6.3 单位脉冲函数及其傅里叶变换
- 格式:ppt
- 大小:698.00 KB
- 文档页数:14
傅⾥叶变换三部曲(⼆)·傅⾥叶变换的定义Part1:傅⾥叶级数的复数形式设f(x)是周期为l的周期函数,若f(x)∼a02+∞∑n=1(a n cosnπxl+bn sinnπxl),an=1l∫l−lf(x)cosnπxl d x,(n=0,1,2,…)bn=1l∫l−lf(x)sinnπxl d x.(n=1,2,…)记ω=πl,引进复数形式:cos nωx=e i nωx+e−i nωx2,sin nωx=e i nωx−e−i nωx2i级数化为f(x)∼a02+∞∑n=1(a ne i nωx+e−i nωx2+bne i nωx−e−i nωx2i)=a02+∞∑n=1(a n−ib n2e i nωx+a n+ib n2e−i nωx)令c0=a02,cn=a n−ib n2,dn=a n+ib n2,则c0=12l∫l−lf(x)d x,c n=12l∫l−lf(x)(cos nωx−isin nωx)d x=12l∫l−lf(x)e−i nωx d x,d n=12l∫l−lf(x)(cos nωx+isin nωx)d x=12l∫l−lf(x)e i nωx d x≜c−n=¯c n,(n=1,2,…)合并为c n=12l=∫l−lf(x)e−i nωx d x,(n∈Z)级数化为+∞∑n=−∞c n e−i nωx=12l+∞∑n=−∞∫l−l f(x)e−i nωx d x e i nωx我们称c n为f(x)的离散频谱(discrete spectrum),|c n|为f(x)的离散振幅频谱(discrete amplitude spectrum),arg c n为f(x)的离散相位频谱(discrete phase spectrum).对任何⼀个⾮周期函数f(t)都可以看成是由某个由某个周期为l的函数f(x)当l→∞时得来的.Part2:傅⾥叶积分和傅⾥叶变换傅⾥叶积分公式设f T(t)是周期为T的周期函数,在[−T2,T2]上满⾜狄利克雷条件,则f T(t)=1T∞∑n=−∞∫T2−T2f T(t)e−j nωt d t e j nωt,ω=2πT(上式中j是虚数单位,在傅⾥叶分析中我们不⽤i⽽通常记作j)由limT→∞f T(t)=f(t)知,f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt记Δω=2πT,则Δω→0⇔T→∞,则f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt=limΔω→012π+∞∑n=−∞∫T2T2f T(t)e−j nωt d t e j nωtΔω[][][]令F T(nω)=∫T2−T2f T(t)e−j nωt d t,则f(t)=limΔω→012π+∞∑n=−∞F T(nω)e j nωtΔω,F T(t)→∫+∞−∞f(t)e−jωt d t≜F(ω)(T→∞),由定积分定义f(t)=12π∫+∞−∞F(ω)e jωt dω,即f(t)=12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω上述公式称为傅⾥叶积分公式.傅⾥叶积分存在定理若f(t)在任何有限区间上满⾜狄利克雷条件,且在R上绝对可积,则12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω=f(t),t为连续点,f(t−)+f(t+)2,t为间断点.傅⾥叶变换设f(t)满⾜傅⾥叶积分存在定理,定义F(ω)=∫+∞−∞f(t)e−jωt d t 为f(t)的傅⾥叶变换(Fourier Transform)(实际上是⼀个实⾃变量的复值函数),记作F(ω)=F[f(t)]类似地,定义f(t)=12π∫+∞−∞F(ω)e−jωt dω为F(ω)的傅⾥叶逆变换(Inverse Fourier Transform),记作f(t)=F−1[F(ω)]在⼀定条件下,有F[f(t)]=F(ω)⇒F−1[F(ω)]=f(t);F−1[F(ω)]=f(t)⇒F[f(t)]=F(ω). f(t)与F(ω)在傅⽒变换意义下是⼀个⼀⼀对应,称f(t)与F(ω)构成⼀个傅⽒变换对,记作f(t)F↔F(ω)在不引起混淆的情况下,简记为f(t)↔F(ω).f(t)称为原象函数(original image function),F(ω)称为象函数(image function).在频谱分析中,F(ω)⼜称为f(t)的频谱(密度)函数(spectrum function),|F(ω)|称为f(t)的振幅频谱(amplitude spectrum),arg F(ω)称为f(t)的相位频谱(phase spectrum).下⾯我们来求⼏个常见信号函数的傅⽒变换.例1 求矩形脉冲函数(rectangular pulse function)R(t)=1,|t|≤1, 0,|t|>1的傅⽒变换及其频谱积分表达式.解:F(ω)=F[R(t)]=∫+∞−∞R(t)e−jωt d t=∫1−1R(t)e−jωt t=e−jωt−jω1−1=−e−jω−e jωjω=2sinωω;R(t)=12π∫∞−∞F(ω)e jωt dω=1π∫+∞F(ω)cosωt dω=1π∫+∞2sinωωcosωt dω=2π∫+∞sinωcosωtωdω=1,|t|<1, 12,|t|=1, 0,|t|>1因此可知,当t=0时,有[] []{{ []{∫+∞0sin t xd t =π2例2 求指数衰减函数(exponential decay function)E (t )=0,t <0,e −βt ,t ≥0的傅⽒变换及其频谱积分表达式,其中β>0为常数.解:F (ω)=F [E (t )]=∫+∞−∞E (t )e −j ωt d t=∫+∞0e −βt e −j ωtd t =∫+∞0e (β+j ω)t d t =1β+j ωβ−j ωβ2+ω2E (t )=12π∫+∞−∞F (ω)e j ωt ω=12π∫+∞−∞β−j ωβ2+ω2e j ωtω=1π∫+∞βcos ωt +ωsin ωtβ2+ω2d ω=0,t <0,12,t =0,e −βt ,t >0Part3:单位脉冲函数我们记电流脉冲函数q (t )=0,t ≠0,1,t =0,严格地,由于q (t )在t =0出不连续,所以q (t )在t =0点是不可导的.但是,如果我们形式地计算这个导数,有q ′(0)=limΔt →0q (0+Δt )−q (0)Δt=limΔt →0−1Δt=∞我们引进这样⼀个函数,称为单位脉冲函数(unit pulse function)或狄拉克(Dirac)函数,简记为δ−函数,即δ(t )=0,t ≠0,∞,t =0,⼀般地,给定⼀个函数序列δε(t )=0,t <0,1ε,0≤t ≤ε,0,t >ε则有δ(t )=lim ε→0δε(t )=0,t ≠0,∞,t =0于是∫+∞−∞δ(t )d t =limε→0∫+∞−∞δεd t =limε→0∫ε01εd t =1若设f (t )为连续函数,则δ−函数有以下性质:∫+∞−∞δ(t )f (t )d t =f (0);∫+∞−∞δ(t −t 0)f (t )d t =f (t 0)于是我们可得:F [δ(t )]=∫+∞−∞δ(t )e −j ωt t =e −j ωt t =0=1于是δ(t )与常数1构成了⼀对傅⾥叶变换对.例3: 证明:e j ω0t ↔2πδ(ω−ω0)其中ω0是常数.证:{{{{{{|f(t)=F−1[F(ω)]=12π∫+∞−∞2πδ(ω−ω0)e jωt dω=e jωtω=ω=e jω0t在物理学和⼯程技术中,有许多重要函数不满⾜傅⽒积分定理中的绝对可积条件,即不满⾜条件∫+∞−∞|f(t)|d t<∞例如常数,符号函数,单位阶跃函数以及正,余弦函数等, 然⽽它们的⼴义傅⽒变换也是存在的,利⽤单位脉冲函数及其傅⽒变换就可以求出它们的傅⽒变换.所谓⼴义是相对于古典意义⽽⾔的,在⼴义意义下,同样可以说,原象函数f(t)和象函数F(ω)构成⼀个傅⽒变换对.例求正弦函数f(t)=sinω0t的傅⽒变换.解:F(ω)=F[f(t)]=∫+∞−∞f(t)e−jωt d t=∫+∞−∞e jω0t−e−jω0t2je−jωt d t=12j∫+∞−∞e−j(ω−ω0)t−e−j(ω+ω0)t d t=jπδ(ω+ω0)−δ(ω−ω0)同样我们易得F(cosω0t)=πδ(ω+ω0)+δ(ω−ω0)例证明:单位阶跃函数(unit step function)u(t)=0,t<0, 1,t>0的傅⽒变换为F[u(t)]=1jω+πδ(ω)证:F−11jω+πδ(ω)=12π∫+∞−∞1jω+πδ(ω)e jωt dω=12π∫+∞−∞[πδ(ω)]e jωt dω+12π∫+∞−∞1jωe jωt dω=12+12π∫+∞−∞cosωt+jsinωtjωdω=12+12π∫+∞−∞sinωtωdω=12+1π∫+∞sinωtωdω∫+∞0sinωtωdω=π2,t>0,−π2,t<0⇒F−11jω+πδ(ω)=12+1π−π2=0,t<012,t=0,12+1ππ2=1,t>0=u(t).本⽂完|()[][]{[][][][][][] { []{()()。
傅里叶变换公式的意义和理解一、傅里叶变换的基本概念和原理傅里叶变换是一种将时间域或空间域中的信号转换为频域中的信号的数学方法。
它的基本原理是通过将原始信号分解成一组不同频率的正弦波,从而实现对信号的分析和处理。
傅里叶变换的核心公式为:X(ω) = ∫x(t)e^(-jωt) dt其中,X(ω)表示频域信号,x(t)表示时域信号,ω表示角频率,j表示虚数单位。
二、傅里叶变换的重要性傅里叶变换在信号处理、图像处理、通信等领域具有重要的应用价值。
它有助于我们更好地理解信号的频谱特性,从而为后续的信号处理和分析提供有力的理论依据。
三、傅里叶变换的应用领域1.信号处理:傅里叶变换有助于分析信号的频率成分,如音频信号、图像信号等。
2.图像处理:傅里叶变换可用于图像的频谱分析,如边缘检测、滤波等。
3.通信系统:傅里叶变换在通信系统中广泛应用于信号调制、解调、多路复用等领域。
4.量子力学:傅里叶变换在量子力学中具有重要作用,如描述粒子在晶体中的能级结构等。
四、深入理解傅里叶变换公式1.离散傅里叶变换:离散傅里叶变换是将离散信号从时域转换到频域的一种方法,如快速傅里叶变换(FFT)算法。
2.小波变换:小波变换是傅里叶变换的一种推广,可以实现信号的高频局部化分析,适用于图像压缩、语音处理等领域。
3.分数傅里叶变换:分数傅里叶变换是在傅里叶变换基础上发展的一种数学方法,可以实现信号的相位和幅度分析。
五、总结与展望傅里叶变换作为一种重要的数学工具,在各个领域具有广泛的应用。
随着科技的发展,傅里叶变换及相关理论不断得到拓展和深化,为人类探索复杂信号和系统提供了强大的支持。
常用傅里叶逆变换公式傅里叶变换和逆变换是信号处理领域中非常基础的数学工具。
在现代数字信号处理领域中,它们被广泛应用于信号滤波、数据压缩和频谱分析等方面。
作为傅里叶变换的逆运算,傅里叶逆变换起着重要的作用。
在这篇文章中,我们将详细介绍一些常用的傅里叶逆变换公式,并说明它们在实际应用中的作用。
傅里叶逆变换的定义在深入讨论傅里叶逆变换公式之前,我们需要先了解一下傅里叶逆变换的定义。
傅里叶逆变换是指将复频域信号转换成复时域信号的过程。
与傅里叶变换不同的是,逆变换是不可逆的。
即使我们进行完傅里叶逆变换之后,再进行傅里叶变换,也不能恢复原来的复频域信号。
傅里叶逆变换的数学表达式如下:$$x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega$$其中,$x(t)$是时域信号,$X(j\omega)$是傅里叶变换后的频域信号,$j$是虚数单位,$\omega$是频率,$t$是时间。
这个公式的意思是,我们可以通过对傅里叶变换后的复频域信号做积分,得到复时域信号$x(t)$。
傅里叶逆变换的性质在实际应用中,我们常常需要使用傅里叶逆变换公式对信号进行处理。
为了更好地利用傅里叶逆变换公式,我们需要了解一些它的性质。
下面是一些常见的性质:1. 线性性质:傅里叶逆变换具有线性性,即如果$x_1(t)$的傅里叶变换是$X_1(j\omega)$,$x_2(t)$的傅里叶变换是$X_2(j\omega)$,那么$ax_1(t)+bx_2(t)$的傅里叶逆变换就是$aX_1(j\omega)+bX_2(j\omega)$。
2. 时移性质:如果$x(t)$的傅里叶变换为$X(j\omega)$,那么$x(t-t_0)$的傅里叶逆变换就是$e^{-j\omega t_0}X(j\omega)$,其中$t_0$是一个常数。
3. 频移性质:如果$x(t)$的傅里叶变换为$X(j\omega)$,那么$x(t)e^{j\omega_0t}$的傅里叶逆变换就是$X(j(\omega-\omega_0))$,其中$\omega_0$是一个常数。
脉冲序列傅里叶变换全文共四篇示例,供读者参考第一篇示例:脉冲序列傅里叶变换是一种重要的信号处理技术,用于分析具有间断性的信号。
在实际应用中,我们经常会遇到一些周期性、离散的信号,这些信号无法使用连续傅里叶变换进行分析。
而脉冲序列傅里叶变换可以有效地处理这类信号,提取其中的频域信息,为我们更好地理解信号提供了强大的工具。
脉冲序列傅里叶变换是离散信号的频谱分析方法,它将信号分解为一系列离散的正弦和余弦波形成的频谱。
每个信号都可以表示为一系列正弦和余弦函数的组合,而这些正弦和余弦函数的频率是信号的基本频率的整数倍。
通过脉冲序列傅里叶变换,我们可以得到信号在不同频率下的振幅和相位信息,更好地理解信号的特性和结构。
脉冲序列傅里叶变换的基本原理是将信号视为由一系列脉冲函数组成的序列,然后对这些脉冲函数进行傅里叶变换。
在数学上,我们可以表示脉冲序列为一个序列x[n],其中n是离散的时间点。
这个序列可以写为:x[n] = \sum_{k=-\infty}^{\infty} x(kT)\delta[n-kT]T是脉冲的周期,x(kT)是信号在时间点kT处的幅度,\delta[n]是单位冲激函数。
对这个序列进行傅里叶变换,我们可以得到信号在频域上的表示:上式中,X(e^{j\omega})表示信号在频域上的频谱,\omega是归一化频率。
通过这个频谱,我们可以得知信号在不同频率下的振幅和相位信息,进一步分析信号的频域特性。
脉冲序列傅里叶变换在数字信号处理中有着广泛的应用。
在通信系统中,我们常常需要对信号进行频谱分析,以便进行信号传输和解调。
脉冲序列傅里叶变换可以帮助我们对数字信号进行频域分析,从而更好地设计和优化通信系统。
第二篇示例:脉冲序列傅里叶变换(Pulse Sequence Fourier Transform)是一种基于时间序列的信号分析方法,常用于处理数字信号中的脉冲信号。
在通信、雷达、生物医学、图像处理等领域都有广泛的应用。
单位脉冲信号的傅里叶变换一、引言傅里叶变换是一种将时域信号转换为频域信号的数学工具,它在信号处理、通信系统、图像处理等领域有着广泛的应用。
单位脉冲信号是一种理想化的信号,它在时域上为一个脉冲,在频域上则为常数1。
本文将介绍单位脉冲信号的傅里叶变换。
二、单位脉冲信号的定义和性质1. 定义单位脉冲信号,也称为Dirac Delta函数,通常用符号$\delta(t)$表示。
它在时域上为一个瞬时的脉冲,满足以下条件:$$\int_{-\infty}^{\infty}\delta(t)dt=1$$对于任意$t_0$,有:$$\int_{t_0-\epsilon}^{t_0+\epsilon}\delta(t)dt=1$$其中$\epsilon$是一个无穷小量。
2. 性质(1)时间平移性质:对于任意$t_0$,有:$$\delta(t-t_0)\xrightarrow{\mathscr{F}}1 e^{-j\omega t_0}$$即在频域上,单位脉冲信号的傅里叶变换为常数1乘以$e^{-j\omega t_0}$。
(2)频率平移性质:对于任意$\omega_0$,有:$$e^{j\omega_0t}\delta(t)\xrightarrow{\mathscr{F}}1e^{j\omega_0t}$$即在频域上,单位脉冲信号的傅里叶变换为常数1乘以$e^{j\omega_0t}$。
(3)尺度变换性质:对于任意$a\neq 0$,有:$$\delta(at)\xrightarrow{\mathscr{F}}\frac{1}{|a|}\delta(\frac{\om ega}{a})$$即在频域上,单位脉冲信号的傅里叶变换为常数$\frac{1}{|a|}$乘以$\delta(\frac{\omega}{a})$。
三、单位脉冲信号的傅里叶变换根据傅里叶变换的定义,将单位脉冲信号表示为:$$\delta(t)=\lim_{T\rightarrow\infty}\frac{1}{T}sinc(\frac{t}{T})=\lim_{T\rightarrow\infty}\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{j\omega t}d\omega$$ 其中$sinc(x)=\frac{sin(\pi x)}{\pi x}$是一个常用的函数。
一、傅里叶变换1、傅里叶积分存在定理:设()f t 定义在(),-∞+∞内满足条件:1)()f t 在任一有限区间上满足狄氏条件; 2)()f t 在(),-∞+∞上绝对可积(即()f t dt +∞-∞⎰收敛;则傅氏积分公式存在,且有()()()()()(),1[]11002,2iw iwt f t t f t f e d e dw f t f t t f t τττπ+∞+∞--∞-∞⎧⎪=-⎨++-⎪⎩⎰⎰是的连续点是的第一类间断点2、傅里叶变换定义式:()[]()()iwt F f t F w f t e dt +∞--∞==⎰ 1-2 傅里叶逆变换定义式:()11[]()()2iwt F F w f t F w e dw π+∞--∞==⎰1-33、常用函数的傅里叶变换公式()1()FFf t F ω-−−→←−− 矩形脉冲函数1,22()sin 20,2F F E t E f t t ττωτω-⎧≤⎪⎪−−→=⎨←−−⎪>⎪⎩1-4 单边指数衰减函数()()1,0110,0tFFe t e t F e t iw j t βββω--⎧≥−−→=⇒=⎡⎤⎨←−−⎣⎦++<⎩ 1-5 单位脉冲函数 ()11FFt δ-−−→←−− 1-6 单位阶跃函数 ()()11FFu t w iwπδ-−−→+←−− 1-7 ()112F Fw πδ-−−→←−− 1-8 ()12F Ft j πδω-−−→'←−− 1-9 ()0102F j t Fe ωπδωω-−−→-←−− 1-10 ()()1000cos FFt ωπδωωδωω-−−→++-⎡⎤←−−⎣⎦1-11()()1000sin F Ft j ωπδωωδωω-−−→+--⎡⎤←−−⎣⎦1-12 4、傅里叶变换的性质设()()[]F f t F w =, ()()[]i i F f t F w =(1)线性性:()()1121()()FFf t f t F F αβαωβω-−−→++←−−1-13 (2)位移性:()()010Fj t Ff t t e F ωω--−−→-←−− 1-14 ()010()F j t Fe f t F ωωω-−−→-←−− 1-15 (3)微分性:()1()FFf t j F ωω-−−→'←−− 1-16 ()()()1()F n n Ff t j F ωω-−−→←−− 1-17 ()()1()FFjt f t F ω-−−→'-←−− 1-18 ()()()()1()Fn n Fjt f t F ω-−−→-←−− 1-19 (4)积分性:()11()tFFf t dt F j ωω--∞−−→←−−⎰ 1-20 (5)相似性:11()FFf at F a a ω-⎛⎫−−→←−− ⎪⎝⎭1-21 (6)对称性:()1()2FFF t f πω-−−→-←−− 1-22 上面性质写成变换式如下面:(1)线性性:[]1212()()()()F f t f t F w F w αβαβ⋅+⋅=⋅+⋅ 1-13-1[]11212()()()()F F w F w f t f t αβαβ-⋅+⋅=⋅+⋅(,αβ是常数)1-13-2(2)位移性:[]0()F f t t -=()0iwt e F w - 1-14()000()()iw t w w w F e f t F w F w w =-⎡⎤==-⎣⎦ 1-15(3)微分性:设+∞→t 时,0→)t (f , 则有[]()()()()[]()F f t iw F f t iw F w '== 1-16()()()()()[]()n n n F f t iw F f t iw F w ⎡⎤==⎣⎦1-17[]()()dF tf t jF w dw= 1-18 ()()nnnn d F t f t j F w dw ⎡⎤=⎣⎦ 1-19(4)积分性:()()tF w F f t dt iw-∞⎡⎤=⎢⎥⎣⎦⎰ 1-20(5)相似性:[]1()()wF f at F a a=1-21-1 翻转性:1=a 时()()w F t f F -=-][ 1-21-2(6)对称性:设 ()()w F t f −→←,则 ()()w f t F π2−→←- 或 ()()2F t f w π←−→- 1-225、卷积公式 :)()(21t f t f *=τττd t f f )()(21-⎰+∞∞-。