单位脉冲函数及傅里叶变换的性质
- 格式:ppt
- 大小:541.50 KB
- 文档页数:32
傅⾥叶变换三部曲(⼆)·傅⾥叶变换的定义Part1:傅⾥叶级数的复数形式设f(x)是周期为l的周期函数,若f(x)∼a02+∞∑n=1(a n cosnπxl+bn sinnπxl),an=1l∫l−lf(x)cosnπxl d x,(n=0,1,2,…)bn=1l∫l−lf(x)sinnπxl d x.(n=1,2,…)记ω=πl,引进复数形式:cos nωx=e i nωx+e−i nωx2,sin nωx=e i nωx−e−i nωx2i级数化为f(x)∼a02+∞∑n=1(a ne i nωx+e−i nωx2+bne i nωx−e−i nωx2i)=a02+∞∑n=1(a n−ib n2e i nωx+a n+ib n2e−i nωx)令c0=a02,cn=a n−ib n2,dn=a n+ib n2,则c0=12l∫l−lf(x)d x,c n=12l∫l−lf(x)(cos nωx−isin nωx)d x=12l∫l−lf(x)e−i nωx d x,d n=12l∫l−lf(x)(cos nωx+isin nωx)d x=12l∫l−lf(x)e i nωx d x≜c−n=¯c n,(n=1,2,…)合并为c n=12l=∫l−lf(x)e−i nωx d x,(n∈Z)级数化为+∞∑n=−∞c n e−i nωx=12l+∞∑n=−∞∫l−l f(x)e−i nωx d x e i nωx我们称c n为f(x)的离散频谱(discrete spectrum),|c n|为f(x)的离散振幅频谱(discrete amplitude spectrum),arg c n为f(x)的离散相位频谱(discrete phase spectrum).对任何⼀个⾮周期函数f(t)都可以看成是由某个由某个周期为l的函数f(x)当l→∞时得来的.Part2:傅⾥叶积分和傅⾥叶变换傅⾥叶积分公式设f T(t)是周期为T的周期函数,在[−T2,T2]上满⾜狄利克雷条件,则f T(t)=1T∞∑n=−∞∫T2−T2f T(t)e−j nωt d t e j nωt,ω=2πT(上式中j是虚数单位,在傅⾥叶分析中我们不⽤i⽽通常记作j)由limT→∞f T(t)=f(t)知,f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt记Δω=2πT,则Δω→0⇔T→∞,则f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt=limΔω→012π+∞∑n=−∞∫T2T2f T(t)e−j nωt d t e j nωtΔω[][][]令F T(nω)=∫T2−T2f T(t)e−j nωt d t,则f(t)=limΔω→012π+∞∑n=−∞F T(nω)e j nωtΔω,F T(t)→∫+∞−∞f(t)e−jωt d t≜F(ω)(T→∞),由定积分定义f(t)=12π∫+∞−∞F(ω)e jωt dω,即f(t)=12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω上述公式称为傅⾥叶积分公式.傅⾥叶积分存在定理若f(t)在任何有限区间上满⾜狄利克雷条件,且在R上绝对可积,则12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω=f(t),t为连续点,f(t−)+f(t+)2,t为间断点.傅⾥叶变换设f(t)满⾜傅⾥叶积分存在定理,定义F(ω)=∫+∞−∞f(t)e−jωt d t 为f(t)的傅⾥叶变换(Fourier Transform)(实际上是⼀个实⾃变量的复值函数),记作F(ω)=F[f(t)]类似地,定义f(t)=12π∫+∞−∞F(ω)e−jωt dω为F(ω)的傅⾥叶逆变换(Inverse Fourier Transform),记作f(t)=F−1[F(ω)]在⼀定条件下,有F[f(t)]=F(ω)⇒F−1[F(ω)]=f(t);F−1[F(ω)]=f(t)⇒F[f(t)]=F(ω). f(t)与F(ω)在傅⽒变换意义下是⼀个⼀⼀对应,称f(t)与F(ω)构成⼀个傅⽒变换对,记作f(t)F↔F(ω)在不引起混淆的情况下,简记为f(t)↔F(ω).f(t)称为原象函数(original image function),F(ω)称为象函数(image function).在频谱分析中,F(ω)⼜称为f(t)的频谱(密度)函数(spectrum function),|F(ω)|称为f(t)的振幅频谱(amplitude spectrum),arg F(ω)称为f(t)的相位频谱(phase spectrum).下⾯我们来求⼏个常见信号函数的傅⽒变换.例1 求矩形脉冲函数(rectangular pulse function)R(t)=1,|t|≤1, 0,|t|>1的傅⽒变换及其频谱积分表达式.解:F(ω)=F[R(t)]=∫+∞−∞R(t)e−jωt d t=∫1−1R(t)e−jωt t=e−jωt−jω1−1=−e−jω−e jωjω=2sinωω;R(t)=12π∫∞−∞F(ω)e jωt dω=1π∫+∞F(ω)cosωt dω=1π∫+∞2sinωωcosωt dω=2π∫+∞sinωcosωtωdω=1,|t|<1, 12,|t|=1, 0,|t|>1因此可知,当t=0时,有[] []{{ []{∫+∞0sin t xd t =π2例2 求指数衰减函数(exponential decay function)E (t )=0,t <0,e −βt ,t ≥0的傅⽒变换及其频谱积分表达式,其中β>0为常数.解:F (ω)=F [E (t )]=∫+∞−∞E (t )e −j ωt d t=∫+∞0e −βt e −j ωtd t =∫+∞0e (β+j ω)t d t =1β+j ωβ−j ωβ2+ω2E (t )=12π∫+∞−∞F (ω)e j ωt ω=12π∫+∞−∞β−j ωβ2+ω2e j ωtω=1π∫+∞βcos ωt +ωsin ωtβ2+ω2d ω=0,t <0,12,t =0,e −βt ,t >0Part3:单位脉冲函数我们记电流脉冲函数q (t )=0,t ≠0,1,t =0,严格地,由于q (t )在t =0出不连续,所以q (t )在t =0点是不可导的.但是,如果我们形式地计算这个导数,有q ′(0)=limΔt →0q (0+Δt )−q (0)Δt=limΔt →0−1Δt=∞我们引进这样⼀个函数,称为单位脉冲函数(unit pulse function)或狄拉克(Dirac)函数,简记为δ−函数,即δ(t )=0,t ≠0,∞,t =0,⼀般地,给定⼀个函数序列δε(t )=0,t <0,1ε,0≤t ≤ε,0,t >ε则有δ(t )=lim ε→0δε(t )=0,t ≠0,∞,t =0于是∫+∞−∞δ(t )d t =limε→0∫+∞−∞δεd t =limε→0∫ε01εd t =1若设f (t )为连续函数,则δ−函数有以下性质:∫+∞−∞δ(t )f (t )d t =f (0);∫+∞−∞δ(t −t 0)f (t )d t =f (t 0)于是我们可得:F [δ(t )]=∫+∞−∞δ(t )e −j ωt t =e −j ωt t =0=1于是δ(t )与常数1构成了⼀对傅⾥叶变换对.例3: 证明:e j ω0t ↔2πδ(ω−ω0)其中ω0是常数.证:{{{{{{|f(t)=F−1[F(ω)]=12π∫+∞−∞2πδ(ω−ω0)e jωt dω=e jωtω=ω=e jω0t在物理学和⼯程技术中,有许多重要函数不满⾜傅⽒积分定理中的绝对可积条件,即不满⾜条件∫+∞−∞|f(t)|d t<∞例如常数,符号函数,单位阶跃函数以及正,余弦函数等, 然⽽它们的⼴义傅⽒变换也是存在的,利⽤单位脉冲函数及其傅⽒变换就可以求出它们的傅⽒变换.所谓⼴义是相对于古典意义⽽⾔的,在⼴义意义下,同样可以说,原象函数f(t)和象函数F(ω)构成⼀个傅⽒变换对.例求正弦函数f(t)=sinω0t的傅⽒变换.解:F(ω)=F[f(t)]=∫+∞−∞f(t)e−jωt d t=∫+∞−∞e jω0t−e−jω0t2je−jωt d t=12j∫+∞−∞e−j(ω−ω0)t−e−j(ω+ω0)t d t=jπδ(ω+ω0)−δ(ω−ω0)同样我们易得F(cosω0t)=πδ(ω+ω0)+δ(ω−ω0)例证明:单位阶跃函数(unit step function)u(t)=0,t<0, 1,t>0的傅⽒变换为F[u(t)]=1jω+πδ(ω)证:F−11jω+πδ(ω)=12π∫+∞−∞1jω+πδ(ω)e jωt dω=12π∫+∞−∞[πδ(ω)]e jωt dω+12π∫+∞−∞1jωe jωt dω=12+12π∫+∞−∞cosωt+jsinωtjωdω=12+12π∫+∞−∞sinωtωdω=12+1π∫+∞sinωtωdω∫+∞0sinωtωdω=π2,t>0,−π2,t<0⇒F−11jω+πδ(ω)=12+1π−π2=0,t<012,t=0,12+1ππ2=1,t>0=u(t).本⽂完|()[][]{[][][][][][] { []{()()。
一、傅里叶变换1、傅里叶积分存在定理:设()f t 定义在(),-∞+∞内满足条件:1)()f t 在任一有限区间上满足狄氏条件; 2)()f t 在(),-∞+∞上绝对可积(即()f t dt +∞-∞⎰收敛;则傅氏积分公式存在,且有()()()()()(),1[]11002,2iw iwt f t t f t f e d e dw f t f t t f t τττπ+∞+∞--∞-∞⎧⎪=-⎨++-⎪⎩⎰⎰是的连续点是的第一类间断点2、傅里叶变换定义式:()[]()()iwt F f t F w f t e dt +∞--∞==⎰ 1-2 傅里叶逆变换定义式:()11[]()()2iwt F F w f t F w e dw π+∞--∞==⎰1-33、常用函数的傅里叶变换公式()1()FFf t F ω-−−→←−− 矩形脉冲函数1,22()sin 20,2F F E t E f t t ττωτω-⎧≤⎪⎪−−→=⎨←−−⎪>⎪⎩1-4 单边指数衰减函数()()1,0110,0tFFe t e t F e t iw j t βββω--⎧≥−−→=⇒=⎡⎤⎨←−−⎣⎦++<⎩ 1-5 单位脉冲函数 ()11FFt δ-−−→←−− 1-6 单位阶跃函数 ()()11FFu t w iwπδ-−−→+←−− 1-7 ()112F Fw πδ-−−→←−− 1-8 ()12F Ft j πδω-−−→'←−− 1-9 ()0102F j t Fe ωπδωω-−−→-←−− 1-10 ()()1000cos FFt ωπδωωδωω-−−→++-⎡⎤←−−⎣⎦1-11()()1000sin F Ft j ωπδωωδωω-−−→+--⎡⎤←−−⎣⎦1-12 4、傅里叶变换的性质设()()[]F f t F w =, ()()[]i i F f t F w =(1)线性性:()()1121()()FFf t f t F F αβαωβω-−−→++←−−1-13 (2)位移性:()()010Fj t Ff t t e F ωω--−−→-←−− 1-14 ()010()F j t Fe f t F ωωω-−−→-←−− 1-15 (3)微分性:()1()FFf t j F ωω-−−→'←−− 1-16 ()()()1()F n n Ff t j F ωω-−−→←−− 1-17 ()()1()FFjt f t F ω-−−→'-←−− 1-18 ()()()()1()Fn n Fjt f t F ω-−−→-←−− 1-19 (4)积分性:()11()tFFf t dt F j ωω--∞−−→←−−⎰ 1-20 (5)相似性:11()FFf at F a a ω-⎛⎫−−→←−− ⎪⎝⎭1-21 (6)对称性:()1()2FFF t f πω-−−→-←−− 1-22 上面性质写成变换式如下面:(1)线性性:[]1212()()()()F f t f t F w F w αβαβ⋅+⋅=⋅+⋅ 1-13-1[]11212()()()()F F w F w f t f t αβαβ-⋅+⋅=⋅+⋅(,αβ是常数)1-13-2(2)位移性:[]0()F f t t -=()0iwt e F w - 1-14()000()()iw t w w w F e f t F w F w w =-⎡⎤==-⎣⎦ 1-15(3)微分性:设+∞→t 时,0→)t (f , 则有[]()()()()[]()F f t iw F f t iw F w '== 1-16()()()()()[]()n n n F f t iw F f t iw F w ⎡⎤==⎣⎦1-17[]()()dF tf t jF w dw= 1-18 ()()nnnn d F t f t j F w dw ⎡⎤=⎣⎦ 1-19(4)积分性:()()tF w F f t dt iw-∞⎡⎤=⎢⎥⎣⎦⎰ 1-20(5)相似性:[]1()()wF f at F a a=1-21-1 翻转性:1=a 时()()w F t f F -=-][ 1-21-2(6)对称性:设 ()()w F t f −→←,则 ()()w f t F π2−→←- 或 ()()2F t f w π←−→- 1-225、卷积公式 :)()(21t f t f *=τττd t f f )()(21-⎰+∞∞-。
阐述脉冲响应函数h(t)与频率响应函数H(jω),与传递函数H(s)的关系。
在信号与系统领域中,脉冲响应函数h(t)、频率响应函数H(jω)和传递函数H(s)都是常见的概念。
它们之间存在着密切的联系和相互转换的关系。
一、脉冲响应函数h(t)的定义和作用脉冲响应函数h(t)是指系统对一个单位脉冲信号的响应。
一般情况下,系统的输出信号可以看作是输入信号与系统脉冲响应函数的卷积积分。
因此,脉冲响应函数是描述线性时不变系统动态特性的一个重要参数。
二、频率响应函数H(jω)的定义和作用频率响应函数H(jω)是指在复平面上,系统传输函数H(s)在s=jω处的取值,其中j表示虚数单位。
频率响应函数描述了系统对不同频率的输入信号的变化,可通过傅里叶变换或拉普拉斯变换得到。
三、传递函数H(s)的定义和作用传递函数H(s)是指输入信号与响应信号的相对传递函数。
它是描述线性时不变系统动态行为的函数。
系统的传递函数可以通过脉冲响应函数h(t)与拉普拉斯变换相结合得到。
四、脉冲响应函数、频率响应函数与传递函数的关系1. 脉冲响应函数与传递函数的关系在时域中,我们有:h(t) = L^{-1} {H(s)}其中,L^{-1}表示拉普拉斯反变换的运算。
这个式子告诉我们,脉冲响应函数h(t)是由传递函数H(s)与拉普拉斯反变换组合而成。
2. 频率响应函数与传递函数的关系在频域中,我们有:H(jω) = H(s) |_{s=jω}这个式子告诉我们,频率响应函数H(jω)是由传递函数H(s)在s=jω处的取值所组成。
因此,我们可以通过对传递函数H(s)的计算,得到频率响应函数H(jω)的信息。
3. 脉冲响应函数与频率响应函数的关系根据傅里叶变换的性质,可得到:H(jω) = \int_{-\infty}^{+\infty} {h(t) e^{-jωt} dt}这个式子告诉我们,频率响应函数H(jω)可以通过脉冲响应函数h(t)的傅里叶变换来得到。
机械⼯程测试技术基础知识点总结《机械⼯程测试技术基础》知识点总结1. 测试是测量与试验的概括,是⼈们借助于⼀定的装置,获取被测对象有相关信息的过程。
测试⼯作的⽬的是为了最⼤限度地不失真获取关于被测对象的有⽤信息。
分为:静态测试,被测量(参数)不随时间变化或随时间缓慢变化。
动态测试,被测量(参数)随时间(快速)变化。
2. 基本的测试系统由传感器、信号调理装置、显⽰记录装置三部分组成。
传感器:感受被测量的变化并将其转换成为某种易于处理的形式,通常为电量(电压、电流、电荷)或电参数(电阻、电感、电容)。
信号调理装置:对传感器的输出做进⼀步处理(转换、放⼤、调制与解调、滤波、⾮线性校正等),以便于显⽰、记录、分析与处理等。
显⽰记录装置对传感器获取并经过各种调理后的测试信号进⾏显⽰、记录、存储,某些显⽰记录装置还可对信号进⾏分析、处理、数据通讯等。
3. 测试技术的主要应⽤:1. 产品的质量检测 2.作为闭环测控系统的核⼼ 3. 过程与设备的⼯况监测4. ⼯程实验分析。
4. 测试技术是信息技术的重要组成部分,它所研究的内容是信息的提取与处理的理论、⽅法和技术。
现代科学技术的三⼤⽀柱:能源技术材料技术信息技术。
信息技术的三个⽅⾯:计算机技术、传感技术、通信技术。
5. 测试技术的发展趋势: (1) 1. 传感技术的迅速发展智能化、可移动化、微型化、集成化、多样化。
(2)测试电路设计与制造技术的改进(3)计算机辅助测试技术应⽤的普及(4)极端条件下测试技术的研究。
6. 信息:既不是物质也不具有能量,存在于某种形式的载体上。
事物运动状态和运动⽅式的反映。
信号:通常是物理、可测的(如电信号、光信号等),通过对信号进⾏测试、分析,可从信号中提取出有⽤的信息。
信息的载体。
噪声:由测试装置本⾝内部产⽣的⽆⽤部分称为噪声,信号中除有⽤信息之外的部分。
(1)信息和⼲扰是相对的。
(2)同⼀信号可以反映不同的信息,同⼀信息可以通过不同的信号来承载。
傅里叶变换的定义及基本概念
傅里叶变换是一种能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合的方法。
它可以在不同的研究领域中,如数字信号处理、热过程的解析分析等中,有不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换的定义和基本概念如下:
傅里叶变换的基本性质:包括对称性质、奇偶性质、线性性质、时移性质、频移性质、尺度变换性质、卷积定理、时域微积分等。
傅里叶变换的收敛性:在一个周期内具有有限个极值点,绝对可积。
傅里叶变换的充要条件:函数在xoy全平面上绝对可积,即函数在xoy全平面上每一个有限区域内局部连续,仅存在有限个间断点;函数没有无限大间断点。
广义傅里叶变换:对于某些无法满足存在条件的函数,如sgn(x)、step(x)、三角函数、脉冲函数等,需要推广傅里叶变换的定义,即广义傅里叶变换。
傅里叶变换基础知识1•傅里叶级数展幵最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。
1.1周期信号的傅里叶级数在有限区间上,任何周期信号双/)只要满足狄利克雷(dmclilet)条件,都可以展开成傅里叶级数。
1・1・1狄利克雷(duichlet)条件狄利克雷(duichlet)条件为:(1)信号双/)在一个周期内只有有限个第一类间断点(当t从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2 )信号/ (t)在一周期内只有有限个极人值和极小值;(3 )信号在一个周期内是绝对可积分的,即应为有限值。
1.1.2间断点在非连续函数y二f{・x)中某点处心处有中断现彖,那么,兀就称为函数的不连续点。
(1)第一类间断点(有限型间断点):a.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(兀令分母为零时等情况);b.跳跃间断点:函数在该点左极限、右极限存在,但不相等(y = lxl/x°在点x = 0处等情况)。
(2)第二类间断点:除第一类间断点的间断点。
1.13傅里叶级数三角函数表达式傅里叶级数三角函数表达式为X X0=仇+乞(①cos“q/ +加• • •J1-1式中:心为信号的常值分量;色为信号的余弦信号幅值:你为信号的正弦信号幅值。
%、心、》分别表示为:==J :) cosncootdtx{ t )sinncootdt式中:7;为信号的周期;。
为信号的基频,即角频率,$=2龙/7;「=1,2,3...。
合并同频项也可表示为X (t)二% + 艺 A cos (gf + q)H-l式中:信号的幅值人和初相位q分别为人=虫+丐2 =arcnm (・b” /心)1.1.4频谱的相矢概念(1) 信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化矢系,即信号的结构,是(或&・/)和q 厂3 (或2・/)的统称;(2) 信号的幅频谱:周期信号幅值人随e (或/)的变化尖系,用(或A ・/>表示; (3) 信号的相频谱:周期信号相位仇随e (或f )的变化矢系,用0,弋。
傅里叶变换基础知识1. 傅里叶级数展开最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。
周期信号的傅里叶级数在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。
狄利克雷(dirichlet )条件狄利克雷(dirichlet )条件为:(1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2)信号()x t 在一周期内只有有限个极大值和极小值;(3)信号在一个周期内是绝对可积分的,即00/2/2()dt T T x t -⎰应为有限值。
间断点在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。
(1)第一类间断点(有限型间断点):a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况);b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。
(2)第二类间断点:除第一类间断点的间断点。
傅里叶级数三角函数表达式傅里叶级数三角函数表达式为0001()(cos sin )n n n x t a a n t b n t ωω∞==++∑式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。
0a 、n a 、n b 分别表示为: 000000/20/20/20/20/20/201()2()cos 2()sin T T T n T T n T a x t dtT a x t n tdt T b x t n tdtT ωω---===⎧⎪⎪⎪⎨⎪⎪⎪⎩⎰⎰⎰ 式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。