单位脉冲函数
- 格式:doc
- 大小:248.00 KB
- 文档页数:4
信号与系统傅里叶变换对照表
傅里叶变换是信号与系统领域中非常重要的数学工具,它将一个时域信号转换为频域信号,可以帮助我们理解信号的频谱特性。
下面是一份傅里叶变换的对照表,列出了一些常见的信号和它们的傅里叶变换形式:
1. 单位冲激函数(单位脉冲):
时域表示,δ(t)。
频域表示,1。
2. 正弦函数:
时域表示,sin(2πft)。
频域表示,jπ[δ(f-f0) δ(f+f0)]
3. 余弦函数:
时域表示,cos(2πft)。
频域表示,1/2[δ(f-f0) + δ(f+f0)] 4. 矩形脉冲信号:
时域表示,rect(t/T)。
频域表示,T sinc(fT)。
5. 三角脉冲信号:
时域表示,tri(t/T)。
频域表示,T^2 sinc^2(fT)。
6. 高斯脉冲信号:
时域表示,exp(-πt^2/σ^2)。
频域表示,exp(-π^2f^2σ^2)。
7. 指数衰减信号:
时域表示,exp(-at)。
频域表示,1/(a+j2πf)。
8. 阶跃函数(单位阶跃函数):
时域表示,u(t)。
频域表示,1/(j2πf) + 1/2。
9. 周期方波信号:
时域表示,square(t/T)。
频域表示,(1/T)[δ(f-nf0) + δ(f+nf0)], n为整数。
以上仅列举了一些常见的信号及其傅里叶变换形式。
傅里叶变换对照表可以帮助我们在信号分析和系统设计中快速理解信号的频域特性,从而更好地理解信号与系统的行为和特性。
狄拉克函数傅里叶变换狄拉克函数(也称为“单位脉冲函数”)在数学和物理学中都有重要的应用。
而傅里叶变换则是一种常用的数学工具,可以将一个信号(比如音频或图像)分解成不同频率的基本成分。
本文将介绍狄拉克函数在傅里叶变换中的应用。
傅里叶变换可以将一个函数表示为一系列不同频率的正弦和余弦函数的加权和。
这个过程需要使用一个称为“基函数”的函数集合,通常是正弦和余弦函数。
但是,狄拉克函数也可以被用作基函数之一。
狄拉克函数在数学上被定义为:$$delta(t) =begin{cases}+infty & t = 00 & teq 0end{cases}$$这个函数在$t=0$处是无穷大的,但在其他地方都等于零。
由于这个函数只有一个非零值,所以它可以被看作是一个极窄的脉冲。
使用狄拉克函数作为基函数之一的傅里叶变换被称为“狄拉克傅里叶变换”。
在这种变换中,狄拉克函数被看做是一个特殊的“频率分量”,具有无限高的幅度和无限短的时间。
狄拉克傅里叶变换的表示方法与普通傅里叶变换类似,只是在求和式中加入了狄拉克函数的项。
对于一个函数$f(t)$,它的狄拉克傅里叶变换可以表示为:$$F(omega) = int_{-infty}^infty f(t) delta(t-tau)e^{-iomega t} dt$$其中,$tau$为脉冲函数的位置参数,$e^{-iomega t}$是傅里叶变换中的复指数函数。
狄拉克傅里叶变换的一个重要应用是在信号处理中。
由于狄拉克函数可以看做是一个脉冲,所以它可以用来模拟信号中的突发事件或者尖峰。
通过将信号与狄拉克函数做卷积运算,可以将信号中的尖峰提取出来,从而更好地分析信号的特性。
总之,狄拉克函数在傅里叶变换中的应用虽然不如正弦和余弦函数广泛,但在一些特殊情况下仍然有重要作用。
对于信号处理和物理学等领域的研究者,了解狄拉克函数傅里叶变换的基本原理和应用是非常有必要的。
已知系统函数求单位脉冲响应在信号与系统中,我们经常需要求解系统的单位脉冲响应。
单位脉冲响应是指,当输入信号为单位脉冲函数(即一个时间上的单位冲激)时,系统输出的响应函数。
单位脉冲函数可以表示为:$$\delta(t)=\begin{cases}0 & t<0 \\\infty & t=0 \\0 & t>0 \\\end{cases}$$$$x(t)=\delta(t)$$而对于一个线性时不变系统,其输出可以表示为输入信号和系统单位脉冲响应的卷积形式:因此,我们需要知道系统的单位脉冲响应$h(t)$才能求解输出信号$y(t)$。
现在,我们已知系统的传递函数,如何求解$h(t)$呢?有以下三种方法:1. 直接查表法对于某些常见的系统,如一阶低通滤波器、二阶带通滤波器等,其单位脉冲响应可以通过表格得到,因此使用直接查表法即可。
2. 法式求解法对于一般的系统,我们可以通过传递函数的拉普拉斯变换公式得到系统的单位脉冲响应。
具体来说,令传递函数为$H(s)$,则其拉普拉斯变换为:$$H(s)=\frac{Y(s)}{X(s)}$$此时,由于输入信号为单位脉冲函数$x(t)=\delta(t)$,因此有:$$X(s)=1$$因此,得到单位脉冲响应的拉普拉斯变换为:接着,我们可以通过拉普拉斯反变换得到$h(t)$:需要注意的是,这种方法只适用于系统传递函数存在的情况。
如果传递函数不存在,则需要使用第三种方法。
3. 时域响应求解法对于某些系统,其单位脉冲响应可以通过时域求解方法得到,例如一阶线性微分方程、RC电路等。
对于一般的系统,我们可以将系统分解为一些易于求解的子系统,例如串联的线性时不变系统可以分解为一系列一阶系统,从而利用时域方法求解每个子系统的单位脉冲响应,最终得到整个系统的单位脉冲响应。
总之,对于求解系统的单位脉冲响应,我们可以采用直接查表法、法式求解法和时域响应求解法等方法,根据具体情况选择相应的方法进行求解。
单位脉冲函数
单位脉冲函数(Unit Impulse Function)是数学中常用的一类函数,它经常用于信
号处理,特别是在数字信号处理中,主要用于滤波、卷积等操作。
它具有以下几个特点:
一、定义:单位脉冲函数δ(t)表示一类特殊的函数,它在t=0处具有无穷大的数值,其他任何时刻t处的值都为零,即:
δ(t)=
\begin{cases}
无穷大,& t=0 \\
0,& t\neq0
\end{cases}
二、表示:单位脉冲函数的图形表示如下:
三、性质:
1. δ(t)的定义域和值域都为R;
2. 在t=0处,函数δ(t)的定义极限为∞,而一般函数的定义极限为有限数值;
3. δ(t)的积分(积分不可分的绝对值)在所有t处都为1,即
$$∫_{-∞}^{+∞}\delta(t)dt=1$$
四、应用:
1. 单位脉冲函数δ(t)被广泛用于电路分析、信号处理、滤波和统计分析中;
2. 主要用在滤波器中,用单位脉冲函数来进行滤波操作,可以将信号函数通过一定
的滤波操作,滤除噪声或其它有害的因素,从而可以使信号函数变得清楚;
3. 在傅里叶变换中,单位脉冲函数δ(t)是一个核心概念,δ(t)可以通过一个无穷
级数表示,这也是傅里叶变换的基础;
4. 在现代电路理论中,单位脉冲函数也可以用来表示一类电磁波。
在无线电信号传
输中,当我们需要传输一个电磁波时,可以用这个单位脉冲函数来表示,从而可以高效地
传输电磁波信息,方便利用。
常用序列的z变换序列的Z变换是一种重要的信号分析工具,它通常用于将离散时间序列在复平面上表示。
在通信、控制、图像处理等领域都有广泛的应用。
常用序列的Z变换包括单位脉冲函数、单位阶跃函数、指数序列、正弦序列以及单位样值序列等。
我们来介绍单位脉冲函数的Z变换。
单位脉冲函数是一个离散时间序列,定义为:δ(n)={1, n=00, n≠0}它的Z变换可以表示为:Z{δ(n)}= 1这表示单位脉冲函数在Z域中的变换为常数1。
接下来,我们来介绍单位阶跃函数的Z变换。
单位阶跃函数是一个离散时间序列,定义为:u(n)={1, n≥00, n<0}它的Z变换可以表示为:Z{u(n)}= 1/(1-z^(-1))这表示单位阶跃函数在Z域中的变换为1除以(1-z的负1次方)。
接下来,我们来介绍指数序列的Z变换。
指数序列是一个离散时间序列,定义为:x(n)=a^n其中,a为常数,n为非负整数。
它的Z变换可以表示为:Z{x(n)}= 1/(1-az^(-1))这表示指数序列在Z域中的变换为1除以(1-a乘以z的负1次方)。
接下来,我们来介绍正弦序列的Z变换。
正弦序列是一个离散时间序列,定义为:x(n)=sin(ωn)其中,ω为角频率,n为非负整数。
它的Z变换可以表示为:Z{x(n)}= (z*sin(ω))/(z^2 - 2z*cos(ω) + 1)这表示正弦序列在Z域中的变换为z乘以sin(ω)除以(z的平方减2z乘以cos(ω)再加1)。
我们来介绍单位样值序列的Z变换。
单位样值序列是一个离散时间序列,定义为:x(n)= 1, n=0x(n)= 0, n≠0它的Z变换可以表示为:Z{x(n)}= 1+z^(-1)这表示单位样值序列在Z域中的变换为1加上z的负1次方。
除了上述常用序列的Z变换,还有许多其他类型的序列也可以进行Z变换,如矩形序列、三角波序列等。
Z变换是离散时间序列分析中的重要工具,可以帮助我们更好地理解和处理离散时间信号。
在物理和工程技术中, 有许多物理、力学现象具有脉冲性质. 它反映出除了连续分布的量以外,还有集中于一点或一瞬时的量,例如冲力、脉冲电压、点电荷、质点的质量等等. 研究此类问题需要引入一个新的函数,把这种集中的量与连续分布的量来统一处理。
单位脉冲函数,又称狄拉克(Dirac )函数,简记为δ一函数,便是用来描述这种集中量分布的密度函数.
下面我们通过两个具体的例子,说明这种函数引入的必要性.
1在原来电流为零的电路中, 某一瞬时(设为0=t )进入一单位电量的脉冲, 现在要确定电路上的电流)(t i , 以)(t q 表示上述电路中的电荷函数, 则
)(t q =⎩
⎨
⎧=≠,0,1,
0,0t t 由于电流强度是电荷函数对时间的变化率, 即
)(t i =
dt t dq )(=0lim →∆t t
t q t t q ∆-∆+)()(, 所以, 当0≠t 时, )(t i =0;当0=t 时,由于)(t q 不连续, 从而在普通导数意义下, )(t q 在这 一点是不能求导数的. 如果我们形式地计算这个导数, 得
)0(i =0
lim
→∆t t
q t q ∆-∆+)
0()0(=0lim →∆t (t ∆-1).∞=, 这表明在通常意义下的函数类中找不到一个函数能够表示这样的电流强度. 为此, 引进
一称为狄拉克(Dirac)的函数. 有了这种函数, 对于许多集中于一点或一瞬时的量, 例如点电荷点源, 集中于一点的质量及脉冲技术中的非常窄的脉冲等, 就能够象处理连续分布的量那样, 以统一的方式加以解决.
1 单位脉冲函数的定义
定义1 如果函数)(t δ称满足
)i )(t δ0=,(当0≠t 时) )ii
()1=⎰∞
∞
-dt t δ,或者()⎰=I
dt t 1δ,其中I 是含有0=t 的任何一个区间,则称)
(t δ为δ一函数.
. 更一般的情况下,如果函数满足
)i )(a t -δ0=,(当a t ≠时) )ii
()1=-⎰∞
∞
-dt a t δ,或者()⎰=-I
dt a t 1δ,其中I 是含有a t =的任何一个区间,
则称为)(a t -δ函数.
在现实生活中,这种函数并不存在,它只是如下特殊规律的数学抽象;在某定点非常狭小的区域内,所讨论的问题取非常的值;在这个领域之外,函数值处处为0.如函数
⎪⎩⎪⎨⎧+><+<<=-,
,,0;
,1
)(h a t a t h a t a h
a t h δ 则脉冲函数)(a t h -δ的极限为
lim →h )(a t h -δ=)(a t -δ,
而把)(a t -δ的积分理解为
lim
→h dt a t h ⎰
∞
∞
--)(δ=dt a t h
a a
h h ⎰
+→-)(lim 0
δ=11
=⎰
+dt h
h
a a
. 特殊情况下,0=a 时有
⎪⎩⎪⎨⎧><<<=,
,0,0;
0,1
)(h t t h t h
t h δ 于是
lim →h )(t h δ=)(t δ
lim
→h dt t h ⎰
∞
∞
-)(δ=dt t h h h ⎰→00
)(lim δ=11
0=⎰dt h
h
.
一般工程上都称δ一函数为单位脉冲函数,将δ一函数用一个长度等于1的有向线段来表示,这线段的长度表示δ一函数的积分值,称为δ一函数的强度.
下面我们推出δ一函数的一个重要结果,称为δ一函数的筛选性质:
若()t f 为连续函数,则有
()dt t f t ⎰
∞
∞
-)(δ=()0f . (1)
更一般情况,有
()dt t f a t ⎰
∞∞
--)(δ=()a f (2)
其中()t f 在a t =处连续.
由(1)可以求出单位脉冲函数的傅氏变换. )(a t -δ)(a t -δ
()=ωF F (){}t δ=()⎰∞
∞
--dt e t t i ωδ=1|0==-t t i e ω
可见, 单位脉冲函数)(t δ与常数1构成了一傅氏变换对;同理, )(a t -δ和t
i e ω-亦构成了一
个傅氏变换对.
同时,若()()ωπδω2=F 时,则由傅氏逆变换得
()()ωωπωd e F t f t
i ⎰∞
∞
-=
21=()ωωπδπ
ωd e t i ⎰
∞
∞
-221
=1|0==t t i e ω
故1和()ωπδ2也构成了一个傅氏变换对。
同理,)(20ωωπδ-和t
i e
0ω亦构成了一个傅氏变
换对.
需要指出的是,此处的广义积分是按(1)式计算的,不是普通意义下的积分值,我们称这种傅氏变换为广义的傅氏变换.
根据傅氏积分公式,函数()t f 能取傅里叶积分变换的前提条件是它首先应绝对可积即
()+∞<⎰
+∞
∞
-dt t f ,
实际上这个条件非常强,它要求()t f 条件较高,因而一些常见的函数都不满足这一点.如常数、符号函数、单位阶跃函数及正余弦函数等都不满足绝对可积的条件! 如此一来,较强的条件使得傅里叶变换的应用受到限制. 为克服这一缺陷,我们把单位脉冲函数及其傅氏变换应用到其他函数的傅氏变换中,得到它们的广义傅氏变换.
例1 证明单位跃阶函数()⎩⎨
⎧><=0
,10,0t t t u 的傅氏变换为()ωπδω+i 1
. 证明:首先注意,这里的变换显然指的是广义变换. 我们用考察逆变换的方法证明. 事实上,若()()ωπδω
ω+=
i F 1
,则 ()()ωωπωd e F t f t i ⎰∞∞-=
21 ()ωωπδω
πωd e i t
i ]1[21⎰∞∞-+= ωωπωd e i t i ⎰∞∞-=121+
()ωωπδπωd e t
i ⎰∞∞-21 2
1sin 10+=⎰∞ωωωπd t 为了说明()()t u t f =,就必须计算积分ωωωd t ⎰∞0sin ,由积分2
sin 0π
ωωω=⎰∞d ,有 ⎪⎪⎩⎪
⎪⎨⎧>=<-=⎰∞,,0,2
;0,0;
0,2sin 0t t t d t ππ
ωω
ω 将此结果代入()t f 的表达式,当0≠t 时,可得
()=t f 21sin 10+⎰∞ωωωπd t ⎪⎪⎩⎪⎪⎨⎧>+<+-=,0,2
1
1)2(;
0,2
1
1)2(t t ππππ
这就表明
()ωπδω+i 1的傅氏变换为()()t u t f =,因此,()t u 和()ωπδω
+i 1构成了一个傅氏变换对。
所以单位跃阶函数()t u 的积分表达式可以写成
()t u 2
1
sin 1
+
=
⎰
∞
ωω
ωπ
d t
, ()0≠t 例2 求正弦函数 ()t t f 0sin ω=的傅氏变换. 解:()dt e
t F t
i ωωω-+∞
∞
-⎰
=0sin =⎰∞
∞----dt e i
e e t
i t i t i ωωω200 ()()[]
d t
e e i t
i t i ⎰∞∞-+----=
0021ωωωω ()()[]002221
ωωπδωωπδ+--=i
=π
i ()()[]00ωωδωωδ--+.
即F{t 0sin ω}=π
i ()()[]00ωωδωωδ--+.同理,可得
F{t 0cos ω}=π
i ()()[].00ωωδωωδ-++
注:我们介绍δ一函数,主要是提供一个应用工具,而不去追求数学上的严谨性.。