正态分布
- 格式:ppt
- 大小:827.50 KB
- 文档页数:28
正态分布(normal distribution )一、 定义 如果连续型随机变量取值分布呈现单峰、对称、两侧均匀变动的钟形分布,且能用下列函数描述其位置和形状特征的,则称之为正态分布。
概率密度函数, -∞<x<∞二、 参数1、可变参数(1)位置参数 μ E (x )=μ表达正态曲线在横轴的位置:μ3>μ2>μ11 2 3(2) 形态参数 σ表达正态曲线的偏尖峰形状和偏平阔形状:σ3>σ2>σ1 V(x)= σ2固定参数 (1)偏度系数 理论三阶矩 SK=∑(x-μ)3/nσ3=0 (2) 峰度系数 理论四阶矩 KU=∑(x-μ)4/nσ4=3 * 样本偏度系数g 1与样本峰度系数g 2公式复杂,可参阅其他教材。
三、图形及曲线与横轴向面积(概率)分布规律P{μ-σ<x<μ+σ}=0.6827P{μ-1.96σ<x<μ+1.96σ}=0.9500 P{μ-2.58σ<x<μ+2.58σ}=0.990022()())2X f X μσ-=-四、 应用1、描述资料分布2、依据面积分布规律求医学参考值范围3、质量控制方法中随机误差分布符合正态,可用一定范围作为质量警戒线和控线4、标准正态分布的U 值,可视为重要统计量,是大样本参数估计和假设检验的基础。
而且用于求资料某一定范围内分布的理论频数(n 、x 、s )已计算出例:已知x =50,S=10,N=200,求45<x<65的频数 解:令x 1=45 x 2=65U 1=(45-50)/10=-0.5, U 2=(65-50)/10=1.5 查U 值表Ф{-0.5< U 1<0}=0.5-0.3085=0.1915 Ф{0< U 2<1.5}=0.5-0.0668=0.4332 P{-0.5<U<1.5}=0.1915+0.4332=0.6247 200×0.6247=1255、正态分布式在特定条件下一些离散型分布的极限分布,这意味着只要符合特定条件,这些离散型分布亦可按正态近似法处理。
正态分布normal distribution正态分布一种概率分布。
正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。
服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。
它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。
当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。
μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。
多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。
C.F.高斯在研究测量误差时从另一个角度导出了它。
P.S.拉普拉斯和高斯研究了它的性质。
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。
例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。
一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。
从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。
正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。
附:这种分布的概率密度函数为:(如右图)正态分布公式正态分布1.正态分布:若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号~。
正态分布(Normal distribution)随机变量的概率分布随机变量的类型(数理统计)连续型变量:变量在某一实区间内任意取值;离散型变量:变量只能取有限个数或可列个数。
应用统计分为:数值变量和分类变量,对应于定量资料和定性资料(含等级资料)。
描述随机变量的两个函数●概率密度函数用f(X)表示,对于离散型变量f(X)是变量取X值的概率,常用P(X)表示。
●分布函数变量取小于等于X值所占的比例,显然:有()0F X≥'()()F X f X=()()xF X f X dX-∞=⎰正态分布正态分布(normal distribution ),也称高斯分布(Gaussian dist.),是最常见、最重要的一种连续型分布。
若一个随机变量的概率密度函数为则称这种分布为正态分布。
式中,π为圆周率;e 为自然对数的底。
其中的参数µ是均数,σ是标准差,正态分布可记为X ~Ν(µ,σ)。
正态分布的分布函数为:de Moivre(德)首先提出正态分布的概率曲线具有下述特点(1)正态分布只有一个高峰,高峰的位置在X=μ处。
(2)分布以均数为中心,中间高,两头低,左右完全对称的钟型曲线。
(3)正态分布的两个参数(μ和σ)分别决定了分布的位置和形状。
其中μ是位置参数,σ是形状参数。
当σ恒定时,μ愈大,正态曲线向右移动;反之,μ愈小,正态曲线向左移动。
若μ恒定,σ愈大(数据愈离散),正态曲线显得愈“矮胖”;反之,σ愈小(数据愈集中),正态曲线显得愈“瘦高”。
(5)对任一正态变量X 进行如下线性变换则u 一定服从于均数为零,标准差为1的正态分布,记为u ~N (0,1),称为标准正态分布(standard normal distribution ),其密度函数u 被称为标准正态变量或标准正态离差(standard normal deviate )。
此性质在实际工作中极为重要,给应用工作者提供了极大的方便。
正态分布简单解释
1 什么是正态分布?
正态分布,又称高斯分布,是概率统计学中的一种基本分布。
正态分布具有单峰性、对称性、钟形曲线的特点,是自然界中很多现象的统计分布。
2 正态分布的特点
正态分布的曲线正中间有一个顶峰,左右两侧对称,呈钟形。
这个顶峰代表了数据的平均值,也就是算术平均数。
而曲线两侧高度逐渐降低,代表了数据的集中程度。
曲线左右两侧的面积相等,也就是说左侧的面积等于右侧的面积,因此在平均值左右对称的情况下,有50%的数据落在平均值左边,有50%的数据落在平均值右边。
3 正态分布的应用
由于正态分布在自然界中很多现象中都具有普遍性和代表性,因此被广泛地应用于各种领域中。
例如,医疗诊断中使用正态分布来确定正常范围,制造业使用正态分布来控制产品质量,金融领域使用正态分布来进行风险分析等等。
此外,正态分布在统计学中也起着重要的作用,可以通过正态分布来推论总体参数,计算出置信区间和假设检验等。
4 正态分布的重要性
相信很多人都听过“大数定律”,那么正态分布对于这个定律的解释有很大的帮助。
基于中心极限定理,我们可以证明当样本容量达到一定程度时,样本均值的分布趋近于正态分布。
因此,正态分布在统计学中是非常重要的基础分布,也是许多分析方法的基础。
同时,在机器学习、人工智能等领域中,正态分布也是非常常用的一种概率分布,例如在回归分析中经常使用高斯分布来描述随机误差。
5 总结
正态分布在统计学中是非常基础和重要的概率分布,它的应用涵盖了各个领域。
理解和掌握正态分布的基本概念和特点,对于提高我们对大数据的分析能力和对实际问题的解决能力都具有重要意义。
正态分布
一:正态分布的概念和和图形
正态分布的概率密度函数为:
(-∞< X <+
∞) 式中,有4个常数,μ 为总体均数,σ 为总体标准差,π为圆周率,e 为自然
,π,e 为固定常数,仅X 为变量,代表图形上横轴的数值,f(X)为纵轴数
分布曲线。
正态分布曲线是一簇曲线。
二:正态分布图的特点
1 对称的钟型(在均数处最高) 2两侧逐渐下降 3两端在无穷远处与横轴无限接近。
三:正态分布的特征
特征一 正态分布是一单峰分布,高峰位置在均数X= μ 处。
特征二 正态分布以均数为中心,左右完全对称。
特征三 正态分布取决于两个参数,即均数μ 和标准差σ μμ
μ 变小,曲线沿横轴向左移动。
σ
示数据的离散程度,若σσ 。
特征四 有些指标不服从正态分布,但通过适当变换后服从正态分布,如对数正态分布。
特征五 正态分布曲线下的面积分布是有规律的。
无论σ
μ,
①正态密度函数曲线与横轴间的面积恒等于1或100%;
②正态分布是对称分布。
其对称轴为直线X=μX>μX<μ等,各占50%;
四:标准正态分布
将正态分布变量作标准化变换,就得到均数为0,标准差为1的标准正态分布 标准化变换公式: 正态分布的概率密度函数方程就简化为标准正态分布的概率密度函数方程:
,(-∞< u <+∞) 22
()21()2X f X e μσσπ--= f σμ
-=X u 2221)(u e u -=π
ϕ。
正态分布(Normaldistribution)也称“常态分布”,⼜名⾼斯分布常⽤希腊字母符号:
正态分布公式
曲线可以表⽰为:称x服从正态分布,记为 X~N(m,s2),其中µ为均值,s为标zhuan准差,X∈(-∞,+ ∞ )。
其中根号2侧部分可以看成密度函数的积分为1,你就可以看成为了凑出来1特意设置的⼀个框架⽆实际意义。
标准正态分布另正态分布的µ为0,s为1。
判断⼀组数是否符合正态分布主要看 P值是否⼤于0.05。
1、∫
不定积分
不定积分的定义为:若函数f(x)在某区间 I 上存在⼀个原函数F(x),则称F(x)+C(C为任意常数)为f(x)在该区间上的不定积分,记为
2、∮
闭合曲⾯积分
3、∝
⽆穷⼩
4、∞
⽆穷⼤
5、∨
集合符号,并
6、∧
集合符号,交
7、∑
求和符号,连加
8、∏
求积符号,连乘
9、∪
逻辑符号,并
10、≌
全等
11、∈
集合符号,属于
12、∵
因为
13、∴
所以
14、∽
相似
15、√
开⽅。
什么是正态分布正态分布(Normal Distribution),又称高斯分布(Gaussian Distribution),是概率论和统计学中最重要的概率分布之一。
它在自然界和社会科学中广泛应用,被认为是一种非常常见的分布模式。
正态分布的特点是呈钟形曲线,对称分布于均值周围。
其概率密度函数可以用以下公式表示:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2) / (2σ^2))其中,f(x)表示随机变量X的概率密度函数,x表示随机变量的取值,μ表示均值,σ表示标准差,π表示圆周率,e表示自然对数的底。
正态分布的均值和标准差决定了曲线的位置和形状。
均值决定了曲线的中心位置,标准差决定了曲线的宽度。
当均值为0,标准差为1时,曲线称为标准正态分布。
正态分布具有许多重要的性质和应用。
以下是正态分布的几个重要特点:1. 对称性:正态分布是对称的,均值处于曲线的中心位置,两侧的概率密度相等。
2. 峰度:正态分布的峰度较高,曲线较陡峭,尾部较平缓。
3. 独立性:正态分布的随机变量之间是相互独立的。
4. 中心极限定理:当样本容量足够大时,样本均值的分布接近正态分布。
正态分布在实际应用中具有广泛的应用。
以下是几个常见的应用场景:1. 自然科学:正态分布常用于描述测量误差、实验数据、物理量的分布等。
2. 社会科学:正态分布常用于描述人口统计数据、心理测量数据、考试成绩等。
3. 金融领域:正态分布常用于描述股票价格、利率、风险收益等。
4. 质量控制:正态分布常用于描述产品尺寸、重量、强度等的分布。
5. 生物学:正态分布常用于描述身高、体重、血压等生物特征的分布。
正态分布的应用不仅限于上述领域,还广泛应用于工程、经济学、环境科学等各个领域。
总之,正态分布是一种重要的概率分布,具有对称性、峰度高、独立性等特点。
它在自然界和社会科学中广泛应用,用于描述各种随机变量的分布。
了解正态分布的特点和应用,对于理解和分析实际问题具有重要意义。
正态分布正态分布(normal distribution)又名高斯分佈(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的概率分佈,在統計學的許多方面有著重大的影響力。
若隨機變量X服從一個數學期望為μ、標準方差為σ2的高斯分佈,記為:則其概率密度函數為常態分佈的期望值μ決定了其位置,其標準差σ決定了分佈的幅度。
因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。
我們通常所說的標準常態分佈是μ = 0,σ = 1的常態分佈(見右圖中綠色曲線)。
目录[隐藏]1 概要o 1.1 歷史2 正态分布的定義o 2.1 概率密度函數o 2.2 累積分佈函數o 2.3 生成函數▪ 2.3.1 動差生成函數▪ 2.3.2 特徵函數3 性質o 3.1 標準化正態隨機變量o 3.2 矩(英文:moment)o 3.3 生成正態隨機變量o 3.4 中心極限定理o 3.5 無限可分性o 3.6 穩定性o 3.7 標準偏差4 正態測試5 相關分佈6 參量估計o 6.1 參數的極大似然估計▪ 6.1.1 概念一般化o 6.2 參數的矩估計7 常見實例o7.1 光子計數o7.2 計量誤差o7.3 生物標本的物理特性o7.4 金融變量o7.5 壽命o7.6 測試和智力分佈[编辑]概要正態分布是自然科學與行為科學中的定量現象的一個方便模型。
各種各樣的心理學測試分數和物理現象比如光子計數都被發現近似地服從常態分佈。
儘管這些現象的根本原因經常是未知的,理論上可以證明如果把許多小作用加起來看做一個變量,那麼這個變量服從正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一種簡單的證明)。
正态分布出現在許多區域統計:例如, 採樣分佈均值是近似地正態的,既使被採樣的樣本總體並不服從正态分布。
另外,常態分布信息熵在所有的已知均值及方差的分佈中最大,這使得它作為一種均值以及方差已知的分佈的自然選擇。