正比例与反比例意义练习附答案
- 格式:doc
- 大小:60.00 KB
- 文档页数:7
人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1. 直接写出得数。
2. 判断下列各题中,两种量是否成正比例关系,请说明理由。
(1)订阅《中国少年报》的金额和份数。
________(2)人的年龄和体重。
________3. 李师傅要加工一批零件,如表是他每天加工零件的数量与相应可以完成工作时间。
(1)把表格填完整。
(2)李师傅每天加工零件数量与完成工作时间成反比例吗?为什么?填空题.如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的关系式是________.一个自然数(0除外)与它的倒数成________比例。
x和y的积是12,那么x、y成________比例,它们的关系式是________.判断下面各题中的两个量是否成反比例,并说明理由。
(1)订《少先队员》的份数和总价钱。
________(2)三角形的面积一定,底和高。
________(3)总人数一定,行数和每行人数。
________(4)总价一定,单价与数量。
________已知x和y是反比例关系,根据表中的条件,填写下表。
全年级总人数一定,每班人数与班数成________比例。
=y(x不为0),那么x和y成________比例。
如果24x每块砖的面积一定,铺地的面积和所需砖的块数成________比例。
判断题。
(对的在括号中画“√”,错的画“×”)被除数一定,商和除数成反比例。
________(判断对错)人的体重和年龄成正比例。
________(判断对错)糖水的含糖率一定,糖和水成反比例。
________(判断对错)正方形面积与边长成反比例。
________(判断对错)一批大米的总质量一定,每袋质量与袋数成反比例。
________(判断对错)铺地面积一定,每块砖的面积和块数成反比例。
________.参考答案与试题解析人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1.分数除法分数乘法【解析】根据分数加减乘除法的计算方法求解即可。
正反比例练习题及答案一、选择题1. 某工厂生产零件,每小时生产零件数与生产时间成反比例。
如果工厂在4小时内生产了120个零件,那么在1小时内可以生产多少个零件?A. 30B. 60C. 120D. 2402. 一个水池的容积是固定的,水管注水的速度与注满水池所需的时间成什么比例?A. 正比例B. 反比例C. 不成比例D. 无法确定3. 某商品的总成本与生产数量成反比例,当生产数量为100时,总成本为5000元。
如果生产数量增加到200,总成本是多少?A. 2500元B. 5000元C. 10000元D. 无法确定4. 某学校学生人数与每个学生分得的图书数量成反比例。
如果学校有200名学生,每人分得5本书,那么当学生人数增加到400时,每人分得多少本书?A. 2.5本B. 5本C. 10本D. 无法确定5. 某工厂的总产量与工作时间成正比例。
如果工厂在8小时内生产了800个单位的产品,那么在4小时内可以生产多少个单位的产品?A. 200B. 400C. 800D. 1600答案:1. B 2. B 3. A 4. A 5. B二、填空题6. 某工厂的工作效率与所需时间成________比例,如果工作效率提高到原来的2倍,那么所需时间将减少到原来的________。
7. 某书店的图书销售量与销售价格成________比例,如果销售价格提高到原来的1.5倍,销售量将减少到原来的________。
8. 某产品的生产成本与生产数量成________比例,如果生产数量增加到原来的3倍,生产成本将增加到原来的________。
9. 某工厂的总产量与工作时间成________比例,如果工作时间减少到原来的一半,总产量将减少到原来的________。
10. 某学校的图书数量与学生人数成________比例,如果学生人数增加到原来的4倍,图书数量将增加到原来的________。
答案:6. 反,1/2 7. 反,2/3 8. 正,3 9. 正,1/2 10. 正,4三、判断题11. 某商品的单价与销售数量成反比例,这种说法是正确的。
正比例和反比例练习题及答案一、对号入座。
1、35:=20 + 16==%= 2 、因为X=2Y,所以X : 丫二:,X 和丫成比例。
3 、一个长方形的长比宽多 20%,这个长方形的长和宽的 最简整数比是。
4 、向阳小学三年级与四年级人数比是 3:4 ,三年级人 数比四年级少 % 四年级比三年级多 %5 、甲乙两个正方形的边长比是 2:3 ,甲乙两个正方形 的周长比是,甲乙两个正方形的面积比是。
6 、一个比例由两个比值是 2 的比组成,又知比例的外项分别是 1.2 和 5,这个比例是。
、已知被减数与差的比是 5:3,减数是 100,被减数、在一幅地图上量得甲乙两地距离 6 厘米,乙丙两地 8 厘米;已知甲乙两地间的实际距离是 120 千米,乙丙两地间的实际距离是 千米;这幅地图的比例尺是。
9 、从 2:8 、 1.6: 和: 这三个比中,选两个比组成的比例8 距离10 、一块铜锌合金重180 克,铜与锌的比是2:3 ,锌重克。
如果再熔入30克锌,这时铜与锌的比是。
二、明辨是非。
1 、一项工程,甲队40 天可以完成,乙队50 天可以完成。
甲乙两队的工作效率比是4:5。
2 、圆柱体与圆锥体的体积比是3:1,则圆柱体与圆锥体一定等底等高。
3 、甲数与乙数的比是3:4,甲数就是乙数的。
4 、比的前项和后项同时乘以同一个数,比值不变。
5 、总价一定,单价和数量成反比例。
6 、实际距离一定,图上距离与比例尺成正比例。
7 、正方体体积一定,底面积和高成反比例。
8 、订阅《今日泰兴》的总钱数和份数成正比例。
三、选择题。
1 、把一个直径4 毫米的手表零件,画在图纸上直径是8 厘米,这幅图纸的比例尺是。
A 、1:B、2:1 C、1:20 D、20:12 、已知=1.2、=1.2,所以X和丫比较。
A 、X大B、丫 C、一样大3 、如果A X2=B+ 3,那么A: B=。
A 、2:B、3:C、1:D:14 、一个三角形的三个内角的度数比是2:3:4,这个三角形是。
精选练习六年级下册正比例、反比例应用题专项训练含答案解析1.XXX的身高为1.5米,她的影长为2.4米。
如果在同一时间同一地点测得一棵树的影子长为4米,那么这棵树有多高?2.一间房子原计划用边长为5分米的方砖铺地,需要2000块。
如果改用边长为4分米的方砖,需要多少块?(使用比例解法)3.使用相同的方砖铺地,铺18平方米需要618块砖。
那么铺24平方米需要多少块砖?(使用比例知识解答)4.测量小组要测量一棵树的高度,先量得树的影子长为12米,接着在树的附近直立了一根长2米的竹竿,量得竹竿的影子长为1.2米。
这棵树的高度是多少米?5.XXX计划每天加工240个零件,20天完成。
实际每天多加工60个,那么需要多少天才能完成任务?(使用比例知识解答)6.XXX收割小麦。
前6天收割了114公顷,剩下152公顷。
1)按照前几天的工作效率,剩下的还需要多少天才能完成?(使用比例解法)2)前几天收割的比后几天收割的少百分之几?3)每公顷平均收小麦7.5吨,这个农场用载重5吨的卡车运回全部小麦,需要运多少次?7.XXX的身高为1.6米,他的影长为2.4米。
如果在同一时间同一地点测得一棵树的影长为6米,那么这棵树有多高?8.市政工程队原计划每天铺0.6千米,24天完成。
实际每天铺0.8千米,那么实际用多少天完成?9.给学校教务处办公室铺地砖,原计划选用边长为3分米的方砖,需要960块。
后来实际选用了边长为4分米的方砖铺地,那么实际需要多少块4分米的方砖?10.甲乙两地相距XXX,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)时间(小时):2 3 4 …路程(千米):100 150 200 …11.工程队修一条公路,原计划每天修4.5千米,20天完成。
实际每天修6千米,那么实际需要几天才能完成?(使用比例解法)12.一辆汽车3小时行了135千米,那么行驶315千米需要多少小时?(使用比例解法)13.一辆汽车从甲地出发,每小时行45千米,4小时到达乙地。
八年级正比例和反比例比例练习题1. 正比例关系问题1:某汽车行驶600公里需要消耗30升汽油,如果行驶900公里,需要消耗多少升汽油?解答:设行驶900公里需要消耗的汽油量为x升。
根据正比例关系,可得以下比例:600公里 / 30升 = 900公里 / x升通过交叉乘积,得到:600x =解方程可得:x = 45因此,行驶900公里需要消耗45升汽油。
问题2:某商品的价格为20元,如果买3个,总金额是多少?解答:设买3个商品的总金额为y元。
根据正比例关系,可得以下比例:1个商品 / 20元 = 3个商品 / y元通过交叉乘积,得到:y = 60因此,买3个商品的总金额是60元。
2. 反比例关系问题1:工人A 2小时可以完成一项工作,如果工人B只有1小时的时间,能完成多少该项工作?解答:设工人B在1小时内完成的工作量为y。
根据反比例关系,可得以下比例:工人A的工作时间 / 工人B的工作时间 = 工人B的工作量 / 工人A的工作量通过交叉乘积,得到:2小时 / 1小时 = y / 1解方程可得:y = 2因此,工人B在1小时内能完成2个该项工作。
问题2:某项任务需要10个工人一起完成,如果只有5个工人能来,完成该任务需要多少时间?解答:设完成该任务需要的时间为t小时。
根据反比例关系,可得以下比例:工人数 / 时间 = 原先的工人数 / 原先的时间通过交叉乘积,得到:10个工人 / t小时 = 5个工人 / 1小时解方程可得:t = 2因此,如果只有5个工人能来,完成该任务需要2小时。
以上为八年级正比例和反比例比例练题的部分解答。
数学正比例和反比例试题答案及解析1.(2013•中宁县模拟)盐是每包1.2元,小明的妈妈买盐的包数和用的钱数成比例.【答案】正.【解析】判断买盐的包数和用的钱数之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为买盐用的钱数÷买盐的包数=每包盐的价钱=1.2元(一定),所以小明的妈妈买盐的包数和用的钱数成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.2. 3A÷5=20%B,A和B成什么比例?为什么?【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:3A÷5=20%B,则3A=20%B×5,3A=B,则A:B=1:3=(一定),所以A和B成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.在如图所示的方格纸上画几个边长各不相同的正方形.根据画出的正方形,把下表填写完整.边长/cm52(2)正方形的周长与边长成正比例吗?为什么?【解析】(1)先确定出正方形的边长,进而依据正方形的特征,即可画出符合要求的正方形;(2)依据正方形的周长C=4a,代入数据即可求解;(3)依据正比例的意义,即如果两个相关联量的比值一定,则这两个相关联的量成正比例,据此即可判断.解:(1)据分析画图如下:;(2)6×4=24(厘米),5×4=20(厘米),3×4=12(厘米),(3),因为正方形的周长与边长的比值一定,所以正方形的周长与边长成正比例.点评:此题主要考查正方形的特征、周长的计算方法、以及正比例的意义.4.判断变化的量是否成正比例,说明理由.被除数一定,除数和商.【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为除数×商=被除数(一定),所以除数和商成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.订阅《扬子晚报》,订的份数与总价.(两种量是不是成比例,成什么比例,并说明理由)【答案】成正比例;【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:成正比例;因为总价÷数量=单价(一定),所以订阅《扬子晚报》,订的份数与总价成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.判断两个量是否成正比例或反比例,说明理由:房间的面积一定,铺地砖的块数与每块地砖的面积.【答案】成反比例.【解析】判断铺地砖的块数与每块地砖的面积是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:每块地砖的面积×块数=房间的总面积(一定),也就是每块地砖的面积和块数的乘积一定,符合反比例的意义,所以每块地砖的面积和块数成反比例.点评:两种相关联的量,一种量变化,另一种量随着变化,如果这两种量相对应的积一定,这两种量叫做成反比例的量,它们的关系叫成反比例的关系,用字母表示为yx=k(一定).7.判断下面各题中的两种量是否成正比例或反比例?为什么?(1)工作效率一定,工作时间和工作总量.(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量.(3)长方形的面积一定,它的长和宽.(4)正方形的边长和它的面积.(5)路程一定,速度和时间..【答案】正比例,正比例,反比例,不成比例,反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)因为工作总量÷工作时间=工作效率(一定),符合正比例的意义,所以工作效率一定,工作总量与工作时间成正比例;(2)牛奶的产量÷奶牛的头数=每头奶牛的产奶量(一定),所以每头奶牛的产奶量一定,奶牛的头数和产奶总量成正比例;(3)因为:长×宽=长方形的面积(一定),所以长方形的面积一定,长方形的长和宽成反比例;(4)正方形的边长×边长=面积,在这个关系式中,正方形的面积随一条边的变化而变化,而正方形的另一条边也会随着变化,这样三个量都是变化的,所以正方形的边长和它的面积不成任何比例;(5)因为“速度×时间=路程(一定),所以时间和速度成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.8.判断变化的量是否成正比例,说明理由.若S= t,则S 和t.【答案】成正比例.【解析】要想判定S和t成是否成正比例,必须根据式子,进行推导,然后根据正比例的意义,分析数量关系,找出一定的量,看这两个变量是否是比值一定,从而判定成不成正比例关系.解:因为S=t,所以=(一定),是S和t对应的比值一定,符合正比例的意义,所以S和t成正比例.点评:此题属于辨识成正比例的量,就看这两种量是否是对应的比值一定,再做出判断.9.题中的两种量是不是成比例?如果成比例,成什么比例关系?比值一定,比的前项与后项.【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:比的前项和后项是两种相关联的量,它们与比值有下面的关系:前项:后项=比值(一定),已知比值一定,也就是比的前项和后项的比值一定,所以比的前项和后项成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.10.工程队施工的效率一定,施工的时间和施工总量..【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为工作总量÷工作时间=工作效率(一定),即工程队施工的效率一定,施工的时间和施工总量成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.11.判断题中的两种量是不是成比例,成什么比例,并说明理由:被除数一定,商和除数.【答案】成反比例.【解析】判断两种相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为商×除数=被除数(一定),是乘积一定,符合反比例的意义,所以被除数一定,商和除数成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12.题中的两种量是不是成比例?如果成比例,成什么比例关系?=,x和y.【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为=,即xy=6(一定),是积一定,符合反比例的意义,所以x和y成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.题中的两个量成不成比例?成什么比例?每块地砖的面积一定,地砖的块数和铺地的面积..【答案】正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:用同样大小的地砖铺地,铺地面积÷地砖的块数=每块地砖的面积(一定),即地砖的块数和铺地面积的比值一定,所以地砖的块数和铺地的面积成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.14.先判断X和Y的关系,再填空.(1)x249…成比例.(2)成比例.反比例【解析】先看两种量是对应的比值一定,还是乘积一定,再确定成什么比例,在此基础上再填空.解:(1)根据==0.04,是比值一定,X和y成正比例,所以0.12÷0.04=3,0.04×9=0.36.(2)根据3×40=1×120=120,是乘积一定,X和y成反比例,所以120÷20=6,120÷2=60.点评:判断两种量是否成正、反比例,要看这两种量是对应的比值一定,还是乘积一定,如果比值一定,就成正比例,如果乘积一定,就成反比例.15.下表中x与y两个量成反比例,请把表格填写完整.【解析】x与y成反比例关系,也就是x与y的乘积是一定(相等)的.根据相对应x与y都是已知的一栏,可求出乘积,然后根据已知项,求出未知项填入.解:3×4=12,12÷=36,12÷0.2=60,12÷60=0.2;最后一栏可填入任意乘积为12的两个数;X3360.260点评:此题考查正比例和反比例的意义16.判断成不成比例,如果成比例,指出成什么比例:(1)浓度一定时,水和药的用量.(2)车轮转数一定,所行路程和车轮周长.(3)圆锥体积一定,底面半径和高.(4)4X﹣5Y=0,(X、Y不等于0),X和Y..【答案】正比例;正比例;不成比例;正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)因为药的质量÷(水+药)的质量=浓度,水的质量=药的质量×(﹣1),所以水的质量÷药的质量=﹣1(一定),所以浓度一定时,水和药的用量成正比例;(2)因为车轮所行驶的路程÷车轮的周长=车轮的转数(一定),即车轮所行驶的路程与车轮的周长的比值一定,所以车轮所行驶的路程与车轮的周长成正比例;(3)圆锥的体积:V=sh=πr2h,所以r2h=(一定),即底面半径的平方与高成反比例,所以底面半径与高成不成比例,(4)因为4x﹣5y=0,所以4x=5y,即=(一定),所以x与y成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.17.买笔记本的数量和钱数的关系如下表:数量/本01234567…(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?【答案】(2)单价没有变,数量与总价之间成正比例.(3)13.5元.【解析】①每本的价格是1.5元,由此可以完成上表,从而完成统计图;②根据数量和总价之间的变化关系得出数量与总价成正比例的特点;③代入数据即可计算得出.解:(1)根据题意可得,每本的价格为1.5元,由此可完成下表:根据表格中数据可在右图中描点连线,得出统计图如右图:(2)单价没有变,数量与总价之间成正比例.(3)9×1.5=13.5(元),答:单价不变,数量与总价之间成正比例,如果买9本笔记本,需要13.5元.点评:此题考查了绘制折线统计图的方法,以及成正比例关系的量的特点.18.(2012•潞西市模拟)车轮的周长、转数和行驶的路程三者之间分别成什么比例关系?(举例说明)【答案】行驶的路程与车轮的转数成正比例;行驶的路程与车轮的周长成正比例;车轮的周长与车轮的转数成反比例.【解析】分别从车轮的周长一定、车轮的转数一定和行驶的路程一定这三种情况分析,找出另外两种量是对应的比值一定还是乘积一定,如果是比值一定,另外两种量就成正比例,如果是乘积一定,另外两种量就成反比例.解:(1)当车轮的周长一定时,行驶的路程:车轮的转数=车轮的周长(一定),是比值一定,行驶的路程与车轮的转数成正比例;(2)当车轮的转数一定时,行驶的路程:车轮的周长=车轮的转数(一定),是比值一定,行驶的路程与车轮的周长成正比例;(3)当行驶的路程一定时,车轮的周长×车轮的转数=行驶的路程(一定),是乘积一定,车轮的周长与车轮的转数成反比例.点评:此题属于根据正、反比例的意义,辨识两种相关联的量成什么比例,解决此题关键是先确定一个量一定,再看另外两个量是对应的比值一定,还是对应的乘积一定,再做出判断.19.(2012•沛县模拟)先判断,再填空.3a=b a和b成比例.【答案】正比例.【解析】由3a=b得出;a:b=,根据正比例的关系式x:y=k(一定)所以a和b成正比例.解:因为3a=b所以a:b=,符合正比例关系式x:y=k(一定),所以a和b成正比例.点评:此题主要先根据等式改写成比例式,再根据正反比例的意义判断.20.(2013•华亭县模拟)设一个量x与另一个量y成正比例,已知当X=6时,y=4.(1)写出y和x的关系式.(2)求出当x=6.9时,y的值.【答案】x:y=6:4;y=4.6.【解析】(1)因为一个量x与另一个量y成正比例,所以x与y的比值一定,即x:y=6:4;(2)把x=6.9代入(1)即可求出y的值.解:(1)因为一个量x与另一个量y成正比例,所以x与y的比值一定,即x:y=6:4;(2)把x=6.9代入x:y=6:4,即6.9:y=6:4,6y=6.9×4,6y=27.6,y=4.6.点评:本题主要是根据正比例的意义和解比例的方法解决问题.21.已知4y=6x,x和y成反比例..【答案】×.【解析】判断x和y是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果不是乘积一定或乘积不一定,就不成反比例.解:4y=6x,x:y=4:6=,即x与y的比值一定,符合正比例的意义,所以x和y成正比例,不成反比例,点评:此题属于辨识成反比例的量,就看这两种变量是否是对应的乘积一定,再做出判断.22.正方体的棱长一定,它的体积和表面积比例.【答案】不成.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:正方体的体积=棱长×棱长×棱长;正方体的表面积=棱长×棱长×6;所以正方体的棱长一定,它的体积和表面积不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.23.一筐桃平均分给猴子,猴的只数和每只猴分桃的个数..【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为猴的只数×每只猴分桃的个数=桃子的总数(一定),所以一筐桃平均分给猴子,猴的只数和每只猴分桃的个数成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.圆的面积和它的半径..【答案】不成比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为S÷r=πr,r变化,πr就变化,所以圆的面积和它的半径不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.25.判断题中两个量是否成正比例关系:分子一定,分母和分数值..【答案】反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为分数的分子÷分母=分数值,所以分母×分数值=分数的分子(一定),符合反比例的意义,所以分数值和分母成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.26.正方形的面积和边长..【答案】不成比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:正方形的面积÷边长=边长(不一定),比值不一定,所以正方形的面积和边长不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.27.互相咬合的齿轮的齿数和转数比例.【答案】反.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.因为:齿轮的齿数×转数=转过的总齿数(一定),所以齿轮的转数与齿数成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.28.份数一定,每份数和总数比例每份数一定,份数和总数比例总数一定,每份数和份数比例.【答案】正,正,反.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:总数÷每份数=份数(一定),所以每份数和总数成正比例;因为:总数÷份数=每份数(一定),所以份数和总数正比例;因为:每份数×份数=总数(一定),所以每份数和份数成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.29.已知xy=5,x与y成比例.【答案】反.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:xy=5(一定),则x与y成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.30.圆的周长与直径成正比例;面积与半径也成正比例..(判断对错)【答案】×.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:解:因为圆的周长÷直径=π(一定),符合正比例的意义,所以圆的直径和周长成正比例;圆的面积÷半径=π×半径(不一定),是比值不一定,所以圆的面积与半径不成比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.31.轮船行驶的速度一定,行驶的路程和时间.○=速度因为和的一定,所以和成正比例.【答案】√,路程,÷,时间,一定,路程,时间,比值,路程,时间.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为路程÷时间=速度(一定),即路程和时间的比值一定,所以行驶的路程和时间成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.32.已知y=x,x与y不成比例..(判断对错)【答案】×.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:已知y=x,则:y÷x=(一定),所以x与y成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.33.煤的总量一定.每天烧煤量和烧煤天数成比例.理由:.【答案】反,两种相关联量的乘积一定.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:每天烧煤量×烧煤天数=煤的总量(一定),所以每天烧煤量和烧煤天数成反比例;理由:两种相关联量的乘积一定;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.34.如果y=,那么x和y成反比例..(判断对错)【答案】√.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:如果y=,则:xy=8(一定),即乘积一定,所以x和y成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.35.货物的总吨数一定,运走的吨数与余下的数成反比例..【答案】错误.【解析】根据题意知道,运走的吨数与余下吨数的和就是货物的总吨数,由此即可判断.解:因为,运走的吨数+余下的吨数=总吨数,不是比值与乘积一定,所以不成比例.点评:此题考查了两个量成何比例的方法,即如果两个量的比值一定,则这两个量成正比例,如果两个量的乘积一定,那两个量就成反比例.36.如果,A×B等于C一定,那么A和B成正比例.【答案】反.【解析】判断成A和B成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解;A×B=C(一定),是乘积一定,所以A和B成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.37.运一批粮食,卡车的载重量和所需要的次数如下表:每次运的重量/吨34568②表中涉及到这批粮食总质量、、三种量,其中是一定的,和是相关联的量,它们成比例.【解析】①根据表中数据可知:3×40=4×30=5×24=6×20,即每次运的重量×所需次数=这批粮食的总重量(一定),每次运的重量和所需次数成反比例;据此解答,然后填表即可;②根据正比例的意义可知:表中涉及到这批粮食总质量、每次运的重量、所需次数三种量,其中这批粮食的总重量是一定的,每次运的重量和所需次数是相关联的量,它们成反比例.解:①因为3×40=4×30=5×24=6×20,即每次运的重量×所需次数=这批粮食的总重量(一定),每次运的重量和所需次数成反比例;则:3×40÷8=15(吨),3×40÷12=10(次),填表如下:×所需次数=这批粮食的总重量,因为这批粮食的总重量是一定的,每次运的重量和所需次数是相关联的量,它们成反比例;点评:此题应根据反比例的意义及判断两个相关联的量之间成反比例的方法进行解答.38.速度、路程和时间这三种量,一定,和成正比例.【答案】速度;路程;时间.【解析】判断两个相关联的量是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.解:速度、路程和时间这三种量中,路程÷时间=速度(一定),路程与时间的比值一定,所以速度一定,路程与时间成正比例;(同理也可得出时间一定时,路程与速度成正比例);点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.39.在如果x与y成正比例,那么“?”是;若x与y成反比例,那么“?”是【答案】1,4.【解析】(1)如果x和y成正比例,则相对应的两个数的比值一定,根据比值一定,列出比例式:4:12=?:24,求得“?”的值;(2)如果x和y成反比例,则相对应的两个数的乘积一定,根据乘积一定,列出方程:4×12=?×24,可求得“?”的值.解:(1)x和y成正比例,则2:600=?:300,?×600=2×300,?=600÷600,?=1;(2)x和y成反比例,则?×300=2×600,?×300=1200,?=1200÷300,?=4;点评:根据正、反比例的关系列出含“?”的算式,进而求得“?”的数值即可.40.若7x=y,那么x:y=:,x与y成比例.【答案】1、7、正.【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可写出这个比例式,再看x与。
正比例与反比例练习题1. 小明每天骑自行车上学,他发现骑行的时间和他的速度成正比。
如果他以每小时10公里的速度骑行,那么上学的时间是多少?解答: 假设骑行的时间是 x 小时,则速度和时间成正比,可以表示为 10/x = k,其中 k 是比例系数。
根据比例关系可得,x = 10/k。
由题意可知,当速度为10公里/小时时,上学时间为x小时,代入公式得到:x = 10/k。
因此,上学的时间为 10/k 小时。
2. 某工厂生产零件的速度和工人数量成正比。
如果有8个工人能够在5小时内生产完500个零件,那么10个工人需要多长时间才能生产1000个零件?解答: 假设生产零件的时间是 x 小时,则工人数量和时间成正比,可以表示为 8/5 = 10/x。
通过交叉乘积得到方程 8x = 50,解得 x = 6.25。
因此,10个工人需要6.25小时才能生产完1000个零件。
3. 小红做作业的速度和作业量成反比。
如果她能够在12小时内完成180页的作业,那么她在4小时内能完成多少页的作业?解答: 假设完成作业的页数是 y 页,则速度和作业量成反比,可以表示为 180/12 = y/4。
通过交叉乘积得到方程 180*4 = 12y,解得 y = 60。
因此,小红在4小时内能完成60页的作业。
4. 某项任务由8个工人在10天内完成,如果增加到12个工人,需要多少天才能完成同样的工作?解答: 假设完成任务的时间是 x 天,则工人数量和时间成反比,可以表示为 8*10 = 12*x。
通过交叉乘积得到方程 80 = 12x,解得 x = 6.67。
因此,增加到12个工人需要6.67天才能完成同样的工作。
由于天数不能为小数,可以向上取整,并得出需要7天才能完成。
5. 某车辆的速度和行驶时间成反比。
如果车辆以每小时80公里的速度行驶,那么行驶1000公里需要多长时间?解答: 假设行驶的时间是 y 小时,则速度和时间成反比,可以表示为 80/y = k,其中 k 是比例系数。
考点三、正比例系的必须是两个量,可以取不同数值的两个量,不能是具体的数字。
4、生活中正比例的例子:(1)正方形的周长与边长成正比例关系。
(2)如果汽车行驶速度一定,路程与时间成正比例关系。
(3)平行四边形的高一定,面积和底成正比例关系。
【练习三】一、判断(1)如果3x=8y ,那么y 与x 成正比例。
( )(2)黄豆的出油率一定,榨出豆油的重量和所需要的黄豆的重量成正比例( )(3)装订每个练习本所用纸的页数一定,装订的本数和所需要的纸的总张数成正比例。
( )(4)如果14x =20y ,那么y 与x 成正比例。
( ) (5)一个加数不变,和与另一个加数成正比例。
( )(6)小明的身高和体重。
( )(7)长方形的周长一定,长和宽。
( )(8)收入一定,支出和结余。
二、判断下面语句中的两个量是否成正比例关系,是打√,不是打×(1)平行四边形的高一定,它的面积和底( )(2)被减数一定,减数和差。
( )(3)单价一定,总价和数量。
( )(4)分母一定,分子和数值。
( )(5)少先队员每人做好事的件数一定,做好事的总件数和做好事的少先队员的人数。
( )三、填空题1、《中古少年报》的总份数和总价是两种像关联的量,总份数扩大,总价也随着( ),如果总份数缩小,总价也随着( ),这两种量中( )的两个数的( )一定,也就是( )一定,《中国少年报》的总价和总份数成( )关系。
2、已知a ÷b=5,(a 和b 均不为0),则a 和b 是成( )的量,他们的关系叫做( )关系。
3、每台电视机的价格一定,购买电视机的台数和钱数成( )比例。
4、甲数的34相当于乙数的23。
甲数与乙数的比是( )。
5、5X =4Y,X 与Y 成( )比例。
6、全班人数一定,出勤人数和出勤率成( )比例。
7、已知圆的半径是r ,直径是d ,周婵是C ,面积是S ,用字母表示数量关系 d=( ),C=( ),S=( )这四个量中,哪两个量成正比例关系,请你写出一个来。
正比例和反比例的意义一、单选题1.每辆汽车载重量一定,汽车辆数和载重量总数()A. 成正比例B. 成反比例C. 不成比例D. 不成正比例2.下面题中的两种量成不成比例,成什么比例.()正方体的体积和棱长.A. 成正比例B. 成反比例C. 不成比例3.根据规律判断比例关系,并填空X与Y成那种比例A. 成正比例B. 成反比例C. 不成比例4.在下面四句叙述中,正确的是()①给一间教室铺地砖,每块地砖的面积和所需地砖的块数成反比例;②把45米长的绳子平均分成4段,每段占全长的15;③一个自然数不是奇数就是偶数,不是质数就是合数;④一个圆柱和圆锥体积相等,底面积也相等,圆柱的高为6cm,那圆锥的高一定是18cm.A. ①②B. ①③C. ②④D. ①④5.下题中的两种量成什么比例.一辆汽车的速度一定,行驶的时间和路程.()A. 成正比例B. 成反比例C. 不成比例6.小明从家里去学校,所需时间与所行速度()。
A. 成正比例B. 成反比例C. 不成比例7.每袋茶叶的重量一定,茶叶的总重量和袋数( )A. 成反比例B. 成正比例C. 不成比例D. 不成正比例8.正方形的面积和边长()A. 成正比例B. 成反比例C. 不成比例9.长方形的面积一定,长与宽成()A. 反比例B. 正比例C. 不成比例D. 无法判断10.大米的总量一定,吃掉的和剩下()A. 不成比例B. 成正比例11.班级数一定,每班人数和总人数( )A. 成反比例B. 成正比例C. 不成比例D. 不成正比例12.正方体的表面积和()成正比例.A. 棱长B. 底面积13.如果x= 14y,那么1x与y成()比例.A. 正B. 反C. 不成D. 无法确定14.下面每组中的两种量,不成正比例的是()。
A. 一个人的年龄和体重B. x÷y=0.2C. 2m=n15.圆的半径和周长( )A. 成正比例B. 成反比例C. 不成比例D. 不成正比例16.题中的两个量订阅《少年报》的份数和钱数.( )A. 成正比例B. 成反比例C. 不成比例17.平行四边形面积一定时,底和高成()A. 正比例B. 反比例C. 不能确定18. 下面的四句话中,正确的一句是()A. 任何等底等高的三角形都可以拼成一个平行四边形B. 路程一定,时间和速度成反比例关系C. 把0.78扩大到它的100倍是7800D. b(b>1)的所有因数都小于b19.题中的两个量()圆的半径和周长.A. 成正比例B. 成反比例C. 不成比例20.下面题中的两种量成什么比例?x∶3=y,x和y.( )A. 成正比例B. 成反比例C. 不成比例二、判断题21.判断对错.长方形的周长一定,长与宽成反比例.22.订阅《少年文艺》的份数与总钱数成反比例.23.大豆的出油率一定,那么大豆的数量和出油量成正比例。
第四章比例
正比例和反比例的意义复习题
1根据你的经验,判断下面各题中的两个量是否成正比例,是的打“√”,不是的打“×”。
(1)汽车行驶的路程和时间。
( )
(2)人的年龄和身高。
( )
(3)x与y的比值是1
5
,x与y。
( )
(4)被除数一定,除数和商。
( )
(5)做一项工程,工作效率与完成的时间。
( )
2根据下面的关系式,说出哪种量一定,哪两种量成正比例。
(1)总价=单价×数量。
( )一定,( )和( )成正比例。
(2)长方形面积=底×高。
( )一定,( )和( )成正比例。
(3)xy=z。
( )一定,( )和( )成正比例。
(4)铺地面积=方砖面积×方砖块数。
( )一定,( )和( )成正比例。
(5)路程=速度×时间。
( )一定,( )和( )成正比例。
3根据表中两种量相对应的比值,判断它们是不是成正比例,并说明理由。
(1)
(2)
4小英和妈妈的年龄变化情况如下,把表填写完整。
5已知ab=c,a、b都不为0。
先写两个正比例关系式,再填空。
______( )一定,( )和( )成正比例。
______( )一定,( )和( )成正比例。
6填空:
(1)每公顷的施肥量一定,施肥总量与公顷数成( )比例。
(2)要修的路程一定,每天修的路程与天数成( )比例。
(3)肥料总数一定,每平方米施肥量和平方米成( )比例。
(4)钱的总数一定,铅笔数量和单价成( )比例。
(5)制造一批零件的个数一定,制造一个零件的时间和需要的总时间成( )比例。
7下面常用的一些相关联的量成什么比例。
(1)速度×时间=路程。
速度一定,( )和( )成( )比例。
时间一定,( )和( )成( )比例。
路程一定,( )和( )成( )比例。
(2)单价×数量=总价。
单价一定,( )和( )成( )比例。
数量一定,( )和( )成( )比例。
总价一定,( )和( )成( )比例。
8选择正确答案的字母填入括号内。
A.成正比例B.成反比例C.不成比例(1)平行四边形的底一定,高和面积。
( )
(2)积一定,一个因数与另一个数。
( )
(3)一本书的页数一定,已看的页数和没看的页数。
( )
(4)工作效率一定,工作总量和工作时间。
( )
9糖果厂包装一批糖果,每袋糖果的粒数和装的袋数如下表:
10判断下面的两种量成不成比例?成正比例画“○”,成反比例画“△”,不成比例画“×”。
(1)每小时织布米数一定,织布的总时间和总米数。
( )
(2)一个人的年龄和他的体重。
( )
(3)生产总量一定,每天的生产量和生产天数。
( )
(4)正方形的边长和面积。
( )
(5)分母一定,分子和分数值。
( )
11填空:
(1)物品的总价一定,它的单价和数量成( )比例。
(2)每公顷的施肥量一定,施肥的公顷数和施肥总量成( )比例。
(3)要走的路程一定,已行路程与未行的路程( )比例。
(4)比的后项一定,前项和比值成( )比例。
(5)甲数是乙数的80%,甲数和乙数成( )比例。
(6)圆的半径和它的周长成( )比例。
12填一填。
(1)已知x和y成正比例关系,请完成下列表格。
(2)已知x和y
13如果a
b·c
=1(b≠0,c≠0),那么,当a一定时,b和c成( )比例;当b一定时,a和c成( )比例;当c一定时,a和b成( )比例。
14判断(对的打“√”,错的打“×”)
(1)生产效率一定,生产的总量和生产的时间成反比例。
( )
(2)出米率一定,大米的重量和稻谷的重量成正比例。
( )
(3)汽车速度一定,行驶的路程和所用时间成反比例。
( )
(4)三角形的高一定,它的面积和底不成比例。
( )
(5)被减数一定,减数和差成反比例。
( )
15解比例。
x 1.5=10
3
2 3∶15=
4
5
∶x
1如果x和y成正比例,并且y
x
=20。
请完成下表。
2在下图中,描出上题中y与相对应的x的点(注意找几个关键点),然后连成线。
3一个比例的两个内项之积是1
8
,其中一个外项为20%,则另一个外项为多少?
4李平和同学星期六骑车去郊游,下图表示她骑车的路程和时间的关系。
(1)李平骑车行驶的路程和时间成正比例吗?为什么?
(2)利用图估计,李平20分钟大约行了多少千米?行20千米大约用了多少分钟?(答案保留整数) 5用同样的方砖铺地,方砖的边长一定,铺地面积与方砖块数成不成比例?为什么?
6一个比例,两个内项的和是37,差是13,等号左、右两边的比的比值是22
5
,写出这个比例。
参考答案
轻松起步
1.(1)√ (2)× (3)√ (4)× (5)×
2.(1)单价 总价 数量 (2)高 长方形面积 底 (3)x z y (4)方砖块数 铺地面积 方砖面积 (5)速度 路程 时间
3.(1)成正比例 (2)成正比例 4.不成正比例 理由略
5.b =c a b c a a =c
b a
c b
6.(1)正 (2)反 (3)反 (4)反 (5)正 7.略
8.(1)A (2)B (3)C (4)A 9.成反比例 理由略
10.(1)○ (2)× (3)△ (4)× (5)○
11.(1)反 (2)正 (3)不成 (4)正 (5)正 (6)正 4.反 正 正 12.略 13.略
14.(1)× (2)√ (3)× (4)× (5)× 15.x =5,x =18.
快乐提升 1.略 2.略 3.18÷20%=5
8
4.(1)成正比例 理由略 (2)5千米 75分钟
5.成 方砖的面积=铺地面积
方砖块数
6.(37+13)÷2=25 37-25=12 25×225=60 12÷12
5
=5 比例式为60∶25=12∶5。