第三节(脉冲函数)
- 格式:ppt
- 大小:818.00 KB
- 文档页数:15
8种常见的拉普拉斯变换,想搞不懂都难!拉普拉斯变换(拉⽒变换)是⼀种解线性微分⽅程的简便运算⽅法,是分析研究线性动态系统的有⼒数学⼯具。
简单点说,我们可以使⽤它去解线性微分⽅程,⽽控制⼯程中的⼤多数动态系统可由线性微分⽅程去描述,因此拉⽒变换是控制⼯程领域必不可少的基础。
什么是拉⽒变换呢?⾸先,我们来看⼀下拉⽒变换的定义——设时间函数为f(t),t>0,则f(t)的拉普拉斯变换定义为:其中,f(t)称为原函数,F(s)称为象函数。
⼀个函数可以进⾏拉⽒变换的充要条件为:(1)在t<0时,f(t)=0;(2)在t≥0的任⼀有限区间内,f(t)是分段连续的;(3)当t→﹢∞时,f(t)的增长速度不超过某⼀指数函数,即:接下来为⼤家介绍⼏种常见的时间常数拉⽒变换,⼤家在看下⾯⼏种时间常数拉⽒变换的时候可将⼏个时间常数与这三个条件⼀⼀对应,有助于理解记忆。
1、单位脉冲函数单位脉冲函数数学表达式为:其对应的图像为:我们来看⼀个脉冲信号:从图中可看出,脉冲函数就像脉冲信号⼀样,在时间的⼀个微段dt内,信号强度快速增长,可达到⽆穷⼤,⽽单位脉冲函数指的是其微段dt与增长的⾼度的乘积为1,即h(dt)=1。
其拉⽒变换为:该函数有⼀个重要性质:f(t)为任意连续函数,当f(t)=e^(-st)时,该性质即可看为单位脉冲函数的拉⽒变换。
2、单位阶跃函数单位阶跃函数的数学表达式为:其函数图像为:其拉⽒变换为:3、单位斜坡函数单位斜坡函数的数学表达式为:函数图像为:其拉⽒变换为:其被积函数为幂函数与指数函数乘积,使⽤分部积分法求解(反对幂三指),这只是推到过程,我们使⽤的时候只需记住t的拉⽒变换为1/s^2即可。
4、单位加速度函数单位加速度函数的数学表达式为:其函数图像为:其拉⽒变换为:求解过程与单位斜坡函数的拉⽒变换求解过程相同,这⾥只需记住1/2T^2的拉⽒变换为1/s^3。
5、指数函数指数函数的数学表达式为:其函数图像为:其拉⽒变换为:求解过程为凑微分法。
3-2 脉冲响应函数对于线性定常系统,其传递函数)(s Φ为)()()(s R s C s =Φ式中)(s R 是输入量的拉氏变换式,)(s C 是输出量的拉氏变换式。
系统输出可以写成)(s Φ与)(s R 的乘积,即)()()(s R s s C Φ= (3-1) 下面讨论,当初始条件等于零时,系统对单位脉冲输入量的响应。
因为单位脉冲函数的拉氏变换等于1,所以系统输出量的拉氏变换恰恰是它的传递函数,即)()(s s C Φ= (3-2) 由方程(3-2)可见,输出量的拉氏反变换就是系统的脉冲响应函数,用)(t k 表示,即1()[()]k t s -=Φ脉冲响应函数)(t k ,是在初始条件等于零的情况下,线性系统对单位脉冲输入信号的响应。
可见,线性定常系统的传递函数与脉冲响应函数,就系统动态特性来说,二者所包含的信息是相同的。
所以,如果以脉冲函数作为系统的输入量,并测出系统的响应,就可以获得有关系统动态特性的全部信息。
在具体实践中,与系统的时间常数相比,持续时间短得很多的脉动输入信号就可以看成是脉冲信号。
设脉冲输入信号的幅度为11t ,宽度为1t ,现研究一阶系统对这种脉动信号的响应。
如果输入脉动信号的持续时间t )0(1t t <<,与系统的时间常数T 相比足够小,那么系统的响应将近似于单位脉冲响应。
为了确定1t 是否足够小,可以用幅度为12t ,持续时间(宽度)为21t 的脉动输入信号来进行试验。
如果系统对幅度为11t ,宽度为1t 的脉动输入信号的响应,与系统对幅度为12t ,宽度为21t 的脉动输入信号的响应相比,两者基本上相同,那么1t 就可以认为是足够小了。
图3-3(a)表示一阶系统脉动输入信号的响应曲线;图3-3(c)表示一阶系统对脉冲输入信号的响应曲线。
应当指出,如果脉动输入信号T t 1.01<(图3-3(b)所示),则系统的响应将非常接近于系统对单位脉冲信号的响应。