足()1,B f B -∀∈B 是X 中开集。
(10 分) 五、证明:离散度量空间的每个子集是开集。
(10分)六、证明:每一个满足第二可数性公理的空间都满足第一可数性公理。
(10分)七、证明:若Y 是拓扑空间X 的连通子集,则Y 也是X 的连通子集。
(10 分)八、证明:满足第二可数公理的空间必定为可分空间。
(10分)1.离散度量空间的每个子集是开集.( )2.正规空间是正则的,但正规空间可以不是0T 的.( )3.第一可数性和第二可数性都是拓扑不变性.( )4.从紧致空间到2T 空间的任何连续映射是同胚映射.( )5.设i T 是拓扑空间i X 的拓扑()1,2i =,则12⨯T T 是积空间12X X ⨯的拓扑。
练习(第二章)参考答案:一、判断题(每小题2分)1、集合X 的一个拓扑有不只一个基,一个基也可以生成若干个拓扑( × )2、拓扑空间中任两点的距离就是无意义的、( √ )3、实数集合中的开集,只能就是开区间,或若干个开区间的并、( × )4、T 1、T 2就是X 的两个拓扑,则T 1UT 2就是一个拓扑、( × )5、平庸空间中任一个序列均收敛,且收敛于任一个点。
( √ )6、从(X,T 1)到(X,T 2)的恒同映射必就是连续的。
( × )7.从离散空间到拓扑空间的任何映射都就是连续映射( √ )8.设12, T T 就是集合X 的两个拓扑,则12 T T ⋂不一定就是集合X 的拓扑( × )9、从拓扑空间X 到平庸空间Y 的任何映射都就是连续映射( √ )10、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( √ )11、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( × )12、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( √ )二.填空题:(每空格3分)1、X=Z +,T={Z 1,Z 2,…Z n …},其中Z n ={n,n+1,n+2,…},则包含3的所有开集为321,,Z Z Z包含3的所有闭集为,...,,,/6/5/41Z Z Z Z包含3的所有邻域为3321}1{,,,Z Z Z Z ⋃设A={1,2,3,4,5}则A 的导集为{1,2,3,4}A 的闭包为{1,2,3,4,5}2、设X 为度量空间,x ∈X,则d({x})=∅3、在实数空间R 中,有理数集Q 的导集就是____ R ____、4、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;答案: ({})U A x φ⋂-≠5、设A 就是有限补空间X 中的一个无限子集,则()d A = ; A = ;答案:X ;X6、设A 就是可数补空间X 中的一个不可数子集,则()d A = ; A = ;答案:X ;X7、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}三、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )就是X 上的拓扑、① {,,{},{,},{,,}}X a a b a c e φ=T② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T④ {,,{},{},{},{},{}}X a b c d e φ=T答案:③2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d答案:④3、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d答案:②4、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4答案:②5、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3答案:③6、在实数空间中,有理数集Q 的内部Q o 就是( )① φ ② Q ③ R -Q ④ R答案:①7、在实数空间中,有理数集Q 的边界()Q ∂就是( )① φ ② Q ③ R -Q ④ R答案:④8、在实数空间中,整数集Z 的内部Z o 就是( )① φ ② Z ③ R -Z ④ R答案:①9、在实数空间中,整数集Z 的边界()Z ∂就是( )① φ ② Z ③ R -Z ④ R答案:②10、在实数空间中,区间[0,1)的边界就是( )① φ ② [0,1] ③ {0,1} ④ (0,1)答案:③11、设X 就是一个拓扑空间,A ,B 就是X 的子集,则下列关系中错误的就是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A =答案: ③12、已知X 就是一个离散拓扑空间,A 就是X 的子集,则下列结论中正确的就是( )① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X =答案:①13、已知X 就是一个平庸拓扑空间,A 就是X 的子集,则下列结论中不正确的就是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠答案:④14、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑就是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}答案:①15、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭答案:③16、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭答案:④17、实数空间R 中的任一单点集就是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭答案:②18、实数空间R 的子集A ={1,21,31 ,41,……},则A =( )①φ ② R ③ A ∪{0} ④ A答案:③19、在实数空间R 中,下列集合就是闭集的就是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集答案:①20、在实数空间R 中,下列集合就是开集的就是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '答案:④21、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数就是() ① 1 ② 2 ③ 3 ④ 4答案:④22、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个答案:④23、在实数下限拓扑空间R 中,区间[,)a b 就是( )① 开集 ② 闭集 ③ 既就是开集又就是闭集 ④ 非开非闭答案:③24、设X 就是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 就是( )① 开集 ② 闭集 ③ 既就是开集又就是闭集 ④ 非开非闭答案:②四、证明题(52分):1. 设X 有拓扑i ni n T T T T 121,,...,=⋂⇒也就是拓扑、证:in i T A i T A i i n i i n i i i i n i in i i T A n i T A n i T T T T T B A n i T B A n i T B A T B A T X n i T X 1~~1111,...1,,...1,~,~)3(,...1,....1,,,,)2(,,,...2,1,,)1(=∈∈====⋂∈⋃⇒=∈⋃⇒=⊂⇒⋂⊂∀⋂∈⋂⇒=∈⋂⇒=∈∴⋂∈∀⋂∈∅∴=∈∅Θ 所以i n i T 1=⋂也就是拓扑、2、度量空间中收敛序列的极限就是唯一的、证:设+∈Z i i x }{→x , +∈Z i i x }{→y,则B(x,ρ(x,y)/3)∩B(y,ρ(x,y)/3)=∅、对于B(x,ρ(x,y)/3),存在1N >0,当i>1N 时有∈i x B(x,ρ(x,y)/3)对于B(y,ρ(x,y)/3),存在2N >0,当i>2N 时有∈i x B(y,ρ(x,y)/3)取N=max{1N ,2N },则当i>N 时有∈i x B(x,ρ(x,y)/3)∩B(y,ρ(x,y)/3)与B(x,ρ(x,y)/3)∩B(y,ρ(x,y)/3)=∅、矛盾3、设X 就是一个拓扑空间,B 就是一个基,x ∈X,则B x ={B ∈B|x ∈B}就是点x 处的一个邻域基、见P 、82 定理2、6、74、在欧氏平面R 2中令Y={(0,y)|y ∈R}∪{(x,0)|x ∈R},证明:Y 与实数空间R 不同胚、(提示:用反证法)证:设Y 与实数空间R 同胚、则仍有Y-{0,0}与R-{0}同胚、但Y-{0,0}有四个连通分支,而R-{0}却只有两个连通分支、而连通性就是拓扑不变的,得到矛盾、所以Y 与实数空间R 不同胚、。
点集拓扑练习题一、单项选择题(每题1分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:②3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T 答案:①4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:②5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T 答案:④6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:③7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b 答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b 答案:④11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:②12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d 答案:④13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为() ① 1 ② 2 ③ 3 ④ 4 答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4 答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1 ② 2 ③ 3 ④ 4 答案:④18、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②19、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R 答案:①20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R 答案:①22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R 答案:②23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:③24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3) 答案:③25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是( )① ()d A φ= ② ()d A X A =- ③ ()d A A = ④ ()d A X = 答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ } 答案:②35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭 答案:②38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ ② R ③ A ∪{0} ④ A 答案:③39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集 答案:①40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集 ③ 无理数集 ④ 整数集Z 的补集Z '答案:④41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4 答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9 答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈ 答案:③45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:②47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( )① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:①51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ= ③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ= 答案:②52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z = ③ T Z = ④ {}T Z = 答案:②54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ①A B A B ⨯≠⨯ ②A B A B ⨯=⨯ ③()A B A B ⨯≠⨯ ④()()()A B A B ∂⨯=∂⨯∂ 答案:②61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:①63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集 答案:②65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间 ③ 平庸空间 ④ 不连通空间 答案:③66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间 ③ 平庸空间 ④ 连通空间 答案:①67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间 ③ 平庸空间 ④ 连通空间 答案:④68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对 答案:④69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对 答案:③70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点 答案:④71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 4 答案:②72、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 连通性 ③ 离散性 ④ 第一可数性公理 答案:②81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 连通性 ③ 第二可数性公理 ④ 平庸性 答案:②82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公 ② 可分性 ③ 第二可数性公理 ④ 离散性 答案:②83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 可分性 ③ 离散性 ④ 第二可数性公理 答案:②84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:①85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:①86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 道路连通空间 答案:①87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:①92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:③93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:③94、设X 是一个拓扑空间,若对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:①95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:②96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间 答案:④97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间 答案:④98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正则空间 答案:④99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( ) ①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( ) ①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个( )① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间 答案:③103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对 答案:③104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对 答案:③105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对 答案:③106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集 答案:②107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集 答案:②108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集 答案:②109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )① 1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间 答案:①二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ=3同胚的拓扑空间所共有的性质叫 ;答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________.答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{1}12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=15、设{,,}X a b c =,则X 的离散拓扑为 ;答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 ;答案:开映射21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 ;答案:闭映射22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;答案:不连通空间25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;答案:可商性质28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ; 答案:有限可积性质29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;答案:第一可数性公理31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;答案:第二可数性公理32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;答案:可遗传性质33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;答案:稠密子集34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;答案:可分空间35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;答案:Lindel Öff 空间36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P为 ;答案:对于开子空间可遗传性质37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P为 ;答案:对于闭子空间可遗传性质38、设X 是一个拓扑空间,如果 则称X 是一个0T 空间;答案:X 中任意两个不相同的点中必有一个点有一个开邻域不包含另一点39、设X 是一个拓扑空间,如果 则称X 是一个1T 空间;答案:X 中任意两个不相同的点中每一点都有一个开邻域不包含另一点40、设X 是一个拓扑空间,如果 则称X 是一个2T 空间;答案:X 中任意两个不相同的点各自有一个开邻域使得这两个开邻域互不相交41、正则的1T 空间称为 ;答案:3T 空间42、正规的1T 空间称为 ;答案:4T 空间43、完全正则的1T 空间称为 ;答案: 3.5T 空间或Tychonoff 空间44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 . 答案:紧致空间45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .答案:紧致子集46、设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .答案:可数紧致空间47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .答案:列紧空间48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .答案:序列紧致空间三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:×理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂;(2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集,所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:×理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√ 理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂= 从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )案:√理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )答案:√理由:设拓扑空间X 满足第二可数性公理,B 是它的一个可数基,对于每一个x X ∈,易知{} B B|x B x B =∈∈是点x 处的一个邻域基,它是B 的一个子族所以是可数族,从而X 在点x 处有可数邻域基,故X 满 足第一可数性公理.10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )答案:√理由:由于X 满足第二可数性公理,所以它有一个可数基B ,因为Y 是X 的子空间,则{|}B| B Y B Y B =⋂∈是Y 的一个可数基,从而X 的 子空间Y 也满足第二可数性公理.11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )答案:√理由:由于X 满足第一可数性公理,所以对x Y ∀∈,X 在点x 处有一个可数邻域基V x ,因为Y 是X 的子空间,则{|}V | V x Y x V Y V =⋂∈是Y 在点x 的一个可数邻域基,从而X 的子空间Y 也满足第一可数性公理.12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )答案:×理由:因为{1,3}是X 的一个闭集,对于点2和{1,3}没有各自的开邻域互不相交,所以X 不是正则空间,从而不是3T 空间. 注:也可以说明X 不是1T 空间.13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )答案:×理由:因为{2,3}是X 的一个闭集,对于点1和{2,3}没有各自的开邻域互不相交,所以X 不是正则空间,从而不是3T 空间.注:也可以说明X 不是1T 空间.14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )答案:×理由:因为对于点1和点2,2没有开邻域不包含1,从而X 不是1T 空间.注:也可以考虑点2和点3.15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )答案:× 理由:因为对于点1和点2,2没有开邻域不包含1,从而X 不是1T 空间.故(,)X T 是4T 空间. 注:也可以考虑点2和点3.16、3T 空间一定是2T 空间.( )答案:√理由:因为3T 空间是正则的1T 空间,所以对于3T 空间X 中的任意不同的两点,x y X ∈,{}y 是X 中的闭集,由于X 是正则空间,从而对于,{}x y 它们有各自的开邻域,U V 使得U V φ⋂=,所以X 是2T 空间.17、4T 空间一定是3T 空间.( )答案:√理由:因为4T 空间是正规的1T 空间,所以对于4T 空间X 中的任意点x 和不包含x 的闭集A ,由于{}x 也是一个闭集及X 是正规空间,故存在{},x A 的开邻域,U V 使得U V φ⋂=,这说明X 是正则空间,因此X 是3T 空间.18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )答案:√理由:设A 是一个由X 中的开集构成的A B ⋃的覆盖,由于A 和B 都是X 的紧致子集,从而存在A的有限子族 A 1 A 2 分别是A 和B 的覆盖,故12⋃A A 是A 的有限子族且覆盖A B ⋃,所以A B ⋃是紧致子集.19、Hausdorff 空间中的每一个紧致子集都是闭集.( )答案:√理由:设A 是Hausdorff 空间X 的一个紧致子集,则对于任何x X ∈,若x A ∉,则易知x 不是A 的凝聚点,因此A A =,从而A 是一个闭集.四.名词解释(每题2分)1.同胚映射 答案:设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,则称f 是一个同胚映射或同胚.2、集合A 的内点 答案:设X 是一个拓扑空间,A X ⊂.如果A 是点x X ∈的一个邻域,则称点x 是集合A 的一个内点.3、集合A 的内部 答案:设X 是一个拓扑空间,A X ⊂.则集合A 的所有内点构成的集合称为集合A 的内部.4.拓扑空间(,)T X 的基 答案:设(,)T X 是一个拓扑空间,B 是T 的一个子族.如果T 中的每一个元素是B 中的某些元素的并,则称B 是拓扑T 的一个基.5.闭包 答案:设X 是一个拓扑空间,A X ⊂.集合A 与集合A 的导集()d A 的并()A d A ⋃称为集合A 的闭包.6、序列 答案:设X 是一个拓扑空间,每一个映射:S Z X +→叫做X 中的一个序列.7、导集 答案:设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.8、不连通空间 答案:设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间.9、连通子集 答案:设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个连通空间,则称Y 是X 的一个连通子集.10、不连通子集 答案:设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个不连通空间,则称Y 是X 的一个不连通子集.11、1 A 空间 答案:一个拓扑空间如果在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个满足第一可数性公理的空间,简称为1 A 空间.12、2 A 空间 答案:一个拓扑空间如果有一个可数基,则称这个拓扑空间是一个满足第二可数性公理的空间,简称为2 A 空间.13、可分空间 答案:如果拓扑空间X 有一个可数稠密子集,则称X 是一个可分空间.14、0T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点中必有一个点有一个开邻域不包含另一点,则称拓扑空间X 是0T 空间.15、1T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点中每一个点都有一个开邻域不包含另一点,则称拓扑空间X 是1T 空间.16、2T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点各自有一个开邻域使得这两个开邻域互不相交,则称拓扑空间X 是2T 空间.17、正则空间: 答案:设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各自有一个开邻域,它们互不相交,则称X 是正则空间.18、正规空间: 答案:设X 是一个拓扑空间,如果X 中的任何两个无交的闭集都各自有一个开邻域,它们互不相交,则称X 是正规空间.19、完全正则空间: 答案:设X 是一个拓扑空间,如果对于x X ∀∈和X 中任何一个不包含点x 的闭集B 存在一个连续映射:[0,1]f X →使得()0f x =以及对于任何y B ∈有()1f y =,则称拓扑空间X 是一个完全正则空间.20、紧致空间 答案:设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个紧致空间.21、紧致子集 答案:设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个紧致子集.22、可数紧致空间 答案:设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个可数紧致空间.23、列紧空间 答案:设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个列紧空间.24、序列紧致空间 答案:设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个序列紧致空间.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:gf X Z →也是连续映射. 答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---=是X的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T.答案:]}}1[],0{[]},0{[,,{Y φ= T6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .答案:{,,{[3]},{[2],[3]}}T Y φ=7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T.答案:{,,{[1]},{[1],[1]}}T Y φ=--8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T.答案:{,,{[2]},{[2],[1]}}T Y φ=--9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .答案:{,,{[3]},{[2],[3]}}T Y φ=10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .答案:{,,{[4]},{[2],[4]}}T Y φ=11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .答案:{,,{[4]},{[2],[4]}}T Y φ=12、离散空间是否为2A 空间?说出你的理由.答案:因为离散空间的每一个基必定包含着单点集,所以包含着不可数多个点的离散空间不是2A 空间.至多含有可数多个点的离散空间是2A 空间.13、试说明实数空间R 是可分空间.答案: 因为Q 是可数集,且R 的任何一个非空的开集至少包含一个球形邻域,从而与Q 都有非空的交,因此R Q =,故实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.答案: 设X 是一个度量空间, 对X x ∈∀,则所有的以x 为中心,以正有理数为半径的球形邻域构成x。
点集拓扑复习题一、名词解释1、同胚映射:设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,则称f 是一个同胚映射或同胚.2、不连通空间:设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间.3、拓扑:设X 是一个非空集合。
X 的一个子集族τ称为X 的一个拓扑,如果它满足:1.X 和空集∅都属于τ2.τ中任意多个成员的并集仍在τ中3.τ中有限多个成员的交集仍在τ中。
4、导集:设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.5、度量:设集合X 的一个映射:d X X R ⨯→.若对于任何,,x y z X ∈,有 (I )(正定性)d (x,y )≥0,且d (x,y)=0当且仅当 x = y ;(Ⅱ)(对称性)d (x,y)= d (y,x );(Ⅲ)(三角不等式)d (x,z )≤d (x,y)+ d (y,z )则称d 为集合X 的一个度量(或距离)。
二、证明题(4选3)1、证明:度量空间X 中的开集且有以下性质:(1)集合X 本身和空集∅都是开集;(2)任意两个开集的交是一个开集;(3)任意一个开集族的并是一个开集。
证明:(1)根据定理2.1.1(1)X 中的每一个元素x 都有一个球形邻域,这个球形邻域当然包含在X 中,所以X 满足开集的条件;空集∅中不包含任何点,也自然地可以认为它满足开集的条件.(2)设U 和V 是X 中的两个开集.如果x U V ∈,则存在x 的一个球形邻域1(,)B x ε包含于U ,也存在X 的一个球形邻域2(,)B x ε包含于V .根据定理2.1.1(2),x 有一个球形邻域(,)B x ε同时包含于1(,)B x ε和2(,)B x ε,因此12(,)(,)(,)B x B x B x U V εεε⊂⊂由于U V 中的每一点都有一个球形邻域包含于U V ,因此U V 是一个开集.(3)设A 是一个由X 中的开集构成的子集族.如果A x A ∈∈A ,则存在0A ∈A 使得0x A ∈由于0A 是一个开集,所以x 有一个球形邻域包含于0A ,显然这个球形邻域也包含于A A ∈A .这证明A A ∈A 是X 中的一个开集.2、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.证明:如果()f X 是Y 的一个不连通子集,则存在Y 的非空隔离子集,A B 使得()f X A B =⋃ …………………………………………… 3分于是11(),()f A f B --是X 的非空子集,并且:111111111(()())(()())(()())(()())(()())f A f B f B f A f A f B f B f A f A B A B φ---------⋂⋃⋂⊂⋂⋃⋂=⋂⋃⋂=所以11(),()f A f B --是X 的非空隔离子集,此外1111()()()(())f A f B f A B f f X X ----⋃=⋃==,这说明X 不连通,矛盾.从而()f X 是Y 的一个连通子集. ………………………… 8分3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分4、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理. 证明:若X 满足第一可数公理,则在X x ∈处,有一个可数的邻域基,设为V x ,因为X 是可数补空间,因此对x y X y ≠∈∀,,}{y X -是x 的一个开邻域,从而x y V V ∈∃ ,使得}{y X V y -⊂.于是'⊂y V y }{, …………………………………………………4分由上面的讨论我们知道: }{}{}{}{y X y y x X y V y x X -∈-∈'⊂=- 因为}{x X -是一个不可数集,而 }{x X y u V -∈' 是一个可数集,矛盾.从而X 不满足第一可数性公理. ………………………………8分三、填空题1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、每一个球形邻域都是 ;答案:开集3、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;答案:可分空间4、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ; 答案:有限可积性质5、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射四、选择题1、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:② 2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④3、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④4、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④5、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③6、离散空间X 的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③7、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④8、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z ' 答案:④9、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②10、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4 答案:②。
一、判断题(每题2分,共10分)1.设T I,T2是集合X的两个拓扑,贝U T i T2不一定是集合X的拓扑。
()2.从拓扑空间X到平庸空间丫的任何映射都是连续映射。
()3.度量空间一定满足第二可数性公理。
()4.完全正则的紧致空间一定是正则空间。
()5.每一个仿紧致的Hausdorff空间都是正则空间,因而也是正规空间。
()二、单选题(每题3分,共30分)1.设X二ab,c?,下列集族中,()是X上的拓扑。
A.T -「X, ,「a)blbc» C. T(.X, Ja,b讥b,c»B.T ={X冲,{a[{a,c}} D. T ={x冲,{a},{b},(c D2.离散空间的任一子集为()。
A.开集B.闭集C.既开又闭D.非开非闭3.设X -X1 X2…X6是拓扑空间X1,X2/ ,X6的积空间。
巳是X到X3的投射,则P3是()。
A.单射B.连续的单射C.满的连续闭映射D.满的连续开映射4.有理数集Q是实数空间R的一个()。
A.不连通子集B.连通子集C.开集D.以上都不对5.设X是一个拓扑空间,A,B是X的子集,则下列关系中错误的是()。
A.d(A B)=d(A)d(B) C. A B =A BB.d(A B)=d(A)d(B) D. A-A6.设X 烏加,T「X,,加,则(X,T)是()。
A. %空间B. T1空间C. T2空间D. T3空间7.设X1,X2是连通空间,则积空间X1 X2是()。
A.离散空间B. 商空间C. 平庸空间D. 连通空间8.若度量空间X的一个子集A中的每一个点都有一个球形邻域包含于A,则称A是度量空间X中的一个()。
A.不连通子集B.开集C.连通子集D.以上都不对9.每一个度量空间都满足()。
A.选择公理B. Tukey引理C.第一可数性公理D. 第二可数性公理10.若拓扑空间X中存在一个既开又闭的非空真子集,则X是一个()。
A.不连通空间B. 连通空间C. 平庸空间D.以上都不对三、填空题(每题3分,共15分)1.设X =「a,b1,贝卩X 的离散拓扑为 ______________________________ 。
P73 第2.1节3.设(),X ρ是一个 的度量空间,证明: (1) X 的每一个子集都是开集;(2) 如果Y 也是一个度量空间,则任何映射:f X Y →都是连续的. 证 (1) 对任意的A X ⊂和任意顶的x A ∈,取14ε=,则(){},B x x A ε=⊂,所以A 是开集.(2) 设:f X Y →为任一映射,U ∈T Y,由(1)知,()1f U -∈TX,所以,f 是连续映射.6.从殴氏平面2到实数空间的映射2,:m s →定义为对任何()12,x x x =,(){}()1212max ,,m x x x s x x x ==+证明m 和s 都是连续函数。
(提示:分别用2的度量1ρ和2ρ(参见第5题).)证 先证m 是连续映射.设()212,x x x =∈是任意一点,对任意的0ε>,对任意()212,y y y =∈,因为(){}{}{}()()111221212,max ,max ,max ,x y x y x y x x y y m x m y ρ=--≥-=-(其中1ρ是习题5中定义的2的度量),故()()()(),,m B x B m x εε⊂,即m 在2x ∈对于2的度量1ρ而言是连续的,由于2x ∈是任意的,从而对于2的度量1ρ而言连续.由习题5的结论知,m 对于2的度量ρ而言是连续的.下面再证s 是连续映射.设()212,x x x =∈是任意一点,对任意的0ε>,对任意()212,y y y =∈,因为()()()()()211221212,x y x y x y x x y y s x s y ρ=-+-≥+-+=-(其中2ρ是习题5中定义的2的度量),故()()()(),,s B x B s x εε⊂,即s 在2x ∈对于2的度量2ρ而言是连续的,由于2x ∈是任意的,从而对于2的度量2ρ而言连续.由习题5的结论知,s 对于2的度量ρ而言是连续的.P73 第2.2节2. 对于每一个n +∈,令{}n A m m n +=∈≥,(1) 证明P ={}{}n A n +∈⋃∅是正整数集+的一个拓扑;(2) 写出1+∈的所有开邻域.(1) 证 显然1,A +∅=∈P .又n A ∅⋂=∅∈P ,1,2,n =.任意,n m A A ∈P ,{}max ,n m m n A A A ⋂=∈P ,对任意的P 1⊂P ,{}11min :n n n n A TB A TB A A ∈∈=∈P ,因此P 为+的拓扑.(2) 1+∈的唯一开邻域为1A +=.7. 设P 1和P 2是集合X 的两个拓扑,证明P1⋂P 2也是X 的一个拓扑.举例说明P1⋃P 2可以不是X 的拓扑.证 若P 1和P2都是X 的拓扑,,由于,X ∅∈P 1,P2,所以,X ∅∈P1⋂P 2;任意,A B ∈P 1,P 2,则A B ⋂∈P 1,P2,所以A B ⋂∈P1⋂P 2;对任意的P '⊂P 1⋂P2,即P '⊂P1,P2,则'A T A ∈∈P 1,P2,所以'A T A ∈∈P 1⋂P 2. 因此P 1⋂P 2是X 的拓扑.例,设{},,X a b c =, P {}{}{}{}1,,,,,,a b c a b c =∅, P{}{}{}{}2,,,,,,b a c a b c =∅,显然, P1,P2都是X 的拓扑,P1⋃P2{}{}{}{}{}{},,,,,,,,,a b b c a c a b c =∅,因{}{},a b ∈P 1⋃P2,{}{}{},a b a b =⋃∉P1⋃P 2,因此P 1⋃P 2不是X 的拓扑.10. 证明:(1) 从拓扑空间到平庸空间的任何映射都是连续的; (2) 从离散空间到拓扑空间的任何映射都是连续的. 证 (1) 设(X ,P 1)是任意拓扑空间,( ,Y P 2)是平庸拓扑空间,:f X Y →,对任意的U ∈P2,,U Y =或∅,所以()1,fU X -=或∅,它们都属于P 1,所以f 连续.(2) 设(X ,P 1)是离散拓扑空间,( ,Y P2)是任意拓扑空间,:f X Y →,对任意的U ∈P 2 ,(){}()11x f U f U x --∈=∈P1,所以f 连续.(因为离散拓扑空间的单点集是开集).P73 第2.4节2. 设X 是一个拓扑空间,,A B X ⊂,证明:(1) x X ∈是集合A 的凝聚点当且仅当x 是集合{}A x -的凝聚点; (2) 如果()d A B A ⊂⊂,则B 是一个闭集.证 (1) 若x X ∈是集合A 的凝聚点, 当且仅当对任意的U ∈Ux,有{}()U A x ⋂-≠∅,由{}{}(){}A x A x x -=--,从而{}(){}{}U A x x ⋂--≠∅,即x 是集合{}A x -的凝聚点.(2) 因为()d A B A ⊂⊂,所以()()d B d A B ⊂⊂,即()d B B ⊂,故B 为闭集. 3. 证明:闭包运算定义中的Kuratovski 公理等价于条件:对任何,A B X ⊂,()()()()()*****A c A c c B c A B c ⋃⋃=⋃-∅.证 “必要性”若Kuratovski 公理成立,则对任意,A B X ⊂,()()()()()()()()********A c A c c B c A c B c A B c A B c ⋃=⋃=⋃=⋃-∅;“充分性”若对任意,A B X ⊂,有()()()()()*****A c A c c B c A B c ⋃⋃=⋃-∅,则令A B ==∅,有()()()()()()******c c c c c c ∅⋃∅⋃∅=∅-∅=∅⇒∅=∅;令A B =,有()()()()()()()()()()**********A c A c c A c A c c A A c A c A c c A ⋃⋃=-∅=⇒⊂⇒⊂,并且()()()***c c A c A ⊂,所以()()()***cc A c A =。
练习(第二章)参考答案:一.判断题(每小题2分)1.集合X 的一个拓扑有不只一个基,一个基也可以生成若干个拓扑( × )2.拓扑空间中任两点的距离是无意义的.( √ )3.实数集合中的开集,只能是开区间,或若干个开区间的并.( × )4.T 1、T 2是X 的两个拓扑,则T 1UT 2是一个拓扑.( × )5.平庸空间中任一个序列均收敛,且收敛于任一个点。
( √ )6.从(X ,T 1)到(X ,T 2)的恒同映射必是连续的。
( × )7.从离散空间到拓扑空间的任何映射都是连续映射( √ )8.设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑(× ) 9.从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( √ )10.设A 为离散拓扑空间X 的任意子集,则()d A φ= ( √ )11.设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= (× ) 12.设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = (√ )二.填空题:(每空格3分)1、X=Z +,T={Z 1,Z 2,…Z n …},其中Z n ={n,n+1,n+2,…},则包含3的所有开集为 321,,Z Z Z包含3的所有闭集为 ,...,,,/6/5/41Z Z Z Z包含3的所有邻域为 3321}1{,,,Z Z Z Z ⋃设A={1,2,3,4,5} 则A 的导集为{1,2,3,4} ,A 的闭包为{1,2,3,4,5}2、设X 为度量空间,x ∈X,则d ({x})=∅3、在实数空间R 中,有理数集Q 的导集是____ R ____.4、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;答案: ({})U A x φ⋂-≠5、设A 是有限补空间X 中的一个无限子集,则()d A = ; A = ;答案:X ;X6、设A 是可数补空间X 中的一个不可数子集,则()d A = ; A = ;答案:X ;X7、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}三、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{,,}}X a a b a c e φ=T② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( ) ①φ ② X ③ {}b ④ {,,}b c d 答案:④3、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:②。
点集拓扑练习题一、单项选择题(每题1分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:②3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T 答案:①4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:②5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T 答案:④6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:③7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b 答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b 答案:④11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:②12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d 答案:④13、设{,,,}X abcd =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( ) ① 0 ② 1 ③ 2 ④ 3 答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:④18、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②19、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R 答案:①20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R 答案:①22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R 答案:②23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:③24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3) 答案:③25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是( )① ()d A φ= ② ()d A X A =- ③ ()d A A = ④ ()d A X = 答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则()是T 的基.③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ } 答案:②35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭 答案:②38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ ② R ③ A ∪{0} ④ A 答案:③39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集 答案:①40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集 ③ 无理数集 ④ 整数集Z 的补集Z ' 答案:④41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4 答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9 答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈ 答案:③45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:②47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( )③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( )③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( )③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:①51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ= ③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ= 答案:②52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z = ③ T Z = ④ {}T Z = 答案:②54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④ 59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( ) ① 单射 ② 连续的单射 ③ 满的连续闭映射 ④ 满的连续开映射 答案:④60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ①A B A B ⨯≠⨯ ②A B A B ⨯=⨯ ③()A B A B ⨯≠⨯ ④()()()A B A B ∂⨯=∂⨯∂ 答案:②61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:①63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集 ③ 开集 ④ 以上都不对 答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集 答案:②65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间 ③ 平庸空间 ④ 不连通空间 答案:③66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间 ③ 平庸空间 ④ 连通空间 答案:①67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间 ③ 平庸空间 ④ 连通空间 答案:④68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对 答案:④69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对 答案:③70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点 答案:④71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚 ① 1 ② 2 ③ 3 ④ 4 答案:②72、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对 答案:③80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 连通性 ③ 离散性 ④ 第一可数性公理 答案:②81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ② 连通性 ③ 第二可数性公理 ④ 平庸性 答案:②82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公 ② 可分性 ③ 第二可数性公理 ④ 离散性 答案:②83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ② 可分性 ③ 离散性 ④ 第二可数性公理 答案:②84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:①85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:①86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 道路连通空间 答案:①87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:④91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对 答案:①92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:③93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:③94、设X 是一个拓扑空间,若对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:①95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间 答案:②96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间 答案:④97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间 答案:④98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正则空间 答案:④99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间 答案:④102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个() ① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间 答案:③103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对 答案:③104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对 答案:③105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对 答案:③106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集 答案:②107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集 答案:②108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集 答案:②109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )① 1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间 答案:①二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ=3同胚的拓扑空间所共有的性质叫 ;答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________.答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{1,2,3X =,X 的拓扑{,,{2},{2T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}11、设{1,2,3X =,X 的拓扑{,,{1},{2T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{1}12、设{1,2,3X =,X 的拓扑{,,{1},{2T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}13、设{1,2,3X =,X 的拓扑{,,{2},{2T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=15、设{,,}X a b c =,则X 的离散拓扑为 ;答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=16、设{1,2,3X =,X 的拓扑{,,{2},{3},{T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3X =,X 的拓扑{,,{1},{3},{T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 ;答案:开映射21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 ;答案:闭映射22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;答案:不连通空间25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;答案:可商性质28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ; 答案:有限可积性质29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;答案:第一可数性公理31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;答案:第二可数性公理32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;答案:可遗传性质33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;答案:稠密子集34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;答案:可分空间35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;答案:Lindel Öff 空间36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P为 ;答案:对于开子空间可遗传性质37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P为 ;答案:对于闭子空间可遗传性质38、设X 是一个拓扑空间,如果 则称X 是一个0T 空间;答案:X 中任意两个不相同的点中必有一个点有一个开邻域不包含另一点39、设X 是一个拓扑空间,如果 则称X 是一个1T 空间;答案:X 中任意两个不相同的点中每一点都有一个开邻域不包含另一点40、设X 是一个拓扑空间,如果 则称X 是一个2T 空间;答案:X 中任意两个不相同的点各自有一个开邻域使得这两个开邻域互不相交41、正则的1T 空间称为 ;答案:3T 空间42、正规的1T 空间称为 ;答案:4T 空间43、完全正则的1T 空间称为 ;答案: 3.5T 空间或Tychonoff 空间44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 . 答案:紧致空间45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .答案:紧致子集46、设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .答案:可数紧致空间47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .答案:列紧空间48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .答案:序列紧致空间三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:×理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂;(2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集,所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:×理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√ 理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂= 从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )案:√理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )答案:√理由:设拓扑空间X 满足第二可数性公理,B 是它的一个可数基,对于每一个x X ∈,易知{} B B|x B x B =∈∈是点x 处的一个邻域基,它是B 的一个子族所以是可数族,从而X 在点x 处有可数邻域基,故X 满 足第一可数性公理.10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )答案:√理由:由于X 满足第二可数性公理,所以它有一个可数基B ,因为Y 是X 的子空间,则{|}B| B Y B Y B =⋂∈是Y 的一个可数基,从而X 的 子空间Y 也满足第二可数性公理.11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )答案:√理由:由于X 满足第一可数性公理,所以对x Y ∀∈,X 在点x 处有一个可数邻域基V x ,因为Y 是X 的子空间,则{|}V | V x Y x V Y V =⋂∈是Y 在点x 的一个可数邻域基,从而X 的子空间Y 也满足第一可数性公理.12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )答案:×理由:因为{1,3}是X 的一个闭集,对于点2和{1,3}没有各自的开邻域互不相交,所以X 不是正则空间,从而不是3T 空间. 注:也可以说明X 不是1T 空间.13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )答案:×理由:因为{2,3}是X 的一个闭集,对于点1和{2,3}没有各自的开邻域互不相交,所以X 不是正则空间,从而不是3T 空间.注:也可以说明X 不是1T 空间.14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )答案:×理由:因为对于点1和点2,2没有开邻域不包含1,从而X 不是1T 空间.注:也可以考虑点2和点3.15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )答案:×理由:因为对于点1和点2,2没有开邻域不包含1,从而X 不是1T 空间.故(,)X T 是4T 空间. 注:也可以考虑点2和点3.16、3T 空间一定是2T 空间.( )答案:√理由:因为3T 空间是正则的1T 空间,所以对于3T 空间X 中的任意不同的两点,x y X ∈,{}y 是X 中的闭集,由于X 是正则空间,从而对于,{}x y 它们有各自的开邻域,U V 使得U V φ⋂=,所以X 是2T 空间.17、4T 空间一定是3T 空间.( )答案:√理由:因为4T 空间是正规的1T 空间,所以对于4T 空间X 中的任意点x 和不包含x 的闭集A ,由于{}x 也是一个闭集及X 是正规空间,故存在{},x A 的开邻域,U V 使得U V φ⋂=,这说明X 是正则空间,因此X 是3T 空间.18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )答案:√理由:设A 是一个由X 中的开集构成的A B ⋃的覆盖,由于A 和B 都是X 的紧致子集,从而存在A的有限子族 A 1 A 2 分别是A 和B 的覆盖,故12⋃A A 是A 的有限子族且覆盖A B ⋃,所以A B ⋃是紧致子集.19、Hausdorff 空间中的每一个紧致子集都是闭集.( )答案:√理由:设A 是Hausdorff 空间X 的一个紧致子集,则对于任何x X ∈,若x A ∉,则易知x 不是A 的凝聚点,因此A A =,从而A 是一个闭集.四.名词解释(每题2分)1.同胚映射 答案:设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,则称f 是一个同胚映射或同胚.是集合A 的一个内点.3、集合A 的内部 答案:设X 是一个拓扑空间,A X ⊂.则集合A 的所有内点构成的集合称为集合A 的内部.4.拓扑空间(,)T X 的基 答案:设(,)T X 是一个拓扑空间,B 是T 的一个子族.如果T 中的每一个元素是B 中的某些元素的并,则称B 是拓扑T 的一个基.5.闭包 答案:设X 是一个拓扑空间,A X ⊂.集合A 与集合A 的导集()d A 的并()A d A ⋃称为集合A 的闭包.6、序列 答案:设X 是一个拓扑空间,每一个映射:S Z X +→叫做X 中的一个序列.7、导集 答案:设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.8、不连通空间 答案:设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间.9、连通子集 答案:设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个连通空间,则称Y 是X 的一个连通子集.10、不连通子集 答案:设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个不连通空间,则称Y 是X 的一个不连通子集.11、1 A 空间 答案:一个拓扑空间如果在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个满足第一可数性公理的空间,简称为1 A 空间.12、2 A 空间 答案:一个拓扑空间如果有一个可数基,则称这个拓扑空间是一个满足第二可数性公理的空间,简称为2 A 空间.13、可分空间 答案:如果拓扑空间X 有一个可数稠密子集,则称X 是一个可分空间.14、0T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点中必有一个点有一个开邻域不包含另一点,则称拓扑空间X 是0T 空间.15、1T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点中每一个点都有一个开邻域不包含另一点,则称拓扑空间X 是1T 空间.16、2T 空间: 答案:设X 是一个拓扑空间,如果X 中的任意两个不相同的点各自有一个开邻域使得这两个开邻域互不相交,则称拓扑空间X 是2T 空间.17、正则空间: 答案:设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各自有一个开邻域,它们互不相交,则称X 是正则空间.18、正规空间: 答案:设X 是一个拓扑空间,如果X 中的任何两个无交的闭集都各自有一个开邻域,它们互不相交,则称X 是正规空间.19、完全正则空间: 答案:设X 是一个拓扑空间,如果对于x X ∀∈和X 中任何一个不包含点x 的闭集B 存在一个连续映射:[0,1]f X →使得()0f x =以及对于任何y B ∈有()1f y =,则称拓扑空间X 是一个完全正则空间.20、紧致空间 答案:设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个紧致空间.致空间,则称Y 是拓扑空间X 的一个紧致子集.22、可数紧致空间 答案:设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个可数紧致空间.23、列紧空间 答案:设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个列紧空间.24、序列紧致空间 答案:设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个序列紧致空间.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:gf X Z →也是连续映射. 答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---=是X的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T.答案:]}}1[],0{[]},0{[,,{Y φ= T6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .答案:{,,{[3]},{[2],[3]}}T Y φ=7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T.答案:{,,{[1]},{[1],[1]}}T Y φ=--8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x答案:{,,{[2]},{[2],[1]}}T Y φ=--9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .答案:{,,{[3]},{[2],[3]}}T Y φ=10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .答案:{,,{[4]},{[2],[4]}}T Y φ=11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .答案:{,,{[4]},{[2],[4]}}T Y φ=12、离散空间是否为2A 空间?说出你的理由.答案:因为离散空间的每一个基必定包含着单点集,所以包含着不可数多个点的离散空间不是2A 空间.至多含有可数多个点的离散空间是2A 空间.13、试说明实数空间R 是可分空间.答案: 因为Q 是可数集,且R 的任何一个非空的开集至少包含一个球形邻域,从而与Q 都有非空的交,因此R Q =,故实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.答案: 设X 是一个度量空间, 对X x ∈∀,则所有的以x 为中心,以正有理数为半径的球形邻域构成x 处的一个可数邻域基,从而X 满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.答案:对x X ∀∈,由于X 是1T 空间,从而对每一个,y X y x ∈≠,点y 有一个邻域U 使得x U ∉,即{}U x φ⋂=,故{}y x ∉,因此{}{}x x =,这说明单点集{}x 是一个闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.答案:对于任意,,x y X x y ∈≠,{},{}x y 都是闭集,从而{}x '和{}y '分别是y 和x 的开邻域,并且有{}x x '∉,{}y y '∉.从而X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间. 答案:对任意*,,x y X x y ∈≠,若x ,y 都不是∞,则,x y X ∉.由于X 是一个1T 空间,从而,x y 各有一个开邻域,U V ,使得,x V y U ∉∉;若x ,y 中有一个是∞,不妨设x =∞,则y 有开邻域X 不包含∞.由以上的讨论知,对*X 中任意两个不同点必有一个点有一个开邻域不包含另一点,从而X 是0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂. 答案: 对x X ∀∈,设U 是x 的任何一个开邻域,则U 的补集U '是一个不包含点x 的一个闭集.由于X 是一个正则空间,于是x 和U '分别有开邻域V 和W ,使得V W φ⋂=,因此。
| | | | | | 密| | | | | | | | | 封| | | | | | | | | 线| | | | | | | | | | | |
点集拓扑试题样卷2
一二三四总分
代号学院专业
年级
学号
姓名
备注: ①试卷首页必
须用统一的考试
命题专用纸,第
二页以后用专用
纸续页。
②试卷必须打
印成卷字迹要工整、清楚。
③各题留出答
案空白。
④试卷打印后
应认真校对,避
免卷面错误。
得分阅卷人
一、选择题(将正确答案填入题后的括号内,每题3分,
共18分)
1、已知{,,,,}
X a b c d e
=,下列集族中,是X上的拓扑.……()
①{,,{},{,},{,,}}
X a a b a c e
φ
=
T
②{,,{,,},{,,},{,,,}}
X a b c a b d a b c e
φ
=
T
③{,,{},{,}}
X a a b
φ
=
T
④{,,{},{},{},{},{}}
X a b c d e
φ
=
T
2、已知{,}
X a b
=,拓扑{,,{}}
X a
φ
=
T,则{}a是………………()
①φ②X③{}a④{}b
3、在实数空间R中给定如下等价关系:
~
x y⇔]1,
(
,-∞
∈
y
x或者]2,1(
,∈
y
x或者)
,2(
,+∞
∈
y
x
设在这个等价关系下得到的商集{[1],[2],[3]}
Y=,则Y的商拓扑是()
①{,,{[3]},{[2],[3]}}
Y
φ②{,,{[3]}}
Y
φ
③{,,{[3]},{[1],[2]}}
Y
φ④{,}
Y
φ
4、下列拓扑学的性质具有可遗传性的是………………………()
①连通性②
2
T③正则④正规
5、设{1,2}
X=,{,,{2}}
Xφ
=
T,则(,)
X T是………………()
①
T空间②
1
T空间③
2
T空间④
3
T
6、下列拓扑学的性质具有有限可积性的是……………………()
①连通性②紧致性③正则性④可分性
得分阅卷人
二、简答题(每题4分,共32分)
1、写出同胚映射的定义.
2、什么是不连通空间?
3、什么是正则空间?
4、写出紧致空间的定义.
5、写出可分空间的定义
6、写出列紧空间的定义.
| | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
点集拓扑试题样卷2卷参考答案
一、选择题 (将正确答案填入题后的括号内 ,每题3分,共18分)
1、③
2、②
3、①
4、②③
5、①
6、①②③④ 二、简答题(每题4分,共32分)
1、设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和
1:f Y X -→ 都是连续映射,则称f 是一个同胚映射.
2、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间.
3、设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各自有一个开邻域,它们互不相交,则称X 是正则空间.
4、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称 拓扑空间X 是一个紧致空间.
5、设X 是一个拓扑空间,若X 有一个可数稠密子集,则称X 是一个可分空间。
6、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个列紧空间.
7、设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.
8、设X 是一个拓扑空间,[,]a b 是一个闭区间. 则X 是一个正规空间当且仅当对于X 中任意两个无交的闭集A 和B ,存在一个连续映射:[,]f X a b →,使得当x A ∈时()f x a =和当x B ∈时
()f x b =.
三 、判断下列各题的正误, 正确的打√,错误的打×,并说明理由(每题 5分,其中判断2分,理由3 分, 本题共10分) 1、答案:√
理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1
)f A X -⊂(
,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.
2、答案:√
理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空
间.
四、证明题(共40分).
1、证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.
又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分
设为V x ,因为X 是有限补空间,因此对x y X y ≠∈∀,,}{y X -是x 的一个开邻域,从而x y V V ∈∃ ,使得}{y X V y -⊂. …………4分 于是'
⊂y V y }{, 由上面的讨论我们知道:
}
{}
{}{}{y X y y
x X y V y x X -∈-∈'⊂=
-
因为}{x X -是一个不可数集,而
}
{x X y u
V -∈' 是一个可数集,矛盾. 从而X 不满足第一可数性公理. ……………………………………7分
3、证明:若极限点不唯一,不妨设1lim i i x y →∞
=,2lim i i x y →∞
=,其中12y y ≠,由于X 是2T 空间,故1y 和2y 各自的开邻域,U V ,使得U V φ⋂=. …………………4分
因1lim i i x y →∞
=,故存在10N >,使得当1i N >时,i x U ∈;同理存在20N >,使得当2i N >时,i x V ∈.令12max{,}N N N =,则当i N >时,i x U V ∈⋂,从而U V φ⋂≠,矛盾,故{}i x 的极限点唯
一. ……………………7分
4、证明:对于x A '∀∈,则()f x x ≠,从而(),f x x 有互不相交的开邻域U 和V ,设1()W f U V -=⋂, …………………………………4分
则W 是x 的开邻域,并且x W A '∈⊂,故A '是开集,
从而A 是闭集. …………………………………………………7分
5、证明:设C 是()f X 的一个由Y 中的开集构成的覆盖.对于任意C ∈C ,1()f C -是X 中的一个开集,由于
c C X ∈⊃C
,从而有:
111()(
)(())C C f C f C f f X X ---∈∈=⊃=C
C
所以1()|f C C -∈A={C}是X 的开覆盖.由于X 是紧致空间,所以A 有一个有限子覆盖,设为111{(),,()}n f C f C --. …………………………………4分
因为11111()()()n n f C f C f C C X ---⋃
⋃=⋃
⋃=,从而1()n C C f X ⋃
⋃⊃,即1{,,}n C C 是 C 的一个子族并且覆盖()f X ,因此()f X 是Y 的一个紧致子
集. ………………………………7分
6、证明:对)(X f X x -∈∀,则x x f ≠)(,由于X 是Hausdorff 空间,存在x 和)(x f 的邻域V U ,1,使得Φ=⋂V U 1.又因为f 连续,故存在x 的邻域2U ,使得V U f ⊂)(2,令21U U U ⋂=,则U 是x 的邻域,且)(X f X U -⊂. ………………………………………………3分 事实上,若存在U z ∈使得)(X f z ∈,即 y X ∃∈使得)(y f z =.于是()()()f z f
f y f y z ===,而V U f z f ⊂∈)()(,
这样,Φ=⋂⊂⋂∈V U V U z 1,矛盾.所以)(X f X U -⊂,即)(X f 是闭集. …………………………………………………………5分。