第5章3线段的定比分点和平移
- 格式:ppt
- 大小:1.28 MB
- 文档页数:49
第 26 讲 线段的定比分点及平移(1课时)线段的定比分点及平移 ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧+='+='⎪⎪⎩⎪⎪⎨⎧++=++=⎪⎩⎪⎨⎧化简曲线方程平移公式定比分点坐标公式的确定外分点内分点线段的定比分点k y y h x x y y x x x x λλλλλ112121 重点:1.定比分点的意义以及λ的确定。
2.分点公式的掌握和应用。
3.平移公式的理解和应用。
难点:1.定比分点公式的掌握。
2.利用平移公式化简。
2.掌握平移公式并能熟练运用。
3. 求函数平移后的表达式。
点P 分有向线段21P P 所成的比:设P 1, P 2是直线l 上的两点,P 是l 上异于P 1、 P 2的任一点,则存在实数λ,使 P P 1=λ2PP ,称λ为点P 分21P P 所成的比。
当点P 在线段21P P 内时,称点P 为21P P 的内分点,此时0>λ,并且 =λ 。
特别地,当P 和1P 重合时,0=λ。
当点P 在线段21P P (或12P P )的延长线上时,称点P 为21P P 的外分点,此时0<λ,并且=λ 。
特别地,当P 和2P 重合时,λ不存在。
注意的含义:比值λ是数量之比,而不是长度之比。
注意定比分点的特定位置:求λ时,21PP P P =λ 或21PP P P -=λ 中,1P 是起点,2P 是终点,P 是分点。
2.线段的定比分点公式设P P 1=λ2PP 点P 1, P, P 2坐标为)(11y x ,、)(y x , 、)(22y x ,,则有定比分点公式 ⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 。
特别地,当P 是21P P 的中点时,则有中点公式 ⎪⎩⎪⎨⎧+=+=222121y y y x x x 。
设△ABC 的三个顶点为A )(11y x ,,B )(22y x ,,C )(33y x ,,则△ABC 的重心G(x , y )的坐标为 ⎪⎩⎪⎨⎧++=++=33321321y y y y x x x x 。
课 题:线段的定比分点教学目的: 1掌握线段的定比分点坐标公式及线段的中点坐标公式; 2熟练运用线段的定比分点坐标公式及中点坐标公式; 3理解点P 分有向线段21P P 所成比λ的含义; 4明确点P 的位置及λ范围的关系教学重点:线段的定比分点和中点坐标公式的应用教学难点:用线段的定比分点坐标公式解题时区分λ>0还是λ<0授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1向量的加法:求两个向量和的运算,叫做向量的加法向量加法的三角形法则和平行四边形法则2.向量加法的交换律:a +b =b +a3.向量加法的结合律:(a +b ) +c =a + (b +c )4.向量的减法向量a 加上的b 相反向量,叫做a 与b的差即:a - b = a + (-b )5.差向量的意义: OA = a , OB = b , 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量6.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 7.运算定律 λ(μa ρ)=(λμ)a ρ,(λ+μ)a ρ=λa ρ+μa ρ,λ(a ρ+b ρ)=λa ρ+λb ρ8. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ9.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e (1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一 λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 10.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=11.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=12.a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=0二、讲解新课:1.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)2定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比 设P 1=λ2PP点P 1, P, P 2坐标为(x 1,y 1) (x,y) (x 2,y 2),由向量的坐标运算 P 1=(x-x 1,y-y 1) ,2PP=( x 2-x, y 2-y) ∵P 1=λ2PP∴ (x-x 1,y-y 1) =λ( x 2-x, y 2-y) ∴⎩⎨⎧-=--=-)()(2121y y y y x x x x λλ ⎪⎩⎪⎨⎧++=++=⇒λλλλ112121y y y x x x 定比分点坐标公式(1-≠λ) 点P 分12P 所成的比与点P 分21P P 所成的比是两个不同的比,要注意方向 3P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点特别地,当λ=1时,有P 1=2PP,即点P 是线段P1P2之中点,其坐标为(2,22121y y x x ++) ②当λ<0(1-≠λ)时,P 1与2PP 反向共线,这时称点P 为21P P 的外分点 探究:若P1、P2是直线l 上的两点,点P 是l 上不同于P1、P2的任意一点,则存在一个实数λ,使P P 1=λ2PP ,λ叫做P 分有向线段21P P 所成的比而且,当点P 在线段P1P2上时,λ>0;当点P 在线段P1P2或P2P1的延长线上时,λ<0对于上述内容,逆过来是否还成立呢?(1)若λ>0,则点P 为线段P1P2的内分点;(2)若λ<0,则点P 为线段P1P2的外分点一般来说,(1)是正确的,而(2)却不一定正确这是因为,当λ=-1时,定比分点的坐标公式x=λλ++121x x 和y=λλ++121y y 显然都无意义,也就是说,当λ=-1时,定比分点不存在由此可见,当点P 为线段P1P2的外分点时,应有λ<0且λ≠-1 4线段定比分点坐标公式的向量形式: 在平面内任取一点O ,设1OP =a,2OP =b, 由于P P 1=OP -1OP =OP -a,2PP =2OP -OP =b-OP 且有21P P =λ2PP,所以OP -a =λ(b -OP )即可得 OP =b a b a λλλλλ+++=++1111 这一结论在几何问题的证明过程中应注意应用三、讲解范例:例1已知A (1,3),B (-2,0),C(2,1)为三角形的三个顶点,L 、M 、N 分别是BC 、CA 、AB 上的点,满足BL ∶BC =CM ∶CA =NA ∶AB=1∶3,求L 、M 、N 三点的坐标分析:所给线段长度的比,实为相应向量模的比,故可转换所给比值为点L 、M 、N 分向量BC 、CA 、AB 所成的比,由定比分点坐标公式求三个点的坐标另外,要求L 、M 、N 的坐标,即求OL 、OM 、ON 的坐标(这里O 为坐标原点),为此,我们可借用定比分点的向量形式下面给出第二种解法解:∵A(1,3),B(-2,0),C(2,1),∴OA =(1,3),OB =(-2,0),OC =(2,1)又∵BL∶BC=CM∶CA=AN∶AB=1∶3∴可得:L 分CB ,M 分AC ,N 分BA 所成的比均为λ=2∴OL =λ+11OC +λ+11OB =31(2,1)+32(-2,0)=(-32,31) OM =λ+11OA +λλ+1OC =31 (1,3)+ 32(2,1)=(35,35) ON =λ+11OB +λλ+1OA =31(-2,0)+32(1,3)=(0,2) ∴L(-32,31)、M(35,35)、N(0,2)为所求 上述两种解题思路,各有特色,各有侧重,望同学们比较选择,灵活应用例2已知三点A (0,8),B (-4,0),C(5,-3),D点内分AB 的比为1∶3,E 点在BC 边上,且使△BDE 的面积是△ABC 面积的一半,求DE 中点的坐标 分析:要求DE 中点的坐标,只要求得点D 、E 的坐标即可,又由于点E 在BC 上,△BDE 与△ABC 有公共顶点B ,所以它们的面积表达式选定一公用角可建立比例关系求解解:由已知有AD =31DB ,则得AB DB=34又21=∆∆ABC BDES S ,而S△BDE=21|DB |·|BE |·sin ∠DBE ,S△ABC=21|AB |·|BC |sin ∠ABC ,且∠DBE =∠ABC∴21=⋅⋅BC AB BEDB ,即得:32=BCBE又点E 在边BC 上,所以2=BCBE,∴点E 分BC 成比λ=2由定比分点坐标公式有⎪⎪⎩⎪⎪⎨⎧-=+-⨯+==+⨯+-=221)3(20221524E E y x ,即E(2,-2),又由⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=-=+-⨯+=631181311)4(310D D y x ,有D (-1,6)记线段DE 的中点为M (x ,y ),则⎪⎪⎩⎪⎪⎨⎧=+-==-+=2262212)1(2y x ,即M (21,2)为所求 四、课堂练习: 1.已知点A (-2,-3),点B(4,1),延长AB 到P ,使|AP |=3|PB |,求点P 的坐标解:因为点P 在AB 上的延长线上,P 为AB 的外分点,所以,AP =λPB ,λ<0,又根据|AP |=3|PB |,可知λ=-3,由分点坐标公式易得P 点的坐标为(7,3).2.已知两点P 1(3,2),P2(-8,3),求点P (21,y)分21P P 所成的比λ及y的值解:由线段的定比分点坐标公式得⎪⎪⎩⎪⎪⎨⎧+⨯+=+-+=λλλλ1321)8(321y ,解得⎪⎪⎩⎪⎪⎨⎧==2249175y λ 五、小结六、课后作业:1已知点A 分有向线段BC 的比为2,则在下列结论中错误的是( )A 点C 分AB 的比是-31B 点C 分BA 的比是-3 C 点C 分AC 的比是-32D 点A 分CB 的比是22已知两点P 1(-1,-6)、P2(3,0),点P (-37,y)分有向线段21P P 所成的比为λ,则λ、y的值为( )A -41,8B 41,-8C -41,-8D 4,81 3ABC 的两个顶点A (3,7)和B (-2,5),若AC 的中点在x 轴上,BC 的中点在y 轴上,则顶点C 的坐标是( ) A (2,-7) B (-7,2) C (-3,-5) D (-5,-3)4已知点A (x ,2),B (5,1),C (-4,2x )在同一条直线上,那么x =5△ABC 的顶点A (2,3),B (-4,-2)和重心G (2,-1),则C 点坐标为 6已知M 为△ABC 边AB 上的一点,且S△AMC=81S△ABC,则M 分AB 所成的比为7已知点A (-1,-4)、B (5,2),线段AB 上的三等分点依次为P 1、P2,求P1、P2点的坐标以及A 、B 分21P P 所成的比λ.8过P 1(1,3)、P2(7,2)的直线与一次函数5852+=x y 的图象交于点P ,求P 分21P P 所成的比值9已知平行四边形ABCD 一个顶点坐标为A (-2,1),一组对边AB 、CD 的中点分别为M (3,0)、N (-1,-2),求平行四边形的各个顶点坐标参考答案:1D 2C 3A 42或27 5(8,-4) 6 71 7P 1(1,-2),P 2(3,0),A 、B 分21p p 所成的比λ1、λ2分别为-21,-2 8 125 9B(8,-1),C(4,-3),D(-6,-1) 七、板书设计(略)八、课后记:。
第42课时:第五章 平面向量——线段的定比分点及平移课题:线段的定比分点及平移一.复习目标:1.掌握线段的定比分点坐标公式和中点坐标公式,会用定比分点坐标公式求分点坐标和,会用中点坐标公式解决对称问题;2.掌握平移公式,会用平移公式化简函数式或求平移后的函数解析式.二.知识要点:1.线段的定比分点:内分点、外分点、的确定;2.定比分点坐标公式是 ;线段的中点坐标公式是 ; 3.平移公式是 .三.课前预习:1.若点分的比为34,则点分的比是 . 2.把函数1124y x =-的图象,按向量(2,4)a =-平移后,图象的解析式是( ) 12124y x =- 11324y x =- 11924y x =+ 12124y x =-- 3.将函数241y x x =--顶点按向量平移后得到点(1,3)P '-,则 .4.ABC ∆中三边中点分别是(2,1),(3,4),(2,1)D E F --,则ABC ∆的重心是 .四.例题分析:例1.已知两点(,5)A x ,(2,)B y -,点(1,1)P 在直线上,且||2||AP BP =,求点和点的坐标.例2.已知(1,2),(1,3),(2,2)A B C --,点分的比为,点在线段上,且ABC AMNC S S ∆=32,求点的坐标.例3.已知函数 22(2)1y x =---的图象经过按平移后使得抛物线顶点在轴上,且在轴上截得的弦长为,求平移后函数解析式和.例4.已知,,D E F 分比是ABC ∆的三边,,BC CA AB 上的点,且使BD CE AF DC EA FB==,证明:ABC ∆与DEF ∆的重心相同.五.课后作业:1.已知点按向量平移后得到点,则点按向量平移后的坐标是( )(5,1)-- (5,1)- (5,1)-2.平面上有(2,1)A -,(1,4)B ,(4,3)D -三点,点在直线上,且12AC BC =,连并延长到,使1||||4CE ED =,则点的坐标为( ) 或811(,)33 811(,)33- 5(8,)3-- 3.平移曲线()y f x =使曲线上的点变为,这时曲线方程为( )(1)2y f x =-+ (1)2y f x =++(1)2y f x =-- (2)1y f x =-+4.把一个函数的图象向量(,2)4a π=平移后图象的解析式为sin()24y x π=++,则原来函数图象的解析式为 .5.已知函数11x y x-=+,按向量平移该函数图形,使其化简为反比例函数的解析式,则向量= ,化简后的函数式为 .6.已知(1,0)A ,(0,1)B -,(,)P x y ,为坐标原点,若1OA OB OP λλ+=+,则点的轨迹方程为 .7.已知三角形的三个顶点为(1,2),(4,1),(3,4)A B C ,(1)求三边的长;(2)求边上的中线的长;(3)求重心的坐标;(4)求的平分线的长;(5)在上取一点,使过且平行于的直线把ABC ∆的面积分成的两部分,求点的坐标.8.如图已知三点(0,8),(4,0),(5,3)A B C --,点内分的比是,在上,且BDE ∆的面积是ABC ∆面积的一半,求点的坐标.9.将函数2y x =-的图象进行怎样的平移,才能使平移后得到的图象与函数22y x x =--的两交点关于原点对称并求平移后的图象的解析式。
高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。
下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。
高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。