10.2 用样本估计总体
- 格式:ppt
- 大小:1011.00 KB
- 文档页数:55
§10.2统计及统计案例探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点抽样方法①理解随机抽样的必要性和重要性;②会用简单随机抽样方法从总体中抽取样本2019课标全国Ⅰ,6,5分系统抽样—★★☆2018课标全国Ⅲ,14,5分分层抽样—统计图表了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率分布折线图、茎叶图,体会它们各自的特点2017课标全国Ⅲ,3,5分认识折线图—★★☆2018课标全国Ⅰ,3,5分认识扇形统计图—2018课标全国Ⅰ,19,12分用频率分布直方图解决实际问题平均数样本的数字特征①理解样本数据标准差的意义和作用,会计算数据标准差;②能从样本数据中提取基本的数字特征,并给出合理的解释;③会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;④会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题2017课标全国Ⅰ,2,5分理解方差或标准差—★★☆2019课标全国Ⅲ,4,5分用样本估计总体—2019课标全国Ⅲ,17,12分用频率分布直方图估计数字特征频率分布直方图2019课标全国Ⅱ,19,12分频数分布表及数字特征—变量间的相关性①会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系;②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程2016课标全国Ⅲ,18,12分相关系数与回归方程折线统计图★★☆2017课标全国Ⅰ,19,12分相关系数数字特征独立性检验了解独立性检验的基本思想、方法及其简单应用,能通过计算判断两个变量的相关程度2019课标全国Ⅰ,17,12分独立性检验用频率估计概率★★☆2017课标全国Ⅱ,19,12分频率分布直方图与独立性检验用频率估计概率2018课标全国Ⅲ,18,12分茎叶图与独立性检验样本的数字特征分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义、频率分布直方图、平均数、方差的计算、识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的竖直方向的长度=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.破考点练考向【考点集训】考点一抽样方法A.416B.432C.448D.464答案A2.(2018安徽安庆一中、山西太原五中等五省六校(K12联盟)期末联考,3)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n的样本,其中高中生有24人,那么n等于()A.12B.18C.24D.36答案D考点二统计图表3940112551366778889600123345A.1B.2C.3D.4答案B2.(多选题)(2020届山东夏季高考模拟,9)下图为某地区2006年—2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年—2018年()A.财政预算内收入、城乡居民储蓄年末余额均呈增长趋势B.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C.财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D.城乡居民储蓄年末余额与财政预算内收入的差额逐年增大答案AD考点三样本的数字特征1.(2018湖北华师一附中月考,3)某人到甲、乙两市各7个小区调查空置房情况,将调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为( )A.4B.3C.2D.1答案 B2.(2018山东济南一模,3)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为s 2,则( ) A.x =4,s 2<2 B.x =4,s 2>2 C.x >4,s 2<2 D.x >4,s 2>2答案 A考点四 变量间的相关性1.(2018河南焦作四模,3)已知变量x 和y 的统计数据如下表:x 3 4 5 6 7 y2.5344.56根据上表可得回归直线方程为y ^=b ^x-0.25,据此可以预测当x=8时,y ^=( ) A.6.4B.6.25C.6.55D.6.45答案 C2.(2018湖南张家界三模,4)已知变量x,y 之间的线性回归方程为y ^=-0.7x+10.3,且变量x,y 之间的一组相关数据如下表所示,则下列说法错误..的是( ) x 6 8 10 12 y6m32A.变量x,y 之间成负相关关系B.可以预测,当x=20时,y ^=-3.7 C.m=4D.该回归直线必过点(9,4) 答案 C考点五独立性检验(2018贵州六校12月联考,18)海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”?(2)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.P(K2≥k0)0.100.050.010k0 2.706 3.841 6.635附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).答案(1)将2×2列联表中的数据代入公式计算,得K2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名中文系学生中任取3人的所有可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)},其中a i表示喜欢甜品的学生,i=1,2,b j表示不喜欢甜品的学生,j=1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.事件A由7个基本事件组成,因而P(A)=710.炼技法提能力【方法集训】方法1 解与频率分布直方图有关问题的方法1.(2016山东,3,5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140答案D2.(2020届广西桂林十八中模拟,18)某家电公司销售部门共有200名销售员,每年部门对每名销售员都有1400万元的年度销售任务.已知这200名销售员去年完成的销售额在区间[2,22](单位:百万元)内,现将其分成5组:第1组、第2组、第3组、第4组、第5组对应的区间分别为[2,6),[6,10),[10,14),[14,18),[18,22),并绘制出频率分布直方图,如图.(1)若用分层抽样的方法从这200名销售员中抽取容量为25的样本,求a的值和样本中完成年度任务的销售员人数;(2)从(1)中样本内完成年度任务的销售员中随机选取2名,奖励海南三亚三日游,求获得此奖励的2名销售员在同一组的概率.答案(1)∵(0.02+0.08+0.09+2a)×4=1,∴a=0.03.∴样本中完成年度任务的人数为200×0.03=6.(2)样本中完成年度任务的销售员中,第4组有3人,记这3人分别为A1,A2,A3;第5组有3人,记这3人分别为B1,B2,B3,从这6人中随机抽取2名,所有的基本事件为A1A2,A1A3,A1B1,A1B2,A1B3,A2A3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,B1B2,B1B3,B2B3,共15个,获得此奖励的2名销售员在同一组的基本事件分别为A1A2,A1A3,A2A3,B1B2,B1B3,B2B3,共6个,故所求概率为615=2 5 .方法2 样本的数字特征的求解及其应用1.(2015山东,6,5分)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.A.①③B.①④C.②③D.②④答案B2.(2018四川德阳模拟,13)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频数分布直方图如图所示,如果得分的中位数为a,众数为b,平均数为c,则a、b、c中的最大者是.答案 c方法3 回归直线方程的求解与运用1.(2020届河南南阳第一中学模拟,1)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i=1,2,…,n)都在直线y=-15x+1上,则这组样本数据的样本相关系数为( ) A.-1B.1C.-15D.15答案 A日期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日 昼夜温 差x(℃) 10 11 13 12 8 6 就诊人 数y222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验. (1)求选取的2组数据恰好是相邻两个月数据的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据求出y 关于x 的线性回归方程y ^=b ^x+a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考公式:b ^=∑i=1nx i y i -nx y ∑i=1nx i 2-nx 2=∑i=1n(x i -x)(y i -y)∑i=1(x i -x)2,a ^=y -b ^x ;参考数据:11×25+13×29+12×26+8×16=1 092,112+132+122+82=498.答案 (1)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的,其中,抽到相邻两个月的数据的情况有5种,所以P(A)=515=13.(2)由题表中数据求得x =11,y =24,由公式求得b ^=187,则a ^=y -b ^x =-307,所以y 关于x 的线性回归方程为y ^=187x-307.(3)由(2)知,当x=10时,y ^=1507,|1507-22|<2,当x=6时,y ^=787,|787-12|<2,所以,该小组所得线性回归方程是理想的.方法4 独立性检验的思想方法(2018山西太原五中模拟,18)网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如图所示的频数直方图.这100名市民中,年龄不超过40岁的有65人.将所抽样中周平均网购次数不少于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.(1)根据已知条件完成下面的2×2列联表,能否在犯错的概率不超过0.10的前提条件下认为网购迷与年龄不超过40岁有关?网购迷非网购迷合计年龄不超过40岁 年龄超过40岁合计(2)现将所抽取样本中周平均网购次数不少于5次的市民称为超级网购迷,且已知超级网购迷中有2名年龄超过40岁,若从超级网购迷中任意挑选2名,求至少有1名市民年龄超过40岁的概率. 附:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d).答案 (1)根据已知条件完成2×2列联表如下:网购迷 非网购迷 合计 年龄不超过40岁 20 45 65 年龄超过40岁5 30 35 合计2575100K 2=100×(20×30-5×45)225×75×65×35≈3.297,因为3.297>2.706,所以据此列联表判断,在犯错误的概率不超过0.10的前提下,认为网购迷与年龄不超过40岁有关.(2)由频数分布直方图知,超级网购迷共有10人,记其中年龄超过40岁的2名市民为A 、B,其余8名市民记为c 、d 、e 、f 、g 、h 、m 、n,现从10人中任取2人,基本事件有AB 、Ac 、Ad 、Ae 、Af 、Ag 、Ah 、Am 、An 、Bc 、Bd 、Be 、Bf 、Bg 、Bh 、Bm 、Bn 、cd 、ce 、cf 、cg 、ch 、cm 、cn 、de 、df 、dg 、dh 、dm 、dn 、ef 、eg 、eh 、em 、en 、fg 、fh 、fm 、fn 、gh 、gm 、gn 、hm 、hn 、mn,共有45种,其中至少有1名市民年龄超过40岁的基本事件有AB 、Ac 、Ad 、Ae 、Af 、Ag 、Ah 、Am 、An 、Bc 、Bd 、Be 、Bf 、Bg 、Bh 、Bm 、Bn,共17种, 故所求的概率P=1745.【五年高考】A组统一命题·课标卷题组考点一抽样方法A.8号学生B.200号学生C.616号学生D.815号学生答案C2.(2018课标全国Ⅲ,14,5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.答案分层抽样考点二统计图表1.(2018课标全国Ⅰ,3,5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案A2.(2017课标全国Ⅲ,3,5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案A3.(2015课标Ⅱ,3,5分)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案D4.(2018课标全国Ⅰ,19,12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)频数13249265使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数151310165(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)答案(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=1×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.50该家庭使用了节水龙头后50天日用水量的平均数为x2=1×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.50估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).考点三样本的数字特征1.(2019课标全国Ⅲ,4,5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8答案C2.(2017课标全国Ⅰ,2,5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数答案B3.(2019课标全国Ⅲ,17,12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).答案本题主要考查频率分布直方图的含义,以及用频率分布直方图估计样本的数字特征,通过实际问题的应用考查学生的运算求解能力,考查了数学运算的核心素养,体现了应用意识.(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4.(2019课标全国Ⅱ,19,12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[-0.20,0)[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:√74≈8.602.答案本题考查了统计的基础知识、基本思想和方法,考查学生对频数分布表的理解与应用,考查样本的平均数,标准差等数字特征的计算方法,以及对现实社会中实际数据的分析处理能力.(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y=1100(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=1100∑i=15n i(y i-y)2=1100[2×(-0.40)2+24×(-0.20)2+53×02+14×0.202+7×0.402]=0.0296,s=√0.029 6=0.02×√74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.考点四 变量间的相关性1.(2017课标全国Ⅰ,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8 零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序 9 10 11 12 13 14 15 16 零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得x =116∑i=116x i =9.97,s=√116∑i=116(x i -x)2=√116(∑i=116x i 2-16x 2)≈0.212,√∑i=116(i -8.5)2≈18.439,∑i=116(x i -x )(i-8.5)=-2.78, 其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x -3s,x +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x -3s,x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(x i ,y i )(i=1,2,…,n)的相关系数r=∑i=1n(x i -x)(y -y)√∑i=1(x i -x)2√∑i=1(y i -y)2.√0.008≈0.09.答案 (1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为r=∑i=116(x i -x)(i -8.5)√∑i=1(x i -x)2√∑i=1(i -8.5)2=0.212×√16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于x =9.97,s ≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x -3s,x +3s)以外,因此需对当天的生产过程进行检查. (ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除第13个数据,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008, 这条生产线当天生产的零件尺寸的标准差的估计值为√0.008≈0.09.2.(2016课标全国Ⅲ,18,12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:∑i=17y i =9.32,∑i=17t i y i =40.17,√∑i=17(y i -y)2=0.55,√7≈2.646.参考公式:相关系数r=∑i=1n(t i -t)(y -y)√∑i=1(t i -t)2∑i=1(i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距最小二乘估计公式分别为:b ^=∑i=1n(t i -t)(y i -y)∑i=1n(t i -t)2,a ^=y -b ^t .答案 (1)由折线图中数据和附注中参考数据得 t =4,∑i=17(t i -t )2=28,√∑i=17(y i -y)2=0.55,∑i=17(t i -t )(y i -y )=∑i=17t i y i -t ∑i=17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.(4分)因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(6分)(2)由y =9.327≈1.331及(1)得b ^=∑i=17(t i -t)(y i -y)∑i=17(t i -t)2=2.8928≈0.10,a ^=y -b ^t =1.331-0.10×4≈0.93.所以y 关于t 的回归方程为y ^=0.93+0.10t.(10分)将2016年对应的t=9代入回归方程得:y ^=0.93+0.10×9=1.83.所以预测2016年我国生活垃圾无害化处理量将约为1.83亿吨.(12分)考点五 独立性检验1.(2019课标全国Ⅰ,17,12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意 不满意 男顾客 40 10 女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d).P(K 2≥k) 0.050 0.010 0.001 k3.8416.63510.828答案 本题通过对概率与频率的关系、统计案例中两变量相关性检验考查学生的抽象概括能力与数据处理能力,重点考查数学抽象、数据分析、数学运算的核心素养;倡导学生关注生活,提高数学应用意识.(1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6. (2)K 2=100×(40×20-30×10)250×50×70×30≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.(2018课标全国Ⅲ,18,12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表;超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),P(K 2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828.答案 (1)第二种生产方式的效率更高. 理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知m=79+812=80. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于 K 2=40×(15×15-5×5)220×20×20×20=10>6.635,所以有99%的把握认为两种生产方式的效率有差异.3.(2017课标全国Ⅱ,19,12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50 kg箱产量≥50 kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附:P(K 2≥k) 0.050 0.010 0.001 k3.841 6.635 10.828, K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d).答案 (1)旧养殖法的箱产量低于50 kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表:箱产量<50 kg箱产量≥50 kg旧养殖法 62 38 新养殖法3466K 2=200×(62×66-34×38)2100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.B 组 自主命题·省(区、市)卷题组考点一 抽样方法1.(2015湖南,2,5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( ) A.3B.4C.5D.6答案 B2.(2017江苏,3,5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.。
专题十概率、统计问题二:统计图表的应用一、考情分析统计图表有频率分布直方图、茎叶图、折线图、条形图、饼形图、雷达图等,它们广泛应用于实际生活之中,也是历年高考的热点,求解此类的关键是由图表读出有用的数据,再根据数据进行分析.二、经验分享1.明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.学科-网2.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.3.频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.三、知识拓展统计图是利用点、线、面、体等绘制成几何图形,以表示各种数量间的关系及其变动情况的工具。
表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
10.2 直方图一、单选题1.班级共有40名学生,在一次体育抽测中有8人不合格,那么不合格人数的频率为()A.0.2B.0.25C.0.55D.0.8【答案】A【分析】根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数的频率为840=0.2,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是明确频率是指每个对象出现的次数与总次数的比值(或者百分比).2.将100个数据分为8个组,如下表,则第六组的频数为()A.12B.13C.14D.15【答案】D【分析】根据题意知总共有100个数据,第六组的频数即为总数100减去其他七组频数之和.【详解】1001114121313121015x=-------=.故选:D.【点睛】本题考查频数问题,属于基础题,掌握频数的概念是解题的关键.3.为了了解某中学学生的身高情况,随机抽取50名男生进行身高测量,将所得数据整理后,画出频数直方图(如图)则抽取的男生中身高在169.5~174.5cm cm之间的人数是()A.12B.18C.20D.24【答案】A【分析】根据频数直方图,用总数50减去已知的人数,即可求得.【详解】,50-62-10-16=12故选:A.【点睛】本题考查频数分布直方图,读取有效信息是解题关键.4.为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.40%B.30%C.20%D.10%【答案】A【分析】根据频数直方图可以知道被调查的总人数,又在要求的范围可以很直观地由图形看出,即可得出百分比.【详解】解:由频率直方图可以得出,被调查的总人数=3+10+12+5=30.又仰卧起坐次数在25~30次的学生人数为12,则12÷30×100%=40%,故百分比为40%.故选A.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.一个容量为80的样本最大值144是,最小值是50,取组距为10,则可以分成()A.7组B.8组C.9组D.10组【答案】D【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为144,最小值为50,它们的差是144-50=94,已知组距为10,那么由于94÷10=9.4,故可以分成10组.故选:D.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.6.小聪对他所在小区居民每天微信阅读时间进行了抽样调查,并绘制成了如图所示的统计图.根据图中信息,其中正确的是()①小聪一共抽样调查了60人①每天微信阅读时间多于50分钟的人数有12人①每天微信阅读时间30~40分钟的人数最多①每天微信阅读时间不足30分钟的人数多于调查总人数的一半A.①①B.①①C.①①D.①①【答案】B【分析】根据直方图表示的意义求得统计的总人数,以及每组(类)的人数即可判断.【详解】解:①小聪一共抽样调查了4+8+14+20+16+12=74人,故①不正确;①每天微信阅读时间多于50分钟的人数有12人,故①正确;①每天微信阅读时间30~40分钟的人数为20人,最多,故①正确;①每天微信阅读时间不足30分钟的人数有4+8+14=26人,占调查总人数的百分比为2637100%<100%=50%⨯⨯,故①不正确.7474故正确的有①①;故选:B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.小明统计了同学们5月份平均每天观看北京市“空中课堂”的时间,并绘制了统计图,如图所示下面有四个推断①此次调查中,小明一共调查了100名学生①此次调查中,平均每天观看时间不足30分钟的人数占总人数的10%①此次调查中,平均每天观看时间超过60分钟的人数超过调查总人数的一半①此次调查中,平均每天观看时间不足60分钟的人数少于平均每天观看时间在60-90分钟的人数所有合理推断的序号是()A.①①B.①①C.①①D.①①①【答案】C【分析】根据频数分布直方图得出各组人数,对照各推断逐一判断可得答案.【详解】解:①此次调查中,小明一共调查了10+30+60+20=120名学生,此推断错误;①此次调查中,平均每天观看时间不足30分钟的人数占总人数的10120×100%≈8.33%,此推断错误;①此次调查中,平均每天观看时间超过60分钟的人数有60+20=80(人),超过调查总人数的一半,此推断正确;①此次调查中,平均每天观看时间不足60分钟的人数为10+30=40(人),平均每天观看时间在60-90分钟的人数为60人,此推断正确;所以合理推断的序号是①①,故选:C.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.适宜表示一组数据的变化趋势的统计图是()A.条形图B.扇形图C.折线图D.直方图【答案】C【分析】折线统计图能直观反映数据增减变化情况,反映数据的变化趋势.【详解】解:能直观反映数据增减变化和变化趋势的是折线统计图,故选:C.【点睛】本题考查统计图的特点,理解条形统计图、折线统计图、扇形统计图反映数据的特点,是正确判断的前提.9.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A.扇形图B.直方图C.条形图D.折线图【答案】A【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.条形统计图能清楚地表示出每个项目的具体数目;折线统计图表示的是事物的变化情况;【详解】解:根据题意得:要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.【点睛】此题考查扇形统计图、折线统计图、条形统计图,频数分布直方图各自的特点.掌握它们的特点是解题的关键.10.一组数据的最大值是44,最小值是9,制作频数分布表时取组距为5,为了使数据不落在边界上,应将这组数据分成()A.6组B.7组C.8组D.9组【答案】C【分析】根据极差与组距的关系可知这组数据的组数.【详解】解:①极差为44-9=35,组距为5,①35÷5=7,7+1=8,则为了使数据不落在边界上,应将这组数据分成8组,故选:C.【点睛】本题考查了样本数据中极差、组距和组数的关系,是基础题型.注意数据不落在边界上,商是整数时组数应该加上1.11.一组数据共60个,分为6组,第1至第4组的频数分别为6,8,9,11,第5组的频率为0.20,则第6组的频数为()A.11B.13C.14D.15【答案】C【分析】首先根据频数=总数×频率,求得第五组频数;再根据各组的频数和等于总数,求得第六组的频数.【详解】解:根据题意,得第五组频数是60×0.20=12,故第六组的频数是60-6-8-9-11-12=14.故选:C.【点睛】本题是对频率、频数灵活运用的综合考查.用到的知识点:各小组频数之和等于数据总和,各小组频率之和等于1;频率、频数的关系:频率=频数÷数据总数.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是()A.70%B.80%C.86%D.92%【答案】D【分析】根据百分比的意义:利用成绩合格的人数除以总人数即可直接求解.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是50450×100%=92%.故选:D.【点睛】本题考查了频数分布直方图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.如图为某地区今年3月的日平均气温频数直方图(直方图中每一组包括前一个边界值,不包括后一个边界值),则在下列结论中,其中错误的结论是()A.该地区3月日平均气温在18①以上(含18①)共有10天B.该直方图的组距是4(①)C.该地区3月日平均气温的最大值至少是22①D.组中值为8①的这一组的频数为3.频率为0.1【答案】A【分析】根据频数分布直方图的中各组的频数分布逐一分析判断可得.【详解】解:A、该地区3月日平均气温在18①以上(含18①)共有10+4=14天,故此结论错误;B、该直方图的组距是8-4=4(①),故此结论正确;C、该地区4月日平均气温的最大值至少是22①,此结论正确;D、组中值为8①的这一组的频数为3.频数为330=0.1,此结论正确;故选:A.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.14.如图是某班级的一次数学考试成绩(得分均为整数)的频数分布直方图(每组包含最小值,不包含最大值),则下列说法错误的是()A.得分及格(60分)的有12人B.人数最少的得分段是频数为2C.得分在70~80的人数最多D.该班的总人数为39人【答案】A【分析】观察频数分布直方图即可一一判断.【详解】解:A、得分及格(≥60分)的应该有12+14+7+2=36人,错误,本选项符合题意;B、人数最少的得分段的频数为2,正确,本选项不符合题意;C、得分在70~80分的人数最多,正确,本选项不符合题意;D、该班的总人数为4+12+14+7+2=39人,正确,本选项不符合题意.故选:A.【点睛】本题考查频数分布直方图,解题的关键是读懂图象信息,属于中考常考题型.15.小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;①样本中每天微信阅读不足20分钟的人数大约占16%;①选取样本的样本容量是60;①估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①①①B.①①①C.①①①D.①①①【答案】B【分析】根据题意和频数分布直方图中的数据,可以判断各个小题中的说法是否正确,本题得以解决.【详解】解:由直方图可得,样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少,故①正确;样本中每天微信阅读不足20分钟的人数大约占:(4+8)÷(4+8+14+20+16+12)×100%≈16%,故①正确;选取样本的样本容量是:4+8+14+20+16+12=74,故①错误;(10+16+12)÷74≈0.51,即所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右,故①正确:故选:B.【点睛】本题考查频数分布直方图、样本容量、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为()A.3B.4C.5D.6【答案】C【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【详解】解:①16÷4=4,①组数为5,故选C.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.17.某班有48名同学,在一次数学检测中,分数均为整数,其成绩绘制成的频数直方图如图所示,从左到右的小长方形的高度比是1:3:6:4:2,则分数在70.5~80.5之间的人数是()A.12B.16C.24D.18【答案】D【分析】小长方形的高度比等于各组的人数比,即可求得分数在70.5到80.5之间的人数所占的比例,乘以总数48即可得出答案.【详解】解:分数在70.5到80.5之间的人数是:613642++++×48=18(人);故选:D.【点睛】此题考查了频率分布直方图,了解频数分布直方图中小长方形的高度比与各组人数比的关系是解答问题的关键.18.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1B.0.2C.0.3D.0.4【答案】A【分析】根据第1~4组的频数求得第5组的频数,再根据=频数频率总数即可得到结论.【详解】解:第5组的频数为:401210684----=,①第5组的频率为:40.1 40=,故选:A.【点睛】此题主要考查了频数与频率,正确掌握频率求法是解题关键.19.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70~80分的人数最多D.80分以上的学生有14名【答案】D【解析】A.8÷①1-4%-12%-40%-28%①=50(人),故正确;B. 1-4%-12%-40%-28%=16%,故正确;C.由图可知,成绩在70~80分的人数最多,故正确;D.50×(28%+16%)=22(人),故不正确;故选D.20.一次数学测试后,某班80名学生的成绩被分为5组,第一至第四组的频数分别为8、10、16、14,则第五组的频率是()A.0.1B.0.2C.0.3D.0.4【答案】D【分析】先求出第5组的频数,再利用频率=频数总数即可求解.【详解】解:第5组的频数为80810161432----=,①第5组的频率为320.4 80=,故选:D.【点睛】本题考查求频率,掌握频率=频数总数是解题的关键.21.2016年4月30日至5月2日,河北省共接待游客1708.3万人次,实现旅游收入106.5亿元,旅行社的小王想了解某企业员工个人的旅游年消费情况,他随机抽取部分员工进行调查,并将统计结果绘制成如表所示的频数分布表,则下列说法中不正确的是()A.小王随机抽取了100名员工B.在频数分布表中,组距是2000,组数是5组C.个人旅游年消费金额在6000元以上的人数占随机抽取人数的22%D.在随机抽取的员工中,个人旅游年消费金额在4000元以下(包括4000元)的共有37人【答案】C【分析】将所有的频数相加即可求得抽取的员工数;观察频数统计表即可求得组距和组数;根据统计表确定个人消费额在6000元以上的人数即可求得所占的百分比;将4000元以下的频数相加即可确定人数.【详解】解:A、小王随机抽取了12+25+31+22+10=100人,故正确;B、观察统计表发现频数分布表中,组距是2000,组数是5组,故正确;C、个人旅游消费金额在6000元以上的人数占随机抽取人数的2210100%32%100+⨯=,故错误;D、在随机抽取的员工中,个人旅游年消费金额在4000元以下的共有25+12=37人,故正确;故选:C.【点睛】本题考查了频数分布表的知识,解题的关键是能够仔细读表并从中进一步整理出解题的有关信息,难度不大.22.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查①这次调查共抽取了200名学生①这次调查阅读所用时间在2.53h-的人数最少①这次调查阅读所用时间在1 1.5h-的人数占所调查人数的40%,其中正确的有().A.①①①B.①①①C.①①①D.①①①【答案】A【分析】根据抽样调查和频数分布直方图的性质逐个分析计算,即可得到答案.【详解】这次调查属于抽样调查,故①错误;结合频数分布直方图,可计算得共抽取10208070128200+++++=名学生,故①正确;结合频数分布直方图,阅读所用时间在2.53h -的共8名学生,人数最少,故①正确;这次调查阅读所用时间在1 1.5h -的人数占比为802=2005,即40%,故①正确; 故选:A .【点睛】本题考查了抽样调查、频数分布直方图的知识;解题的关键是熟练掌握抽样调查、频数分布直方图的性质,从而完成求解.23.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( )A .4B .5C .6D .7 【答案】B【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数;【详解】 ①29623 4.655-==, ①分成的组数是5组.故答案选B .【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.24.某校为了解学生的身高情况,随机对部分学生进行抽样调查,已知抽取的样本中,男生、女生人数相同,分组情况为(单位:cm ):155,A x <:155160,B x ≤<:160165C x ≤<,:165170,D x ≤<:170,E x ≥利用所得数据绘制如下统计图表:根据图表提供的信息,可知样本数据中下列信息正确的是( )A .身高在155160x ≤<区间的男生比女生多3人B .B 组中男生和女生占比相同C .超过一半的男生身高在165cm 以上D .女生身高在E 组的人数有2人【答案】D【分析】先根据直方图可知抽取的女生总人数,再乘以375%.,然后与12进行比较即可判断选项A 和B ;根据直方图求出男生身高在165cm 以上的占比即可判断选项C ;利用女生中E 组的人数占比乘以女生总人数即可判断选项D .【详解】抽取的男生总人数为412108640++++=(人),因为抽取的样本中,男生、女生人数相同,所以抽取的女生总人数为40人,由直方图可知,身高在155160x ≤<区间的男生人数为12人,由扇形统计图可知,身高在155160x ≤<区间的女生人数为4037.5%15⨯=(人),则身高在155160x ≤<区间的男生比女生少3人,选项A 错误;B 组中男生和女生占比不相同,选项B 错误;男生身高在165cm 以上的占比为68100%35%50%40+⨯=<,则选项C 错误; 女生中E 组的人数为(137.5%17.5%25%15%)402----⨯=(人),则选项D 正确;故选:D .【点睛】本题考查了直方图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.25.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是()A.这栋居民楼共有居民125人B.每周使用手机支付次数为28~35次的人数最多C.有25人每周使用手机支付的次数在35~42次D.每周使用手机支付不超过21次的有15人【答案】D【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.如图,是某企业甲、乙两位员工的能力测试结果的网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;①缺少探索学习的能力是甲自身的不足;①与甲相比乙需要加强与他人的沟通合作能力;①乙的综合评分比甲要高.其中合理的是()A.①①B.①①C.①①①D.①①①①【答案】D【分析】根据甲、乙两位员工的能力测试结果的网状图一一判断即可得到答案;【详解】解:因为甲、乙两位员工的动手操作能力均是5分,故甲乙两人的动手操作能力都很强,故①正确;因为甲的探索学习的能力是1分,故缺少探索学习的能力是甲自身的不足,故①正确;甲的与他人的沟通合作能力是5分,乙的与他人的沟通合作能力是3分,故与甲相比乙需要加强与他人的沟通合作能力,故①正确;乙的综合评分是:3+4+4+5+5=22分,甲的综合评分是:1+4+4+5+5=19分,故乙的综合评分比甲要高,故①正确;故选:D;【点睛】本题主要考查图象信息题,能从图象上获取相关的信息是解题的关键;27.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:)kwh ・,并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平 ①在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500①月用电量小于160kw h ・的该市居民家庭按第一档电价交费,月用电量不小于310kw h ・的该市居民家庭按第三档电价交费①该市居民家庭月用电量的中间水平(50%的用户)为110kw h ⋅其中合理的是( )A .①①①B .①①①C .①①①D .①①①【答案】A【分析】根据统计图中的数据可以判断各个小题是否成立,从而可以解答本题.【详解】解:由题意可得:抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平,故①合理, 在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于51010500-=,故②合理, 第一档用户数量为:2000080%16000⨯=户,由11088533635916000++=,故月用电量小于160kw h ・的该市居民家庭按第一档电价交费,第三档用户数量为:200005%1000⨯=户,由1511812324361000+++=,故月用电量不小于310kw h ・的该市居民家庭按第三档电价交费,故③合理,该市居民家庭月用电量的中间水平(50%的用户)为大于等于110kw h⋅,小于160kw h⋅,故④不合理.故选:A.【点睛】本题考查了频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.28.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;①估计平均每人乘坐地铁的月均花费的不低于60元;①如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①①B.①①C.①①D.①①①【答案】D【分析】①求出80元以上的人数,能确定可以判断此结论;①根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花费的范围;①该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【详解】解:①超过月均花费80元的人数为:200+100+80+50+25+25+15+5=500,小明乘坐地铁的月均花费是75元,所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;①根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;①①1000×20%=200,而80+50+25+25+15+5=200,①乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为①①①,故选:D.【点睛】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.29.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()A.第四小组有10人B.本次抽样调查的样本容量为50C.该校“一分钟跳绳”成绩优秀的人数约为480人D.第五小组对应圆心角的度数为45【答案】D【分析】结合条形图和扇形图,求出样本人数,进行解答即可.【详解】。
2013版高考数学一轮复习精品学案:第十章统计、统计案例10.2用样本估计总体与变量间的相关关系【高考新动向】一、用样本估计总体(一) 考纲点击1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点;2.理解样本数据标准差的意义和作用,会计算数据标准差;3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释;4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想;5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(二)热点提示1.频率分布直方图、茎叶图、平均数、方差、标准差是考查的重点,同时考查对样本估计总体的思想的理解;2. 频率分布直方等内容经常与概率等知识相结合出题;3.题型以选择题和填空题为主,属于中低档题。
二、变量间的相关关系(一)考纲点击1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(二)热点提示1.以考查线性回归系数为主,同时可考查利用散点图判断两个变量间的相关关系;2.以实际生活为背景,重在考查回归方程的求法;3.在高考题中本部分的命题主要是以选择、填空题为主,属于中档题目。
【考纲全景透析】一、用样本估计总体1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布表.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图;(2)总体密度曲线:随着样本容量的增加,作图所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.3.标准差和方差(1)标准差是样本数据到平均数的一种平均距离;(2)x是样本数(3)方差: (n据,n是样本容量,x是样本平均数)注:现实中的总体所包含个体数往往是很多的,如何求得总体的平均数和标准差呢?(通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差,这与有样本的频率分布近似代替总体分布是类似的,只要样本的代表性好,这样做就是合理的,也是可以接受的.)4.利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值;(2)平均数:平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;(3)众数:在频率分布直方图中,众数是最高的矩形的中点的横坐标.二、变量间的相关关系1.两个变量的线性相关(1)正相关在散点图中,点散布在从左下角到右上角的区域.对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程 (1)最小二乘法求回归直线使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法. (2)回归方程方程ˆybx a =+是两个具有线性相关关系的变量的一组数据1122(,),(,),(,)n n x y x y x y L 的回归方程,期中,a b 是待定参数.1122211()()()nni i i ii i n ni i i i x x y y x y nx yb x x x nx a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑ 注:相关关系与函数关系的异同点(相同点:两者均是指两个变量的关系.不同点:①函数关系是一种确定的关系,相关关系是一种非确定的关系;②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系)【热点难点全析】一、用样本估计总体(一)频率分布直方图在总体估计中的应用 ※相关链接※频率分布直方图反映样本的频率分布(1)频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距. (2)频率分布直方图中各小长方形的面积之和为1,因此在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.(4)众数为最高矩形中点的横坐标.(5)中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标.※例题解析※〖例〗为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学生全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.思路解析:利用面积求得每组的频率→求样本容量→求频率和→求达标率→分析中位数.解答:(1)由已知可设每组的频率为2x,4x,17x,15x,9x,3x.则2x+4x+17x+15x+9x+3x=1,解得x=0.02.则第二小组的频率为0.02×4=0.08,样本容量为12÷0.08=150.(2)次数在110次以上(含110次)的频率和为17×0.02+15×0.02+9×0.02+3×0.02=0.88,则高一学生的达标率为0.88×100%=88%.(3)在这次测试中,学生跳绳次数的中位数落在第四组.因为中位数为平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标.注:利用样本的频率分布可近似地估计总体的分布,要比较准确地反映出总体分布的情况,必须准确地作出频率分布表和频率分布直方图,充分利用所给的数据正确地作出估计.(二)用样本的分布估计总体※相关链接※茎叶图刻画数据的优点(1)所有的数据信息都可以从茎叶图中得到.(2)茎叶图便于记录和表示,且能够展示数据的分布情况.注:当数据是两位有效数字时,用茎叶图显得容易、方便.而当样本数据较大和较多时,用茎叶图表示,就显得不太方便.※例题解析※〖例〗在某电脑杂志的一篇目文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子中所含的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,得到什么结论?思路解析:(1)将十位数字作为茎,个位数字作为叶,逐一统计;(2)根据茎叶图分析两组数据,得到结论.解答:(1)如图:(2)电脑杂志上每个句子的字数集中在10~30之间,中位数为22.5;而报纸上每个句子的字数集中在10~40之间,中位数为27.5.可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为读物须通俗易懂、简明.(三)用样本的数字特征估计总体的数字特征〖例〗甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.思路解析:(1)先通过图象统计出甲、乙二人的成绩;(2)利用公式求出平均数、方差,再分析两人的成绩,作出评价.解答:(1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.2222222222221013121416==1351314121214==1351=[(1013)(1313)(1213)(1413)(1613)]451[(1313)(1413)(1213)(1213)(1413)]0.85x x s s ++++++++-+-+-+-+-==-+-+-+-+-=甲乙甲乙,(2)由2s 甲>2s 乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.注:(1)运用方差解决问题时,注意到方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.(2)平均数与方差都是重要的数字特征,是对总体的一种简单的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(3)平均数、方差的公式推广①若数据123,,,,n x x x x L 的平均数为x ,那么12,,,n mx a mx a mx a +++L 的平均数是mx a +.②数据123,,,,n x x x x L 的方差为2s . a.22222111[()];n s x x x nx n=+++-L b.数据12,,,n x a x a x a +++L 的方差也为2s ; c.数据12,,,n ax ax ax L 的方差为22a s . 二、变量间的相关关系(一)利用散点图判断两个变量的相关关系 ※相关链接※ 1.散点图在散点图中,如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.注:函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况. 2.正相关、负相关从散点图可知,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.如年龄的值由小变大时,体内脂肪含量也在由小变大.反之,如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关. ※例题解析※〖例〗在某地区的12~30岁居民中随机抽取了10个人的身高和体重的统计资料如表:根据上述数据,画出散点图并判断居民的身高和体重之间是否有相关关系。
2015届高考数学一轮总复习 10-2用样本估计总体基础巩固强化一、选择题1.(2013·重庆理,4)以下茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:min).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8[答案] C[解析] 由甲组数据中位数为15,可得x =5;而乙组数据的平均数16.8=9+15+(10+y )+18+245,可解得y =8,故选C.2.(2013·西宁模拟)已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( )A .±14B .±12C .±128D .无法求解[答案] B[解析] 这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4,又因为这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=(3d )2+(2d )2+d 2+0+d 2+(2d )2+(3d )27=4d 2=1,解得d =±12.3.已知一组正数x 1,x 2,x 3,x 4的方差为s 2=14(x 21+x 22+x 23+x 24-16),则数据x 1+2,x 2+2,x 3+2,x 4+2的平均数为( )A .2B .3[解析] 设x 1,x 2,x 3,x 4的平均值为x -,则 s 2=14[(x 1-x -)2+(x 2-x -)2+(x 3-x -)2+(x 4-x -)2]=14(x 21+x 22+x 23+x 24-4x -2), ∴4x -2=16,∴x -=2,x -=-2(舍),∴x 1+2,x 2+2,x 3+2,x 4+2的平均数为4,故选C.4.(文)(2013·辽宁理,5)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60 [答案] B[解析] 由频率分布直方图知,低于60分的同学所占频率为(0.005+0.01)×20=0.3,故该班的学生人数为150.3=50.故选B.(理)(2013·福建理,4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480[解析]由频率分布直方图知40~60分的频率为(0.005+0.015)×10=0.2,故估计不少于60分的学生人数为600×(1-0.2)=480.5.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图.由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54C.48 D.27[答案] B[解析]前两组中的频数为100×(0.05+0.11)=16.∵后五组频数和为62,∴前三组为38.∴第三组为22.又最大频率为0.32,故最大频数为0.32×100=32.∴a=22+32=54,故选B.6.(文)(2013·六安一模)如图是2012年某校举办“激扬青春,勇担责任”演讲比赛上七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为()A.8587 B.8486C.8485 D.8586[答案] C[解析]由茎叶图知,评委为某选手打出的分数分别不79,84,84,84,86,87,93,去掉一个最高分和一个最低分后分数分别是84,84,84,86,87,所以中位数为84,平均数为15×(84+84+84+86+87)=85.(理)(2013·山东滨州一模)如图是2013年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,则去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6 D .85,4[答案] C[解析] 去掉一个最高分93和一个最低分79,所剩数据的平均数x -=84+84+86+84+875=85,方差s 2=15[(84-85)2×3+(86-85)2+(87-85)2]=1.6,故选C.二、填空题7.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试.对200名学生测试所得数据作出频率分布直方图如图所示,若次数在110以上(含110次)为达标,则从图中可以看出高一学生的达标率是________.[答案] 80%[解析] 次数在110以上(含110次)的频率之和为(0.04+0.03+0.01)×10=0.8,则高一学生的达标率为0.8×100%=80%.8.(文)将容量为n 的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n 等于________.[答案] 60[解析] 由条件知,2+3+42+3+4+6+4+1×n =27,解得n =60.(理)容量为100的样本分为10组,若前7组频率之和为0.79,而剩下三组的频数成等比数列,且其公比不为1,则剩下的三组频数最大的一组的频率是________.[答案] 0.16或0.12[解析]后三组频数和为100(1-0.79)=21,设这三组频数依次为a、ap、ap2(a、p∈N*且p>1),由题意设得,a+ap+ap2=21,∵p>1,∴1+p+p2是21的大于3的约数,∴1+p+p2=21或1+p+p2=7,得p=4或p=2.当p=4时,频数最大值为16,频率为0.16;当p=2时,频数最大值为12,频率为0.12.9.(文)(2013·湖北理,11)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示(1)直方图中x的值为________.(2)在这些用户中,用电量落在区间[100,250)内的户数为________.[答案](1)0.0044(2)70[解析]∵50×(0.0024+0.0036+0.006+x+0.0024+0.0012)=1,∴x=0.0044.用电量在区间[100,250)内的频率为50×(0.0036+0.006+0.0044)=0.7,∴户数为100×0.7=70(户).(理)(2013·北京西城一模)某年级120名学生在一次百米测试中,成绩全部介于13s与18s之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为,那么成绩在[16,18]的学生人数是________.[答案] 54[解析] 成绩在[16,18]的学生的人数所占比例为6+31+3+7+6+3=920,所以成绩在[16,18]的学生人数为120×920=54.三、解答题10.(2012·石家庄市二模)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准,用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(2)用样本估计总体,如果希望80%的居民每月的用水量不超过标准,则月均用水量的最低标准定为多少吨?并说明理由;(3)从频率分布直方图中估计该100位居民月均用水量的平均数.(同一组中的数据用该区间的中点值代表)[解析] (1)(2)月均用水量的最低标准应定为2.5t.样本中月均用水量不低于2.5t 的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5t.(3)这100位居民的月均用水量的平均数为0.5×(14×0.10+34×0.20+54×0.30+74×0.40+94×0.60+114×0.30+134×0.10)=1.875(t).能力拓展提升一、选择题11.(文)某工厂对一批产品进行了抽样检测,下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品个数是( )A .90B .75C .60D .45 [答案] A[解析] 产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n ,则36n =0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.(理)某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16、0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为( )A .480B .440C .420D .400[答案] D[解析] 设第一、第二、第三小组的频率构成的等比数列公比为q ,第三、第四、第五、第六小组的频率构成的等差数列公差为d ,则由题意知即⎩⎪⎨⎪⎧0.16+0.16q +0.64q 2+6d =1,0.16q 2+3d =0.07. 消去d 得,16q 2+8q -35=0.∵q >0,∴q =54.∴第三组的频率P =0.16q 2=0.25.设男生总数为x ,则x ×25%=100,∴x =400.12.(2013·山东济南一模)某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x -甲,x -乙和中位数y 甲,y 乙进行比较,下面结论正确的是( )A.x -甲>x -乙,y 甲>y 乙B.x -甲<x -乙,y 甲<y 乙 C.x -甲<x -乙,y 甲>y 乙 D.x -甲>x -乙,y 甲<y 乙 [答案] B[解析] 由茎叶图得x -甲=19+20+21+23+25+29+32+33+37+4110=28,x -乙=10+26+30+30+34+37+44+46+46+4710=35,y 甲=25+292=27,y 乙=34+372=35.5,∴x -甲<x -乙,y 甲<y 乙,故选B. 二、填空题13.(2013·福建莆田模拟)一组数据如茎叶图所示,若从中剔除2个数据,使得新数据组的平均数不变且方差最小,则剔除的2个数据的积等于________.[答案] 63[解析] 这组数据的平均数x -=3+8+12+11+13+16+217=12,由题意,剔除2个数据,平均数不变,且方差最小,则这两个数的和等于24且(x i -x -)2的和最大,所以这两个数为3与21,故剔除的2个数据的积等于3×21=63.14.(文)(2013·徐州模拟)学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 且支出在[20,60)元的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人.则n 的值为________.[答案] 100[解析] 由条件知,1-(0.01+0.024+0.036)×10=30n,∴n =100.(理)某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测这3000名学生在该次数学考试中成绩小于60分的学生数是________.[答案] 600[解析] 成绩小于60分的学生频率为:(0.002+0.006+0.012)×10=0.2 故3000名学生中成绩小于60分的学生数为:3000×0.2=600. 三、解答题15.(2013·东北三校联考)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5μm 的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095—2012,PM2.5日均值在35微克/m 3以下空气质量为一级;在35微克/m 3~75微克/m 3之间空气质量为二级;在75微克/m 3以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取12天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶):(1)求空气质量为超标的数据的平均数与方差;(2)从空气质量为二级的数据中任取2个,求这2个数据的和小于100的概率;(3)以这12天的PM2.5日均值来估计2012年的空气质量情况,估计2012年(按366天计算)中大约有多少天的空气质量达到一级或二级.[解析] (1)空气质量为超标的数据有四个:77,79,84,88, 平均数为x -=77+79+84+884=82.方差为s 2=14×[(77-82)2+(79-82)2+(84-82)2+(88-82)2]=18.5.(2)空气质量为二级的数据有五个:47,50,53,57,68,任取两个有十种可能结果:{47,50},{47,53},{47,57},{47,68},{50,53},{50,57},{50,68},{53,57},{53,68},{57,68},两个数据和小于100的结果有一种:{47,50}, 记“两个数据和小于100”为事件A ,则P (A )=110,即从空气质量为二级的数据中任取2个,这2个数据和小于100的概率为110.(3)空气质量为一级或二级的数据共8个,所以空气质量为一级或二级的频率为812=23, 366×23=244,所以,2012年的366天中空气质量达到一级或二级的天数估计为244天.16.(文)某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n 名同学进行调查.下表是这n 名同学的日睡眠时间的频率分布表.(1)求(2)统计方法中,同一组数据常用该组区间的中点值(例如区间[4,5)的中点值是4.5)作为代表.若据此计算的上述数据的平均值为6.52,求a 、b 的值,并由此估计该学校学生的日平均睡眠时间在7小时以上的概率.[解析] (1)由频率分布表可得n =60.12=50.补全数据如下表频率分布直方图如下:(2)由题意知,⎩⎪⎨⎪⎧150(6×4.5+10×5.5+a ×6.5+b ×7.5+4×8.5)=6.52,6+10+a +b +4=50. 解得a =15,b =15.设“该学校学生的日平均睡眠时间在7小时以上”为事件A , 则P (A )≈15+450=0.38答:该学校学生的日平均睡眠时间在7小时以上的概率约为0.38.(理)某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180min 到330min 之间,按他们学习时间的长短分5个组统计得到如下频率分布表:(1)求分布表中s 、t (2)某兴趣小组为研究每天自主学习的时间与学习成绩的相关性,需要在这40名学生中按时间用分层抽样的方法抽取20名学生进行研究,问应抽取多少名第一组的学生?(3)已知第一组的学生中男、女生均为2人,在(2)的条件下抽取第一组的学生,求既有男生又有女生被抽中的概率.[解析] (1)s =840=0.2,t =1-0.1-s -0.3-0.25=0.15.(2)设应抽取x 名第一组的学生,则x 4=2040,得x =2.故应抽取2名第一组的学生.(3)在(2)的条件下应抽取2名第一组的学生. 记第一组中2名男生为a 1,a 2,2名女生为b 1,b 2,按时间用分层抽样的方法抽取2名第一组的学生共有6种等可能的结果,列举如下: a 1a 2,a 1b 1,a 1b 2,a 2b 1,a 2b 2,b 1b 2.其中既有男生又有女生被抽中的有a 1b 1,a 1b 2,a 2b 1,a 2b 2,共4种结果, 所以既有男生又有女生被抽中的概率为P =46=23.考纲要求1.了解频率分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. 补充说明1.编制频率分布直方图的步骤如下:①求极差:极差是一组数据的最大值与最小值的差.②决定组距和组数:当样本容量不超过100时,常分成5~12组.组距=极差组数.③将数据分组:通常对组内数值所在区间取左闭右开区间,最后一组取闭区间,也可以将样本数据多取一位小数分组;④列频率分布表:登记频数,计算频率,列出频率分布表.将样本数据分成若干小组,每个小组内的样本个数称为频数,频数与样本容量的比值叫做这一小组的频率.频率反映数据在每组所占比例的大小.⑤绘制频率分布直方图:把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.2.频率分布折线图(1)把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图. (2)总体密度曲线如果样本容量不断增大,分组的组距不断缩小,则频率分布折线图实际上越来越接近于一条光滑曲线,这条光滑的曲线就叫总体密度曲线.3.茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.4.方差是刻画一组数据离散程度的量,它反映一组数据围绕平均数波动的大小.方差越大,这组数据波动越大,越分散.讨论产品质量、售价高低、技术高低、产量高低、成绩高低、寿命长短等等问题,一般都是通过方差来体现.计算方差时,要依据所给数据的特点恰当选取公式以简化计算.备选习题1.从某女子跳远运动员的多次测试中,随机抽取20次成绩作为样本,按各次的成绩(单位:cm)分成五组,第一组[490,495),第二组[495,500),第三组[500,505),第四组[505,510),第五组[510,515],相应的样本频率分布直方图如图所示.(1)样本落入第三组[500,505)的频数是多少?(2)现从第二组和第五组的所有数据中任意抽取两个,分别记为m、n,求事件“|m-n|≤5”的概率.[解析](1)由频率分布直方图可知,样本落入[500,505)的频率是1-(0.01+0.02+0.04+0.03)×5=0.5,所以,样本落入[500,505)的频数是0.5×20=10.(2)第二组中有0.02×5×20=2个数据,记为a、b;第五组中有0.03×5×20=3个数据,记为A、B、C.则{m,n}的所有可能结果为{a,b},{a,A},{a,B},{a,C},{b,A},{b,B},{b,C},{A,B},{A,C},{B,C},共10种.其中使|m-n|≤5成立的有{a,b},{A,B},{A,C},{B,C},共4种.所以事件“|m-n|≤5”的概率为P=410=25.2.(2013·烟台四校联考)据悉2012年山东省高考要将体育成绩作为参考,为此,济南市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0m(精确到0.1m)以上的为合格.把所得数据进行整理后,分成6组,并画出频率分布直方图的一部分如图所示.已知从左到右前5个小组的对应矩形的高分别为0.04,0.10,0.14,0.28,0.30,且第6小组的频数是7.(1)求这次铅球测试成绩合格的人数;(2)若由直方图来估计这组数据的中位数,指出该中位数在第几组内,并说明理由. [解析] (1)由题易知,第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)×1=0.14, ∴此次测试的总人数为70.14=50.∴这次铅球测试成绩合格的人数为(0.28×1+0.30×1+0.14×1)×50=36.(2)直方图中位数两侧的矩形面积和相等,即频率和相等,前三组的频率和为0.28,前四组的频率和为0.56,∴中位数位于第4组内.。
用样本估计总体教案一、课程名称:(适用大部分课程教案)二、授课对象初中二年级学生三、授课时间每课时45分钟四、授课教师张某某五、教学目标1、知识与技能目标(1)掌握用样本估计总体的基本概念和方法;(2)能够运用样本数据对总体进行估计,并计算估计的误差;(3)能够运用统计学软件进行样本估计总体的操作。
2、过程与方法目标(1)通过小组合作探究,培养学生运用统计学方法解决问题的能力;(2)通过实际案例的分析,培养学生将理论知识与实际应用相结合的能力;(3)通过课堂讲解和练习,培养学生自主学习、思考总结的能力。
3、情感态度价值观目标(1)培养学生对统计学产生兴趣,认识到统计学在生活中的重要性;(2)培养学生具备客观、严谨的科学态度;(3)培养学生团结协作、共同探究的精神。
六、教学重占和难点1、教学重点(1)用样本估计总体的基本方法和步骤;(2)样本估计总体的误差分析;(3)统计学软件在样本估计总体中的应用。
2、教学难点(1)样本估计总体误差的计算;(2)统计学软件的操作使用;(3)将理论知识与实际案例相结合,解决实际问题。
七、教学过程1、导入新课(5分钟)授课教师通过展示与学生生活密切相关的总体数据问题,例如:“假设我们要了解全校学生的平均身高,我们是否需要测量每一个学生?有没有更高效的方法?”引发学生对用样本估计总体概念的思考,从而导入新课。
2、新知讲授(20分钟)(1)介绍用样本估计总体的基本概念,包括总体、样本、参数、统计量等;(2)讲解如何从样本数据推断总体数据,包括点估计和区间估计;(3)详细解释样本估计的误差来源及如何计算误差;(4)展示统计学软件(如SPSS、Excel等)在样本估计总体中的应用实例。
3、合作探究(15分钟)将学生分成小组,每组给予一个实际案例,如调查班级学生的平均成绩,要求小组讨论并设计出合理的样本调查方案,包括样本的大小、选择方法等,并尝试使用统计学软件进行数据处理和分析。
2023年直方图教学反思2023年直方图教学反思1本节课我讲的是第十章,10.2直方图第一节。
本节课是统计学中的一些知识。
本节课重点让学生掌握列频数分布表的步骤。
在这个过程中,理解组距、等距分组的概念,组数的计算公式。
在学生讲解过程中,我都让学生结合具体例子进行讲解,使其他学生更容易理解。
在计算组数的时候,在学生讲解的基础上,与学生一起总结了“只进不舍”的分组原则。
在这个地方如果再加入一个生活中的实例来帮助学生理解就更好了。
在确定分点这一步,我设计了追问环节,即能不能两个端点都加上“=”,引起学生的注意,总结了“不重不漏”的分组原则,使学生印象比较深刻。
在本节课后半部分设计练习时,因为列表比较麻烦,所以要求一个组完成一个表,但各个组完成的速度不同,所以我只选择了完成速度较快的两个组进行展示,其他组并未展示,这个环节设计有所欠缺。
虽然其他组并未完成,但也应该就他们完成的部分进行展示或一起检查,此处应更好的处理。
作为一次汇报课,我的课还有很多不足,还有很多地方应该改进,在以后的课上我会更加努力,希望每次都有所进步。
2023年直方图教学反思2【教学目标】1.了解频数分布直方图的概念。
2.学会画频数分布直方图。
3.学会读懂频数分布直方图。
【教学重点、难点】重点:频数分布直方图。
难点:画频数分布直方图。
【教学过程】(一)复习引入:1.复习频数分布表:例:抽查20名学生每分脉搏跳动次数,获得如下数据(单位:次):81, 73, 77, 79, 80, 78, 85, 80, 68, 90,80, 89, 82, 81,84, 72, 83, 77, 79, 75.2.在得到了数据的频数分布表的基础上,我们还常常需要用统计图把它直观地表示出来。
用来表示频数分布的基本统计图叫做频数分布直方图,简称直方图.下面我们这节课主要来学习频数直方图的画法与怎样读懂频数分布直方图。
(二)知识新授:1.先看书本55页例1(5分钟)并回答下列问题:①组别的确定过程:(1)计算极差(2)确定组距、组数(3)设定组别(学生个别回答)②组中值的计算方法及作用。
用样本估算总体
◎ 用样本估算总体的定义
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
◎ 用样本估算总体的知识扩展
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
◎ 用样本估算总体的教学目标
1、通过实例,体会用样本估计总体的思想。
2、能够根据统计结果作出合理的判断和推测,能与同学进行交流,用清晰的语言表达自己的观点。
3、根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。
◎ 用样本估算总体的考试要求
能力要求:了解
课时要求:40
考试频率:选考
分值比重:2。