波尔振动的物理研究
- 格式:docx
- 大小:588.01 KB
- 文档页数:15
波尔振动实验报告实验结论波尔振动实验报告实验结论波尔振动实验是一种经典的物理实验,通过研究质点在弹簧上的振动,可以深入了解振动的特性和规律。
本实验通过改变弹簧的劲度系数和质点的质量,观察振动的频率和振幅的变化,从而得出实验结论。
实验结果表明,当质点质量较小时,振动频率较高,振幅较大。
而当质点质量较大时,振动频率较低,振幅较小。
这一结论符合振动的基本规律,即质点质量越小,振动频率越高,振幅越大;质点质量越大,振动频率越低,振幅越小。
此外,实验还观察到了弹簧的劲度系数对振动特性的影响。
当弹簧的劲度系数较小时,振动频率较低,振幅较大;而当弹簧的劲度系数较大时,振动频率较高,振幅较小。
这一结果与振动的理论预测相符,即弹簧的劲度系数越小,振动频率越低,振幅越大;弹簧的劲度系数越大,振动频率越高,振幅越小。
通过对实验数据的分析,可以得出结论:质点质量和弹簧的劲度系数是影响振动特性的重要因素。
质点质量越小,振动频率越高,振幅越大;弹簧的劲度系数越小,振动频率越低,振幅越大。
这一结论在物理学中具有普适性,对于理解和应用振动理论具有重要意义。
此外,实验还发现,振动的频率和振幅之间存在着一定的关系。
当质点质量和弹簧的劲度系数固定时,振动的频率和振幅呈正相关关系。
即振动频率越高,振幅越大;振动频率越低,振幅越小。
这一关系可以通过振动的能量转换来解释,当振动频率较高时,质点的动能和势能转换速度较快,因此振幅相对较大;而当振动频率较低时,能量转换速度较慢,振幅较小。
综上所述,波尔振动实验的实验结论是:质点质量和弹簧的劲度系数是影响振动特性的重要因素。
质点质量越小,振动频率越高,振幅越大;弹簧的劲度系数越小,振动频率越低,振幅越大。
同时,振动的频率和振幅之间存在着正相关关系。
这一结论对于深入理解振动的特性和规律具有重要意义,并为相关领域的研究和应用提供了理论依据。
大学物理实验讲义实验波尔共振实验54HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】实验02 波尔共振实验因受迫振动而导致的共振现象具有相当的重要性和普遍性。
在声学、光学、电学、原子核物理及各种工程技术领域中,都会遇到各种各样的共振现象。
共振现象既有破坏作用,也有许多实用价值。
许多仪器和装置的原理也基于各种各样的共振现象,如超声发生器、无线电接收机、交流电的频率计等。
在微观科学研究中共振现象也是一种重要的研究手段,例如利用核磁共振和顺磁共振研究物质结构等。
表征受迫振动的性质是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。
本实验中,用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态物理量——相位差。
【实验目的】1.研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。
2.研究不同阻尼力矩对受迫振动的影响,观察共振现象。
3.学习用频闪法测定运动物体的某些量,例相位差。
【仪器用具】ZKY-BG波尔共振实验仪【实验原理】物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。
所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。
当强迫力频率与系统的固有频率相同时产生共振,此时速度振幅最大,相位差为90°。
实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。
当摆轮受到周期性强迫外力矩t cos M M 0ω=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dtd b θ-)其运动方程为 t cos M dt d b k dtd J 022ω+θ-θ-=θ (1) 式中,J 为摆轮的转动惯量,θ-k 为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆频率。
观察波尔振动的频谱1、7V阻尼,无动力振动频谱确定固有频率。
0Hz处为初始位移导致的分量,略去,因此取峰值频率0.619Hz。
2、对比自由振动,受迫振动,阻尼振动的频谱并分析异同。
自由振动频谱阻尼振动频谱受迫振动频谱自由振动和阻尼振动频谱的峰值(除直流分量外)都出现在固有频率0.619Hz处。
受迫振动的峰值出现在0.531Hz处,直到固有频率0.619Hz处都有较大的振幅(靠近固有频率一侧下降趋势较慢),猜测实际上为固有频率和驱动力频率双峰叠加后的效果。
从频谱的动态变化来看,主峰附近的频率振幅随时间减小(图中未显示出),这是因为受迫振动的阻尼分量随时间衰减的原因。
若达到频谱稳定状态,双峰现象将会消失。
3、测量不同驱动力矩频率下受迫振动的频谱,讨论其异同(记录时间均在53s左右)。
频率设置:0圈(峰值0.656Hz~0.669Hz)频率设置:0.5圈(峰值0.656Hz)频率设置:1圈(峰值0.644~0.656Hz)频率设置:1.5圈(峰值0.631~0.644Hz)频率设置:2圈(峰值0.631~0.644Hz)频率设置:2.5圈(峰值0.631Hz)频率设置:3圈(峰值0.619~0.631Hz)频率设置:3.5圈(峰值0.619~0.631Hz)频率设置:4圈(峰值0.619Hz)频率设置:4.5圈(峰值0.606~0.619Hz)频率设置:5圈(峰值0.606Hz)频率设置:5.5圈(峰值0.594~0.606Hz)频率设置:6圈(峰值0.594~0.606Hz)频率设置:6.5圈(峰值0.594Hz)频率设置:7圈(峰值0.581~0.594Hz)频率设置:7.5圈(峰值0.581Hz)频率设置:8圈(峰值0.581Hz)频率设置:8.5圈(峰值0.569~0.581Hz)频率设置:9圈(峰值0.569Hz)频率设置:9.5圈(峰值0.556Hz)频率设置:10圈(峰值0.544~0.556Hz)可以发现,频谱的最高峰随着频率设置圈数的增加而左移(频率降低),而且与各圈数对应的驱动力频率相吻合,符合受迫振动的频率由驱动力频率决定的定律。
实验2.7 波尔振动实验(一)实验人姓名:合作人:学院:物理工程与科学技术学院专业:光信息科学与技术年级:级学号:日期:年月日室温:℃相对湿度: %【实验目的】1.观察和研究自由振动、阻尼振动、受迫振动的特性2.观察和研究振动过程的拍频、相图、机械能转换和守恒现象【仪器用具】仪器名称数量型号技术指标扭摆(波尔摆) 1 ZKY-BG 固有振动频率约0.5Hz秒表 1 DM3-008 石英秒表,精度0.01s三路直流稳压稳流电源1 IT6322 三路隔离,0-30V/1mV,0.3A/1mA台式数字万用表 1 DM3051 5-3/4位,1μV-1000V,10nA-10A,准确度为读数的0.025%数据采集器及转动传感器1 SW850及CI6531 最高采样率1000Hz,分辨率0.25°,准确度±0.009°实验测控用计算机 1 IdeaCenterB320i 一体台式计算机【原理概述】1.扭摆的阻尼振动和自由振动在有有阻尼的情况下,将扭摆在某一摆角位置释放,使其开始摆动。
此时扭摆受到两个力矩的作用:一是扭摆的弹性恢复力矩M E(M E=-cθ c为扭转恢复力系数);二是阻力矩M R(M R=-r(dθ/dt)r为阻力矩系数)。
若扭摆转动惯量为I,可列出扭摆的运动学方程:(1)令r/I=2β,c/I=ω02 (ω0为固有圆频率),则式(1)化为(2)其解为(3)其中A0为扭摆的初始振幅,T为扭摆做阻尼振动的周期,且。
由式(3)可知,扭摆振幅随时间按指数规律衰减。
若测得初始振幅A0、第n个周期时的振幅A n,及摆动n个周期所用时间t=nT,则有(4)故有(5)若扭摆在摆动在摆动过程中M R=0,则β=0。
由式(5)知,不论摆动多少次,振幅均不变,扭摆处于自由振动状态。
2.扭摆的受迫振动当扭摆在有阻尼的情况下还受到简谐外力的作用,就会作受迫振动。
设外加简谐力矩的频率是ω,外力矩角幅度为θ0,M0=cθ0为外力矩幅度,因此外力矩可表示为。
实验02 波尔共振实验因受迫振动而导致的共振现象具有相当的重要性和普遍性。
在声学、光学、电学、原子核物理及各种工程技术领域中,都会遇到各种各样的共振现象。
共振现象既有破坏作用,也有许多实用价值。
许多仪器和装置的原理也基于各种各样的共振现象,如超声发生器、无线电接收机、交流电的频率计等。
在微观科学研究中共振现象也是一种重要的研究手段,例如利用核磁共振和顺磁共振研究物质结构等。
表征受迫振动的性质是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。
本实验中,用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态物理量——相位差。
【实验目的】1.研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。
2.研究不同阻尼力矩对受迫振动的影响,观察共振现象。
3.学习用频闪法测定运动物体的某些量,例相位差。
【仪器用具】ZKY-BG波尔共振实验仪【实验原理】物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。
所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。
当强迫力频率与系统的固有频率相同时产生共振,此时速度振幅最大,相位差为90°。
实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。
当摆轮受到周期性强迫外力矩M M0cos t的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为db)其运动方程为dt2d dJ k b M02dt dtc os t(1)式中,J为摆轮的转动惯量,k为弹性力矩,M为强迫力矩的幅值,为强迫力的圆频率。
观察波尔振动的频谱1、7V阻尼,无动力振动频谱确定固有频率。
0Hz处为初始位移导致的分量,略去,因此取峰值频率0.619Hz。
2、对比自由振动,受迫振动,阻尼振动的频谱并分析异同。
自由振动频谱阻尼振动频谱受迫振动频谱自由振动和阻尼振动频谱的峰值(除直流分量外)都出现在固有频率0.619Hz处。
受迫振动的峰值出现在0.531Hz处,直到固有频率0.619Hz处都有较大的振幅(靠近固有频率一侧下降趋势较慢),猜测实际上为固有频率和驱动力频率双峰叠加后的效果。
从频谱的动态变化来看,主峰附近的频率振幅随时间减小(图中未显示出),这是因为受迫振动的阻尼分量随时间衰减的原因。
若达到频谱稳定状态,双峰现象将会消失。
3、测量不同驱动力矩频率下受迫振动的频谱,讨论其异同(记录时间均在53s左右)。
频率设置:0圈(峰值0.656Hz~0.669Hz)频率设置:0.5圈(峰值0.656Hz)频率设置:1圈(峰值0.644~0.656Hz)频率设置:1.5圈(峰值0.631~0.644Hz)频率设置:2圈(峰值0.631~0.644Hz)频率设置:2.5圈(峰值0.631Hz)频率设置:3圈(峰值0.619~0.631Hz)频率设置:3.5圈(峰值0.619~0.631Hz)频率设置:4圈(峰值0.619Hz)频率设置:4.5圈(峰值0.606~0.619Hz)频率设置:5圈(峰值0.606Hz)频率设置:5.5圈(峰值0.594~0.606Hz)频率设置:6圈(峰值0.594~0.606Hz)频率设置:6.5圈(峰值0.594Hz)频率设置:7圈(峰值0.581~0.594Hz)频率设置:7.5圈(峰值0.581Hz)频率设置:8圈(峰值0.581Hz)频率设置:8.5圈(峰值0.569~0.581Hz)频率设置:9圈(峰值0.569Hz)频率设置:9.5圈(峰值0.556Hz)频率设置:10圈(峰值0.544~0.556Hz)可以发现,频谱的最高峰随着频率设置圈数的增加而左移(频率降低),而且与各圈数对应的驱动力频率相吻合,符合受迫振动的频率由驱动力频率决定的定律。
实验02 波尔共振实验因受迫振动而导致的共振现象具有相当的重要性和普遍性。
在声学、光学、电学、原子核物理及各种工程技术领域中,都会遇到各种各样的共振现象。
共振现象既有破坏作用,也有许多实用价值。
许多仪器和装置的原理也基于各种各样的共振现象,如超声发生器、无线电接收机、交流电的频率计等。
在微观科学研究中共振现象也是一种重要的研究手段,例如利用核磁共振和顺磁共振研究物质结构等。
表征受迫振动的性质是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。
本实验中,用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态物理量——相位差。
【实验目的】1. 研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。
2. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
3. 学习用频闪法测定运动物体的某些量,例相位差。
【仪器用具】ZKY-BG 波尔共振实验仪【实验原理】物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。
所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。
当强迫力频率与系统的固有频率相同时产生共振,此时速度振幅最大,相位差为90°。
实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。
当摆轮受到周期性强迫外力矩t cos M M 0ω=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dtd bθ-)其运动方程为 t cos M dt d b k dtd J 022ω+θ-θ-=θ (1)式中,J 为摆轮的转动惯量,θ-k 为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆频率。
实验02 波尔共振实验因受迫振动而导致的共振现象具有相当的重要性和普遍性。
在声学、光学、电学、原子核物理及各种工程技术领域中,都会遇到各种各样的共振现象。
共振现象既有破坏作用,也有许多实用价值。
许多仪器和装置的原理也基于各种各样的共振现象,如超声发生器、无线电接收机、交流电的频率计等。
在微观科学研究中共振现象也是一种重要的研究手段,例如利用核磁共振和顺磁共振研究物质结构等。
表征受迫振动的性质是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。
本实验中,用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态物理量——相位差。
【实验目的】1. 研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。
2. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
3. 学习用频闪法测定运动物体的某些量,例相位差。
【仪器用具】ZKY-BG 波尔共振实验仪【实验原理】物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。
所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。
当强迫力频率与系统的固有频率相同时产生共振,此时速度振幅最大,相位差为90°。
实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。
当摆轮受到周期性强迫外力矩t cos M M 0ω=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dtd bθ-)其运动方程为 t cos M dt d b k dtd J 022ω+θ-θ-=θ (1)式中,J 为摆轮的转动惯量,θ-k 为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆频率。
波尔振动的物理研究实验者:杨亿斌(06325107) 合作者:王旭升(06325094)(中山大学物理系,光信息科学与技术06级3班)2008年4月10日[数据记录及分析]一计算机测控实验内容1.扭摆自由振动状态实验测得固有周期T = 1.90 s则固有频率023.31/rad s Tπω==在Origin的工作界面下,画出的ϕω关系曲线图,见图2。
相图中每一周圈代表一个振动周期T。
由图可见,该振动并不是理想的自由振动。
理论上,自由振动的相频特性曲线应该是一个圆。
但实际的相频特性曲线呈涡旋状,且曲率半径逐渐减小,这是由于扭摆在自由振动时摩擦及空气阻力作用.其中一个奇点是由于外界的干扰而引起的图2 自由状态下ϕω相图2. 阻尼振动状态(1) 外加6V阻尼的振动状态当外加8V阻尼,而驱动电压为零时, 在Origin的工作界面下,画出的ϕω关系曲线图,见图3。
在6V阻尼的作用下, 相图中一周为一个振动周期,曲线呈涡旋状,且曲率半径明显地减小,相邻圆圈的距离比自由振动时的间隔大,也即曲率半径较快衰减,这是由于扭摆克服6V阻尼做功,一部分能量转换为热能.可见扭摆在阻尼电压的作用下,振幅较快衰减,很快就趋于静止(对应相图的原点).图3. 6V阻尼振动ϕω相图(2) 外加8V阻尼的振动状态当外加8V阻尼,而驱动电压为零时, 在Origin的工作界面下,画出的ϕω关系曲线图,见图4。
在8V阻尼的作用下, 相图中每一周为一个振动周期,曲线呈涡旋状,且曲率半径衰减得很厉害,圆圈数比外加6V阻尼时的振动稀疏,也即曲率半径迅速趋于零,比外加8V阻尼时衰减得更快.可见扭摆在比较大得阻尼电压的作用下,衰减的速度也很快, 迅速趋于静止(对应相图的原点);随着阻尼的增大,扭摆的衰减过程也更快.图4 8V阻尼振动ϕω相图3. 受迫振动状态(1) 外加6V阻尼的受迫振动状态当外加6V阻尼,在某个驱动电压的作用下,调节驱动电压,直到振动刚好达到共振状态, 此时振动频率等于固有振动频率,振幅最大.在Origin的工作界面下,画出的ϕω关系曲线图,见图5。
相点几乎在同一圆周上往复运动.通过外界驱动力做功,刚好补偿振动中产生的阻尼损耗,使扭摆得以在稳定地共振状态下不断地运动下去.可见扭摆在作共振时,扭摆以固有频率作简谐运动图5. 6V阻尼共振ϕω相图在驱动电压较大时,如图6所示:图6 6V阻尼驱动电压较大时ϕω相图在驱动电压较小时,如图7所示,图象出现较多的奇点,是因为实验时受到外界较多的干扰。
且由于驱动力较小,外界的干扰表现明显。
图7 6V阻尼驱动电压较小时ϕω相图(2) 外加8V阻尼的受迫振动状态当外加8V阻尼,在某个驱动电压的作用下, 调节驱动电压,直到振动刚好达到共振状态, 此时振动频率等于固有振动频率,振幅最大.在Origin的工作界面下,画出的ϕω关系曲线图,见图8。
相点几乎在同一圆周上往复运动.通过外界驱动力做功,刚好补偿振动中产生的阻尼损耗,使扭摆得以在稳定地共振状态下不断地运动下去.图8. 8V阻尼共振ϕω相图在驱动电压较大时,如图9所示:图9 8V阻尼驱动电压较大时ϕω相图在驱动电压较小时,如图10所示:,由于受到外界的干扰,所以出现较多的奇点,且由于驱动力较小,外界的干扰表现明显。
图10 8V阻尼驱动电压较小时ϕω相图手工操作内容1. 自由振动状态测量扭摆的固有周期、固有频率,测量时的驱动电压为0伏,电流I=0.,数据记录如表1表1 固有周期的数据记录*:/.T t n =求固有周期的算术平均值:6__111(1.42 1.40 1.43 1.42 1.41+1.41) 1.41()66i i T T s ===⨯++++=∑求固有周期的标准误差:0.01()T s δ== 固有周期__0 1.410.01()T T T s δ=±=±而共振摆固有圆频率的平均值6__112 4.446i iHz T πω===∑ 由误差传递公式,可求固有圆频率的算术平均误差:22220.010.031.41T T T T ωππωσσ∂∆===⨯=∂ 所以,扭摆的固有圆频率为: __0 4.440.03(/)rad s ωωω=±∆=±2. 测量阻尼振动现象的阻尼因数β(1)8V 阻尼电压情况测得的起始振幅0A 与第n 个周期时的振幅An 如下表表2 8V 阻尼系数的数据01*:ln nA nT A β=于是阻尼因数的平均值为5__11()11(0.0890.0850.0880.0900.087)0.088()5i i s ββ-===++++=∑标准误差为10.001()s βδ-==所以,8V 阻尼电压下的阻尼因数为:__10.0880.001()s βββδ-=±=±(2).10V 阻尼电压情况测得的起始振幅0A 与第n 个周期时的振幅An 如下表:表3 10V 阻尼系数的数据021*:ln nA nT A β=, 于是阻尼因数的平均值为:5__1()11(0.1270.1310.1240.1270.137)0.129()5i i s ββ-===++++=∑标准误差为10.001()s βδ-==所以,10V 阻尼电压下的阻尼因数为:__10.1290.001()s βββδ-=±=±3. 观察共振现象(1) 8V 阻尼电压情况下测得的时间t 与振幅A 如下表: 10 4.44(/),0.088rad s s ωβ-==驱动电压/V7.5 7.88 8.1 8.2 8.3 8.4 周期10T/s 16.07 15.5 15.11 14.98 14.76 14.55 14.3 A/度 19 26 36 42 53 70 99 ω 3.910 4.054 4.158 4.194 4.257 4.318 4.394 ω/ω00.881 0.913 0.937 0.945 0.959 0.973 0.990 ϕ / rad-0.153 -0.214 -0.293 -0.335 -0.439 -0.619 -1.085 驱动电压/V8.5 8.6 8.7 8.8 9 9.5 周期10T/s 14.2 14.01 13.85 13.7 13.4 12.69 A/度 115 98 75 56 35 17 ω 4.425 4.485 4.537 4.586 4.689 4.951 ω/ω0 0.997 1.010 1.022 1.033 1.056 1.115 ϕ / rad -1.399 -2.038 -2.396 -2.592 -2.792 -2.961220222,arctan().n T t βωππωϕωω===- 表 3 8V 阻尼不同电压下的数据图11 . 8V 阻尼下的共振幅频特性曲线由图11曲线知,当ω/ω0=1时,振幅达到最大,此时为共振。
图12. 8V 阻尼下的共振相频特性曲线由图12知,当ω/ω0=1时,ϕ接近于2π-,当ω》ω0时,ϕ接近于-π 驱动电压/V7.5 7.8 8 8.1 8.2 8.3 8.4 周期10T/s 16.07 15.5 15.11 14.98 14.76 14.55 14.3 A/度 18 24 32 37 45 56 69 ω 3.910 4.054 4.158 4.194 4.257 4.318 4.394 ω/ω00.881 0.913 0.937 0.945 0.959 0.973 0.990 ϕ / rad-0.153 -0.214 -0.293 -0.335 -0.439 -0.619 -1.085 驱动电压/V8.5 8.6 8.7 8.8 9 9.5 周期10T/s 14.2 14.01 13.85 13.7 13.4 12.69 A/度 77 75 64 49 33 17 ω 4.425 4.485 4.537 4.586 4.689 4.951 ω/ω0 0.997 1.010 1.022 1.033 1.056 1.115 ϕ / rad -1.399 -2.038 -2.396 -2.592 -2.792 -2.961220222,arctan().n T t βωππωϕωω===-表 3 10V 阻尼不同电压下的数据图13 . 10V 阻尼下的共振幅频特性曲线由图可知,当ω/ω0=1时,振幅达到最大,此时为共振。
图14. 10V 阻尼下的共振相频特性曲线由图14知,当ω/ω0=1时,ϕ接近于2π-,当ω》ω0时,ϕ接近于-π[总结] 自由振动、阻尼振动、受迫振动的相图的异同点自由振动时因所受外界阻尼相对较小,近似地做简谐振动,但振动慢慢衰减,曲率半径慢慢变小.自由振动的相图与受迫振动的相图相似,受迫振动由于有比较大的阻尼存在,振动较自由振动时衰减得快,相邻两个圈之间的间隔比较大,圆圈数比较稀疏,且所受阻尼越大,衰减得越厉害;阻尼振动、自由振动的频率等于固有频率.做受迫振动的扭摆的振动频率与驱动力频率一致,当振动频率等于固有的振动频率ω=时,扭摆达到共振状态,相点几乎在同一圆周上往复运动,相图与理想自由振动的相图基本一致.另外,三种振动的相图都反映了周期运动的特性.存储路径:F:\06光信\杨亿斌06325107王旭升06325094。