点集拓扑试卷4
- 格式:doc
- 大小:528.50 KB
- 文档页数:7
拓扑学复习题与参考答案点集拓扑学练习题一、单项选择题(每题 2 分)1、已知X {a,b,c,d,e},下列集族中,()是X上的拓扑?①T {X, ,{a},{ a,b},{a,c,e}}②T {X, ,{a,b,c},{a,b,d},{a,b,c,e}}③T { X, ,{a},{ a,b}}④T {X, ,{a},{b},{c},{d},{e}}2、设X {a,b,c},下列集族中,()是X上的拓扑?①T {X, ,{a},{a,b},{c}} ②T {X, ,{a},{a,b},{a,c}}③T {X, ,{a},{b},{a,c}} ④T {X, ,{a},{b},{c}}3、已知X {a,b,c,d},下列集族中,()是X上的拓扑?①T {X, ,{a},{a,b},{a,c,d}} ②T {X, ,{a,b,c},{a,b,d}}③T {X, ,{a},{ b},{a,c,d}} ④T {X, ,{a},{b}}4、设X {a, b, c},下列集族中,()是X上的拓扑?①T {X, ,{b},{c},{a,b}} ②T {X, ,{a},{b},{a,b},{a,c}}③T {X, ,{a},{b},{a,c}} ④T {X, ,{a},{b},{c}}5、已知X {a,b,c,d},下列集族中,()是X上的拓扑?① T {X, ,{a,b},{a,c,d}} ② T {X, ,{a,b},{a,c,d}}③ T {X, ,{a},{b},{a,c,d}} ④ T {X, ,{a},{c},{a,c}}6、设X {a,b,c},下列集族中,()是X上的拓扑?① T {X, ,{a},{b},{b,c}} ② T {X, ,{a,b},{b,c}}③ T {X, ,{a},{a,c}} ④ T {X, ,{a},{b},{c}}7、已知X {a,b,c,d},拓扑T {X, ,{a}},贝U{b}=()②X {a,b,c,d}②X③{b},拓扑T {③{b}④{b,c,d}:()8已知X①?X, ,{a}},则{b,c,④{b,c,d}d}=9、已知X{a,b},拓扑T{X,,{a}},则面=( )①?②X③{a}④{b}10、已知X{a,b},拓扑T{X,,{a}},则{b}=( )①?②X③{a}④{b}11、已知X{a,b,c,d},拓扑T {X, ,{a}},则面=:( )②X③{a,b}④{b,c,d}12、已知X {a,b,c,d},拓扑T{X,,{a}},则=( )②X③{a,c}④{b,c, d}13、设X {a,b,c,d},拓扑T{X,,{a},{ b,c,d}}-,则X的既开又闭的非空真子集的个数为()①1②2③3④414、设X{a,b,c},拓扑T{X,,{a},{ b,c}},则X的既开又闭的非空真子集的个数为( )①1②2③3④415、设X{a,b,c},拓扑T{X,,{b},{ b,c}},则X的既开又闭的非空真子集的个数为( )①0②1③2④316、设X{a,b},拓扑T {X, ,{b}},则X的既开又闭的子集的个数为()①0②1③2④317、设X {a,b},拓扑T {X, ,{a},{ b}},则X的既开又闭的子集的个数为()①1②2③3④418、设X {a,b,c},拓扑T{X, ,{a},{ b},{ a,b},{ b,c}},则X的既开又闭的非空真子集的个数为()①1②2③3④419、在实数空间有理数集Q的内部Q o是()中,①②Q ③R -Q ④R20、在实数空间中,有理数集Q的边界(Q)是()①②Q ③R -Q ④R21、在实数空间中,整数集Z的内部Z o是()①②Z ③R-Z ④R22、在实数空间中,整数集Z的边界(Z)是()①②Z③R-Z ④R23、在实数空间中,区间[0,1)的边界是()① ②[0,1]③{0,1}④(0,1)24、在实数空间中,区间[2,3)的边界是()①②[2,3]③{2,3}④(2,3)25、在实数空间中,区间[0,1)的内部是()① ②[0,1]③{0,1}④(0,1)26、设X是一个拓扑空间,A,B是X的子集,则下列关系中错误的是()①d(AB)d(A) d(B)②A__B A B③d(AB)d(A) d(B)④ A A27、设X是一个拓扑空间,A,B是X的子集,则下列关系中正确的是()①d(AB)d(A) d(B)② A B A B③d(AB)d(A) d(B)④ A A28、设X是一个拓扑空间,AB是X的子集,则下列关系中正确的是()① d(A B) A B② A B A B③ d(A B)d(A) d(B)④ d(d(A)) A d(A)A是X的子集,则下列结论中正确的是()29、已知X是一'个离散拓扑空间,① d(A)② d(A) X A③ d(A) A④ d(A) XA是X的子集,则下列结论中不正确的是()30、已知X是一'个平庸拓扑空间,①若A ,则d(A)②若 A {X0},则d(A) X A③若A={X I,X2},则d(A) X④若A X ,则d(A) X31、已知X是一'个平庸拓扑空A是X的子集,则下列结论中正确的是()间,①若A ,则d(A) ②若A {X。
选择公理定义:设X 是一个集合。
记X为X 中的所有非空子集构成的集族,即(){}X X ζφ=- 。
如果一个映射ε:XX → 满足条件:对于任意A X ∈ ,有()A A ε∈ ,则此映射ε称为集合X 的一个选择函数。
任何一个函数都有选择函数就是选择公理。
1.设X 和Y 是两个集合。
证明:cardY ≤cardX 当且仅当存在一个从X 到Y 的满射。
证:设cardY ≤cardX ,即存在一个Y 到X 的一一映射f ,定义g :X Y →,使10()()()()f x x f Y g x y x f Y -⎧∈=⎨∉⎩当当其中0y 为Y 中一固定元,则g 是从X 到Y 上的映射。
反之,若存在从X 到Y 上的映射g ,记1{:,()}y y A y Y g y A α-=∈=则α是X 中非空族,并且α中成员两两无交,由Zermelo 假定存在集合C X ⊂,使得对于每一A α∈,A C ⋂是单点集,所以存在C 到Y 上的一一映射,即c C Y =,又c C Y ≤,故c Y X ≤。
2.设1T 和2T 是集合X 的两个拓扑。
证明12T T ⋂也是集合X 的拓扑。
举例说明12T T ⋃可以不是X 的拓扑。
证:若1T ,2T 都是X 的拓扑,由于12,,X T T φ∈,所以12,X T T φ∈ ;任意12,A B T T ∈ ,即12,,A B T T ∈,所以12A B T T ∈ ,任意12T T T ⊂ ,即12,T T T ⊂,即,则12,A TA T T∈∈ ,所以12A TA T T ∈∈ ,因此12T T 是X 的拓扑。
例:设{,,}X a b c =,1={{a}{b,c},T , {a,b,c},}φ,2={{b}{a,c},{a,b,c},}T φ,易见12,T T 都是X的拓扑,但12{{a}{a,c},{b,c},{a,b,c},}T T φ= ,,而12{},{}a b T T ∈ ,{,}{}{}a b a b = 1T ∉ 2T ,因此12T T 不是X 的拓扑。
点集拓扑学练习题一、单项选择题(每题1分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T答案:① 4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:② 5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T答案:④ 6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:③ 7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d答案:④8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d 答案:④9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b 答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b 答案:④11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d 答案:②12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d 答案:④13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 0 ② 1 ③ 2 ④ 3 答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:④18、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②19、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R 答案:①20、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④21、在实数空间中,整数集Z 的内部Z 是( )① φ ② Z ③ R -Z ④ R 答案:①22、在实数空间中,整数集Z 的边界()Z ∂是( )① φ ② Z ③ R -Z ④ R 答案:②23、在实数空间中,区间[0,1)的边界是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:③24、在实数空间中,区间[2,3)的边界是( )① φ ② [2,3] ③ {2,3} ④ (2,3) 答案:③25、在实数空间中,区间[0,1)的内部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X = 答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是()① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是( ) ① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }答案:②35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭 答案:②38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( )①φ ② R ③ A ∪{0} ④ A 答案:③39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集 答案:①40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '答案:④41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4 答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9 答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈ 答案:③45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭 答案:②47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( ) ① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( ) ① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ= 答案:②50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( ) ① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:①51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ= 答案:②52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z = ③ T Z = ④ {}T Z = 答案:②54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射 答案:④60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ① A B A B ⨯≠⨯ ② A B A B ⨯=⨯ ③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂答案:②61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对 答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集答案:②65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间答案:③66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间答案:①67、设12,X X 是连通空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间答案:④68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对答案:④69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 以上都不对答案:③70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③ 区间 ④ 区间或一点答案:④71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③ 3 ④ 4答案:②二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ= 3、同胚的拓扑空间所共有的性质叫 ; 答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________. 答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{2}11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{1}12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 答案:{1}13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=15、设{,,}X a b c =,则X 的离散拓扑为 答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 答案:开映射21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 答案:闭映射22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 答案:不连通空间25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ; 答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;答案:可商性质28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;答案:有限可积性质29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:× 理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂; (2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√ 理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√ 理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集, 所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:× 理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂=从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )√ 理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂. 答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---=是X 的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集. 答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集. 答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .答案:]}}1[],0{[]},0{[,,{Y φ= T6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[1]},{[1],[1]}}T Y φ=--8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[2]},{[2],[1]}}T Y φ=--9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T . 答案:{,,{[3]},{[2],[3]}}T Y φ=10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ=11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T . 答案:{,,{[4]},{[2],[4]}}T Y φ=六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集. 证明:如果()f X 是Y 的一个不连通子集,则存在Y 的非空隔离子集,A B 使得()f X A B =⋃ …………………………………………… 3分于是11(),()f A f B --是X 的非空子集,并且:111111111(()())(()())(()())(()())(()())f A f B f B f A f A f B f B f A f A B A B φ---------⋂⋃⋂⊂⋂⋃⋂=⋂⋃⋂=所以11(),()f A f B --是X 的非空隔离子集 此外,1111()()()(())f A f B f A B f f X X ----⋃=⋃==,这说明X 不连通,矛盾.从而()f X 是Y 的一个连通子集. ………………………… 8分2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.证明:因为B A ,是X 的闭集,从而Y B Y A ⋂⋂,是子空间Y 的闭集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂………………… 8分4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集. 证明:若Z 是X 的一个不连通子集,则在X 中有非空的隔离子集,A B 使得Z A B =⋃.因此Y A B ⊂⋃ ………………………………… 3分由于Y 是连通的,所以Y A ⊂或者Y B ⊂,如果Y A ⊂,由于Z Y A ⊂⊂,所以Z B A B φ⋂⊂⋂=,因此 B Z B φ=⋂=,同理可证如果Y B ⊂,则A φ=,均与假设矛盾.故Z 也 是X 的一个连通子集. …………………………………………………………………… 8分5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.证明:若Y γγ∈Γ是X 的一个不连通子集.则X 有非空的隔离子集,A B 使得Y A B γγ∈Γ=⋃………………………………………… 4分任意选取x Y γγ∈Γ∈,不失一般性,设x A ∈,对于每一个γ∈Γ,由于Y γ连通,从而Y Aγγ∈Γ⊂及B φ=,矛盾,所以Y γγ∈Γ是连通的. ………………………………………… 8分6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.证明:若B X =,则结论显然成立.下设B X ≠,由于B 是X 的一个既开又闭的集合,从而A B ⋂是X 的子空间A 的一个既开又闭的子集………………………………… 4分由于A B φ⋂≠及A 连通,所以A B A ⋂=,故A B ⊂.………… 8分7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.证明:若()A φ∂=,由于()A A A --'∂=⋂,从而()()()()A A A A A A A A A A φ------'''''=⋂=⋂⋂⋃=⋂⋃⋂,故, A A '是X 的隔离子集 ………………………………………… 4分 因为A 是X 的非空真子集,所以A 和A '均非空,于是X 不连通,与题设矛盾.所以()A φ∂≠. ……………………………………………… 8分。
| | | | | | 密| | | | | | | | | 封| | | | | | | | | 线| | | | | | | | | | | |点集拓扑试题样卷2一二三四总分代号学院专业年级学号姓名备注: ①试卷首页必须用统一的考试命题专用纸,第二页以后用专用纸续页。
②试卷必须打印成卷字迹要工整、清楚。
③各题留出答案空白。
④试卷打印后应认真校对,避免卷面错误。
得分阅卷人一、选择题(将正确答案填入题后的括号内,每题3分,共18分)1、已知{,,,,}X a b c d e=,下列集族中,是X上的拓扑.……( 3 )①{,,{},{,},{,,}}X a a b a c eφ=T②{,,{,,},{,,},{,,,}}X a b c a b d a b c eφ=T③{,,{},{,}}X a a bφ=T④{,,{},{},{},{},{}}X a b c d eφ=T2、已知{,}X a b=,拓扑{,,{}}X aφ=T,则{}a是………………( 2 )①φ②X③{}a④{}b3、在实数空间R中给定如下等价关系:~x y⇔]1,(,-∞∈yx或者]2,1(,∈yx或者),2(,+∞∈yx设在这个等价关系下得到的商集{[1],[2],[3]}Y=,则Y的商拓扑是( 1 )①{,,{[3]},{[2],[3]}}Yφ②{,,{[3]}}Yφ③{,,{[3]},{[1],[2]}}Yφ④{,}Yφ4、下列拓扑学的性质具有可遗传性的是………………………()①连通性②2T③正则④正规5、设{1,2}X=,{,,{2}}Xφ=T,则(,)X T是………………( 1 )①T空间②1T空间③2T空间④3T6、下列拓扑学的性质具有有限可积性的是……………………()①连通性②紧致性③正则性④可分性得分阅卷人二、简答题(每题4分,共32分)1、写出同胚映射的定义.2、什么是不连通空间?3、什么是正则空间?4、写出紧致空间的定义.5、写出可分空间的定义6、写出列紧空间的定义.| | | | | | || | | | | | | | || | | | | | | | || | | | | | | | || | | | | | | || | | | | | | | || | | | | | | | || | | | | | | | |。
点集拓扑试题及答案1. 定义并解释什么是拓扑空间。
拓扑空间是一个有序对(X, T),其中X是一个非空集合,T是X的子集的集合,满足以下三个条件:(1) 空集和X本身都属于T;(2) T中的任意有限个集合的并集仍然属于T;(3) T中的任意个集合的交集仍然属于T。
2. 简述连续映射的定义。
设f: X → Y是一个映射,其中X和Y是拓扑空间。
如果对于Y中的任意开集V,其原像f^(-1)(V)是X中的开集,则称f是连续的。
3. 证明如果f: X → Y和g: Y → Z是连续映射,则它们的复合映射g ∘ f: X → Z也是连续的。
证明:设W是Z中的一个开集,我们需要证明(g ∘ f)^(-1)(W)是X中的开集。
由于g是连续的,g^(-1)(W)是Y中的开集。
又因为f是连续的,f^(-1)(g^(-1)(W))是X中的开集。
因此,(g ∘ f)^(-1)(W) = f^(-1)(g^(-1)(W))是X中的开集,所以g ∘ f是连续的。
4. 什么是紧致性?请给出紧致空间的一个例子。
紧致性是指拓扑空间中的每一个开覆盖都存在有限子覆盖的性质。
一个例子是实数线R上的闭区间[0, 1],它在标准拓扑下是紧致的。
5. 描述什么是连通空间。
连通空间是指不能被分解为两个非空不相交开集的拓扑空间。
6. 证明如果X是连通空间,并且f: X → R是连续映射,那么f(X)是区间。
证明:设a = inf f(X),b = sup f(X)。
对于任意的x ∈ X,由于f是连续的,存在一个开邻域U_x ⊆ X使得f(U_x) ⊆ (a, b)。
因为X是连通的,所以X = ⋃x∈X U_x,这意味着f(X) = ⋃x∈Xf(U_x) ⊆ (a, b)。
由于f(X)是闭的,所以f(X) = [a, b]。
7. 什么是分离公理?请举例说明。
分离公理是指对于拓扑空间中的任意两个不同的点,都存在两个不相交的开集分别包含这两个点。
例如,在实数线R的拓扑中,对于任意两个不同的点x和y,可以取开区间(x - 1, x + 1)和(y - 1, y + 1)分别包含x和y,且这两个开区间不相交。
点集拓扑学练习题一、单项选择题1、设{,,}X a b c =,下列集族中,( ② )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:②3、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T 答案:③4、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集个数( ) ① 1 ② 2 ③ 3 ④ 4 答案:②5、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( ) ① 1 ② 2 ③ 3 ④ 4 答案:②6、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3 答案:③7、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,X 的既开又闭的非空真子集个数( )① 1 ② 2 ③ 3 ④ 4 答案:②8、在实数空间中,有理数集Q 的边界()Q ∂是( )① φ ② Q ③ R -Q ④ R 答案:④9、在实数空间中,区间[0,1)的部是( )① φ ② [0,1] ③ {0,1} ④ (0,1) 答案:④10、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ③11、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A = 答案: ①12、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃ 答案: ④13、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X = 答案:①14、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是() ① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =-③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④15、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是() ① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X =③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①16、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是()① { X ,φ,{c },{d },{c ,d },{a ,b ,c }} ② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }} ④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }} 答案:①17、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈- 答案:③18、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基.① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }答案:②19、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:③20、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭 答案:④21、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ ② R ③ A ∪{0} ④ A 答案:③22、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )① 1 ② 2 ③ 3 ④ 4 答案:④23、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个 答案:④24、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9 答案:④25、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈U ④ 当T T '⊂时,T T U U '∈∈I 答案:③ 26、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ= 答案:③27、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( ) ① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ= 答案:①28、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( ) ① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ= 答案:④29、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对 答案:①30、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集答案:②二、填空题1、设{,}X a b =,则X 的平庸拓扑为 ;答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ=3、同胚的拓扑空间所共有的性质叫 ; 答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________. 答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=11、设{,,}X a b c =,则X 的离散拓扑为 答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=12、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;答案:{3}13、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .答案:嵌入14、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射15、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 答案:开映射16、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 答案:闭映射17、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间18、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ; 答案:连通子集19、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.三.判断1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:×理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂;(2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而Y U ∈T ’U ∈T 1, Y U ∈T ’U ∈T 2,故Y U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集,所以{}p 是X 的开子集,且有{}{}()p A p φ-=I ,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:× 理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.四. 名词解释1.同胚映射 答案:设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,则称f 是一个同胚映射或同胚.2、集合A 的聚点 答案:设A 是拓扑空间X 的一个子集,如果x X ∈的每一个邻域U 中都有A 中异于x 的点,即({})U A x -≠ΦI ,则称点x 是集合A 的一个凝聚点。
点集拓扑学试题(含答案)work Information Technology Company.2020YEAR三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( ) 答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:× 理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂; (2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√ 理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )答案:√理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集,所以{}p 是X 的开子集,且有{}{}()p A p φ-=,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )答案:× 理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )答案:√ 理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ=,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂=从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )√ 理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂. 答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此111()()(())g f W f g W ---=是X 的开集,所以:g f X Z →是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集. 答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.Authorware一、判断题1、Authorware 中设计窗口描述2、移动图标制作动画3、擦出图标的内容4、几何画板中的动画5、关于交互结构的描述6、显示图标的工具面板的描述7、8、显示图标层的描述9、10、显示图标的描述11、关于标志旗的描述12、系统变量的描述(计算图标)13、声音图标的描述14、显示图标中的对象排列二、单项选择1、定义的简称(缩写)2、移动图标的使用3、图标功能的描述4、5.、10、图标的操作(创建,编辑)6、交互结构,交互分支7、文本输入交互8、几何画板常见菜单9、计算图标的使用11、群组图标的操作12、显示模式(模式工具)13、图标操作14、显示图标操作15、交互16、交互17、显示图标中工具箱的操作18、图标的操作三、多项原则移动图标、交互四、填空题1、图标的名称(7-8)2、几何画板(几何变换)(移动,旋转)3、显示图标工具箱中的名称4、移动图标5中类型5、计算图标中运算符的使用五、简答题1、关于移动2、交互结构3、集合画板4、编程一、判断题1、如果为视频文件额外配置声音,那么须用声音图标和电影图标。
1、设{,,}X a b c =,下列集族中,X 上的拓扑是 ………………… ( ).① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =………………( )①φ ② X ③ {}b ④ {,,}b c d3、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为 ………………………………………… ( ) ① 1 ② 2 ③ 3 ④ 44、在实数空间中,有理数集Q 的边界()Q ∂是 ………………… () ① φ ② Q ③ R -Q ④ R5、在实数空间中,区间[0,1)的内部是 ……………………… () ① φ ② [0,1] ③ {0,1} ④ (0,1)6、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A =7、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =, 则X 的子空间A 的拓扑为 ………………………………………( ) ① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ=8、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是………………………………………( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射9、离散空间的任一子集为 ……………………………………… ( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭10、在实数空间R 中,下列集合是开集的是…………………………( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '二、填空题1、设{,}X a b =,则X 的平庸拓扑为 ;2、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;3、正则的1T 空间称为 ;4、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;5、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;四、证明题1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.3、设{}i x 是2T 空间X 的一个收敛序列,证明:{}i x 的极限点唯一.4、证明4T 空间中任何一个连通子集如果包含着多于一个点,则它一定是一个不可数集.5、设X 是一个正则空间,A 是X 的一个紧致子集,X Y ⊂.证明:如果A Y A ⊃⊃,则Y 也是X 的一个紧致子集.拓扑试题1卷一、单项选择题1、 ②2、④3、②4、④5、④6、 ③7、②8、④9、③ 10、④二、填空题1、{,}T X φ=2、可分空间3、3T 空间4、有限可积性质5、商映射三、证明题1、证明:如果()f X 是Y 的一个不连通子集,则存在Y 的非空隔离子集,A B 使得()f X A B =⋃ …………………………………………… 3分于是11(),()f A f B --是X 的非空子集,并且:111111111(()())(()())(()())(()())(()())f A f B f B f A f A f B f B f A f A B A B φ---------⋂⋃⋂⊂⋂⋃⋂=⋂⋃⋂=所以11(),()f A f B --是X 的非空隔离子集 此外,1111()()()(())f A f B f A Bf f X X ----⋃=⋃==,这说明X 不连通,矛盾.从而()f X 是Y 的一个连通子集. ………………………… 6分2、证明:若X 满足第一可数公理,则在X x ∈处,有一个可数的邻域基,设为V x ,因为X 是可数补空间,因此对x y X y ≠∈∀,,}{y X -是x 的一个开邻域,从而x y V V ∈∃ ,使得}{y X V y -⊂.于是'⊂y V y }{, …………………………………………………3分 由上面的讨论我们知道: }{}{}{}{y X y y x X y V y x X -∈-∈'⊂=-因为}{x X -是一个不可数集,而}{x X y uV -∈' 是一个可数集,矛盾. 从而X 不满足第一可数性公理. ………………………………6分3、证明:若极限点不唯一,不妨设1lim i i x y →∞=,2lim i i x y →∞=,其中12y y ≠,由于X 是2T 空间,故1y 和2y 各自的开邻域,U V ,使得U V φ⋂=.因1lim i i x y →∞=,故存在10N >,使得当1i N >时,i x U ∈;同理存在20N >,使得当2i N >时,i x V ∈.…………………………………………3分令12max{,}N N N =,则当i N >时,i x U V ∈⋂,从而U V φ⋂≠,矛盾,故{}i x 的极限点唯一. ………………………………6分4、证明:设C 是4T 空间X 中的一个连通子集,如果C 不只包含一个点,任意选取,,x y C x y ∈≠.对于4T 空间X 中的两个无交的闭集{},{}x y ,应用Urysohn 引理可见,存在一个连续映射:[0,1]f X →,使得()0f x =和()1f y =.………………………………………3分由于C 是X 的一个连通子集,从而()f C 连通,由于0,1()f C ∈, 所以()[0,1]f C =,由于[0,1]是一个不可数集,所以C 也是一个不可数集. ……………………………………………………………6分5、证明:设A 是任意一个由X 中的开集构成的Y 的覆盖,因此A 也是A 的一个覆盖,由于A 是X 的紧致子集,从而A 有有限个成员n A A ,,1 使得 ni i A A 1=⊃. …………………………………3分由于A 是正则空间的紧致子集,从而A 有一个开邻域U ,使得 n i i A U 1=⊂,从而有Y A A ni i ⊃⊃= 1,从而A 有有限子覆盖},,{1n A A ,因此Y 是X 的一个紧致子集. ………………6分。
、概念叙述1、拓扑空间4、闭包7、(有限)积空间10、连通集13、A空间16、Lindeloff 空间19、正规空间22、列紧空间二、判断题1、2、3、4、《点集拓扑》复习题7、拓扑空间中每个连通分支都是既开集又是闭集2、邻域、邻域系3、集合A的凝聚点9、在R中,a,bl是开集()5、基子基6、子空间10、映射f :X > Y是连续映射的=若拓扑空间X中序列〔X」收敛于8、隔离子集9、连通集x X,则扑拓空间Y中相应序列:f x?收敛于f(x)()11、连通分支12、局部连通空间11、设X为拓扑空间,C为连通分支, Y是X的一个连通子集,14、A2空间15、可分空间则Y C ( )17、T空间(i=1,2,3,4 )18、正则空间12、A2空间必为可分空间()20、紧致空间21、可数紧空间13、正则且正规空间必为T o空间()23、序列紧空间24、局部紧空间14、紧致空间的闭子集必为它的紧致子集()8、度量空间必是A2空间1x是集合A的一个凝聚点5、设X是一个拓扑空间,A X,则点( )有限集不可能有聚点在A-X中有一个序列收敛于x拓扑空间X的子集A是闭集的充要条件是A = A()设Y是拓扑空间X的子空间,A是Y的子集,则A在Y中的导集是A在X中的导集与Y的交。
6、度量空间也是拓扑空间()7、如果一个空间中有每个单点集都是闭集,那么这个空间必是离散空间1 8、拓扑空间X是一个连通空间当且仅当X中不存在既开又闭的5、若f :X > Y是同胚映射,则f X二丫非空真子集.()6、离散空间中任意子集的导集都是空集19、若拓扑空间中的子集A是连通集,则它的闭包A也是一个连通集。
20、设A、B是拓扑空间X中的两个连通子集,则A B也是X的一个连通子集()21、如果A、B是拓扑空间X中两个不交的开子集,则A、B必是X 中隔离子集()22、拓扑空间的可分性是一个可遗传性()23、正规空间必是Hausdoff空间()24、在一个紧致的T2空间中,一个集合是紧致子集=它是一个闭集()25、紧空间必是Lin del cf空间()26、度量空间中紧致集必是有界闭集()27、正则空间必是Hausdoff空间()28、设X=X1 X2是空间X1、X2的积空间,A X1,B X2分别是X1、X2 中闭集()29、设A、B是拓扑空间X中两个子集,并且,贝y有d B = d A ■ d B()30、若拓扑空间X是连通空间,则X必是局部连通空间()三、填空1、设f :X -;Y是同胚映射,则f必是一一一映射,并且和都是连续的。
| | | | || || | 线 线 | | | | | | | || |点集拓扑试题样卷2卷参考答案一、选择题 (将正确答案填入题后的括号内 ,每题3分,共18分)1、③2、②3、①4、②③5、①6、①②③④ 二、简答题(每题4分,共32分)1、设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,则称f 是一个同胚映射.2、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间.3、设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各自有一个开邻域,它们互不相交,则称X 是正则空间.4、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称 拓扑空间X 是一个紧致空间.5、设X 是一个拓扑空间,若X 有一个可数稠密子集,则称X 是一个可分空间。
6、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个列紧空间.7、设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.8、设X 是一个拓扑空间,[,]a b 是一个闭区间. 则X 是一个正规空间当且仅当对于X 中任意两个无交的闭集A 和B ,存在一个连续映射:[,]f X a b →,使得当x A ∈时()f x a =和当x B ∈时()f x b =.三 、判断下列各题的正误, 正确的打√,错误的打×,并说明理由(每题 5分,其中判断2分,理由3 分, 本题共10分) 1、答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、答案:√理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空间.四、证明题(共40分).1、证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂ ………………………………… 7分 2、证明:若X 满足第一可数公理,则在X x ∈处,有一个可数的邻域基,设为V x ,因为X 是有限补空间,因此对x y X y ≠∈∀,,}{y X -是x 的一个开邻域,从而x y V V ∈∃ ,使得}{y X V y -⊂. …………4分 于是'⊂y V y }{, 由上面的讨论我们知道:}{}{}{}{y X y yx X y V y x X -∈-∈'⊂=-因为}{x X -是一个不可数集,而}{x X y uV -∈' 是一个可数集,矛盾.从而X 不满足第一可数性公理. ……………………………………7分3、证明:若极限点不唯一,不妨设1lim i i x y →∞=,2lim i i x y →∞=,其中12y y ≠,由于X 是2T 空间,故1y 和2y 各自的开邻域,U V ,使得U V φ⋂=. …………………4分因1lim i i x y →∞=,故存在10N >,使得当1i N >时,i x U ∈;同理存在20N >,使得当2i N >时,i x V ∈.令12max{,}N N N =,则当i N >时,i x U V ∈⋂,从而U V φ⋂≠,矛盾,故{}i x 的极限点唯一. ……………………7分4、证明:对于x A '∀∈,则()f x x ≠,从而(),f x x 有互不相交的开邻域U 和V ,设1()W f U V -=⋂, …………………………………4分则W 是x 的开邻域,并且x W A '∈⊂,故A '是开集,从而A 是闭集. …………………………………………………7分5、证明:设C 是()f X 的一个由Y 中的开集构成的覆盖.对于任意C ∈C ,1()f C -是X 中的一个开集,由于c C X ∈⊃C,从而有:111()()(())C C f C f C f f X X ---∈∈=⊃=CC所以1()|f C C -∈A={C}是X 的开覆盖.由于X 是紧致空间,所以A 有一个有限子覆盖,设为111{(),,()}n f C f C --. …………………………………4分因为11111()()()n n f C f C f C C X ---⋃⋃=⋃⋃=,从而1()n C C f X ⋃⋃⊃,即1{,,}n C C 是 C 的一个子族并且覆盖()f X ,因此()f X 是Y 的一个紧致子集. ………………………………7分6、证明:对)(X f X x -∈∀,则x x f ≠)(,由于X 是Hausdorff 空间,存在x 和)(x f 的邻域V U ,1,使得Φ=⋂V U 1.又因为f 连续,故存在x 的邻域2U ,使得V U f ⊂)(2,令21U U U ⋂=,则U 是x 的邻域,且)(X f X U -⊂. ………………………………………………3分 事实上,若存在U z ∈使得)(X f z ∈,即 y X ∃∈使得)(y f z =.于是()()()f z ff y f y z ===,而V U f z f ⊂∈)()(,这样,Φ=⋂⊂⋂∈V U V U z 1,矛盾.所以)(X f X U -⊂,即)(X f 是闭集. …………………………………………………………5分。
| | | | | |
密 | | | | | | | | |
封 | | | | | | | |
点集拓扑试题样卷2
一二三四总分
代号学院
专业
年级
学号
姓名
备注:
①试卷首页必
须用统一的考试
命题专用纸,第
二页以后用专用
纸续页。
②试卷必须打
印成卷字迹要工整、清楚。
③各题留出答
案空白。
④试卷打印后
应认真校对,避
免卷面错误。
得分阅卷人一、选择题 (将正确答案填入题后的括号内 ,每题3分,
共18分)
1、已知{,,,,}
X a b c d e
=,下列集族中,是X上的拓扑.……( 3 )
①{,,{},{,},{,,}}
X a a b a c e
φ
=
T
②{,,{,,},{,,},{,,,}}
X a b c a b d a b c e
φ
=
T
③{,,{},{,}}
X a a b
φ
=
T
④{,,{},{},{},{},{}}
X a b c d e
φ
=
T
2、已知{,}
X a b
=,拓扑{,,{}}
X a
φ
=
T,则{}a是………………( 2 )
①φ②X③{}a④{}b
3、在实数空间R中给定如下等价关系:
~
x y⇔]1,
(
,-∞
∈
y
x或者]2,1(
,∈
y
x或者)
,2(
,+∞
∈
y
x
设在这个等价关系下得到的商集{[1],[2],[3]}
Y=,则Y的商拓扑是( 1 )
①{,,{[3]},{[2],[3]}}
Y
φ②{,,{[3]}}
Y
φ
③{,,{[3]},{[1],[2]}}
Y
φ④{,}
Y
φ
4、下列拓扑学的性质具有可遗传性的是………………………()
①连通性②
2
T③正则④正规
5、设{1,2}
X=,{,,{2}}
Xφ
=
T,则(,)
X T是………………( 1 )
①
T空间②
1
T空间③
2
T空间④
3
T
6、下列拓扑学的性质具有有限可积性的是……………………()
①连通性②紧致性③正则性④可分性
得分阅卷人
二、简答题(每题4分,共32分)
1、写出同胚映射的定义.
2、什么是不连通空间
3、什么是正则空间
4、写出紧致空间的定义.
5、写出可分空间的定义
共 6 页,第 1 页共 6 页,第 2 页
| | 线 线 | | | | | | | |
| |
| | | | | | |
封 | | | | | | | | |
线线 | | | | | | |
| |
点集拓扑试题样卷2卷参考答案
一、选择题 (将正确答案填入题后的括号内 ,每题3分,共18分)
1、③
2、②
3、①
4、②③
5、①
6、①②③④ 二、简答题(每题4分,共32分)
1、设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和
1:f Y X -→ 都是连续映射,则称f 是一个同胚映射.
2、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间.
3、设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各自有一个开邻域,它们互不相交,则称X 是正则空间.
4、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称 拓扑空间X 是一个紧致空间.
5、设X 是一个拓扑空间,若X 有一个可数稠密子集,则称X 是一个可分空间。
6、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个列紧空间.
7、设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.
8、设X 是一个拓扑空间,[,]a b 是一个闭区间. 则X 是一个正规空间当且仅当对于X 中任意两个无交的闭集A 和B ,存在一个连续映射:[,]f X a b →,使得当x A ∈时()f x a =和当x B ∈时
()f x b =.
三 、判断下列各题的正误, 正确的打√,错误的打×,并说明理由(每题 5分,其中判断2分,理由3 分, 本题共10分) 1、答案:√
理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1
)f A X -⊂(
,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.
理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空
间.
四、证明题(共40分).
1、证明:因为B A ,是X 的开集,从而Y B Y A ⋂⋂,是子空间Y 的开集.
又因B A Y ⋃⊂中,故)()(Y B Y A Y ⋂⋃⋂= ………………… 4分
由于Y 是X 的连通子集,则Y B Y A ⋂⋂,中必有一个是空集. 若Φ=⋂Y B ,则A Y ⊂;若Φ=⋂Y A ,则B Y ⊂ ………………………………… 7分 2、证明:若X 满足第一可数公理,则在X x ∈处,有一个可数的邻域基,
设为V x ,因为X 是有限补空间,因此对x y X y ≠∈∀,,}{y X -是x 的一个开邻域,从而x y V V ∈∃ ,使得}{y X V y -⊂. …………4分 于是'
⊂y V y }{, 由上面的讨论我们知道:
Y Y }
{}
{}{}{y X y y
x X y V y x X -∈-∈'⊂=
-
因为}{x X -是一个不可数集,而
Y }
{x X y u
V -∈' 是一个可数集,矛盾.
从而X 不满足第一可数性公理. ……………………………………7分
3、证明:若极限点不唯一,不妨设1lim i i x y →∞
=,2lim i i x y →∞
=,其中12y y ≠,由于X 是2T 空间,故1y 和2y 各自的开邻域,U V ,使得U V φ⋂=. …………………4分
因1lim i i x y →∞
=,故存在10N >,使得当1i N >时,i x U ∈;同理存在20N >,使得当2i N >时,i x V ∈.令12max{,}N N N =,则当i N >时,i x U V ∈⋂,从而U V φ⋂≠,矛盾,故{}i x 的极限点唯
一. ……………………7分
4、证明:对于x A '∀∈,则()f x x ≠,从而(),f x x 有互不相交的开邻域U 和V ,设1()W f U V -=⋂, …………………………………4分
则W 是x 的开邻域,并且x W A '∈⊂,故A '是开集,
从而A 是闭集. …………………………………………………7分
5、证明:设C 是()f X 的一个由Y 中的开集构成的覆盖.对于任意C ∈C ,1()f C -是X 中的一个开集,由于c C X ∈⊃U C ,从而有:
1
11()()(())C C f
C f C f f X X ---∈∈=⊃=U U C
C
所以1()|f C C -∈A={C}是X 的开覆盖.由于X 是紧致空间,所以A 有一个有限子覆盖,设为111{(),,()}n f C f C --L . …………………………………4分
因为11111()()()n n f C f C f C C X ---⋃⋃=⋃⋃=L L ,从而1()n C C f X ⋃⋃⊃L ,即1{,,}n C C L 是 C 的一个子族并且覆盖()f X ,因此()f X 是Y 的一个紧致子集. ………………………………7分
6、证明:对)(X f X x -∈∀,则x x f ≠)(,由于X 是Hausdorff 空间,存在x 和)(x f 的邻域V U ,1,使得Φ=⋂V U 1.又因为f 连续,故存在x 的邻域2U ,使得V U f ⊂)(2,令21U U U ⋂=,则U 是x 的邻域,且)(X f X U -⊂. ………………………………………………3分
事实上,若存在U z ∈使得)(X f z ∈,即 y X ∃∈使得)(y f z =.于是()()()f z f f y f y z ===o ,而V U f z f ⊂∈)()(,
这样,Φ=⋂⊂⋂∈V U V U z 1,矛盾.所以)(X f X U -⊂,即)(X f 是闭集. …………………………………………………………5分。