七年级数学二元一次方程组2
- 格式:ppt
- 大小:950.50 KB
- 文档页数:17
人教版七年级下册数学知识点归纳第八章 二元一次方程组8.1 二元一次方程组1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
2.方程组:有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
8.2 消元——解二元一次方程组二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
8.3 实际问题与二元一次方程组 实际应用:审题→设未知数→列方程组→解方程组→检验→作答。
关键:找等量关系常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题 顺流逆流公式: v v v =+顺静水 v v v =−逆静水8.4 三元一次方程组的解法三元一次方程组:方程组含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程组,像这样的方程组叫做三元一次方程组。
解三元一次方程组的基本思路:通过“代入”或“加减”进行消元。
把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。
浙教版七年级数学严选学习材料一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆专题02 二元一次方程组及其解法知识网络重难突破知识点一有关概念及应用1.二元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。
2.二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。
同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。
【典例1】(2019春•诸暨市期末)下列方程中,属于二元一次方程的是()A.x+xy=8B.y=x﹣1C.x+=2D.x2﹣2x+1=0【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解析】解:A、含有两个未知数,但是含有未知数的项的最高次数是2,故本选项错误;B、符合二元一次方程定义,是二元一次方程,故本选项正确;C、不是整式方程,故本选项错误;D、x含有一个未知数,不是二元一次方程,故本选项错误.故选:B.【点睛】此题考查二元一次方程定义,关键是根据二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.【变式训练】1.(2019春•余姚市校级月考)若方程x|a|﹣1+(a﹣2)y=3是二元一次方程,则a的值为﹣2.【点拨】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面确定a的取值.【解析】解:根据二元一次方程的定义,得|a|﹣1=1且a﹣2≠0,解得a=﹣2.故答案是:﹣2.【点睛】本题考查二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.(2019春•嘉兴期末)已知是二元一次方程mx+4y=2的一个解,则代数式m﹣2n的值为()A.﹣2B.2C.﹣1D.1【点拨】把x与y代入方程计算,即可求出所求.【解析】解:把代入方程得:﹣2m+4n=2,整理得:﹣2(m﹣2n)=2,即m﹣2n=﹣1,故选:C.【点睛】此题考查了二元一次方程的解,以及代数式求值,熟练掌握运算法则是解本题的关键.3.(2019春•余姚市期末)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.【点拨】把x、y的值代入方程,看看左边和右边是否相等即可.【解析】解:A、把代入方程2x﹣3y=1得:左边=﹣1,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;B、把代入方程2x﹣3y=1得:左边=1,右边=1,左边=右边,所以是方程2x﹣3y=1的解,故本选项符合题意;C、把代入方程2x﹣3y=1得:左边=﹣5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;D、把代入方程2x﹣3y=1得:左边=5,右边=1,左边≠右边,所以不是方程2x﹣3y=1的解,故本选项不符合题意;故选:B.【点睛】本题考查了二元一次方程的解,能熟记方程的解的定义是解此题的关键.知识点二二元一次方程组的解法常用方法:代入消元法、加减消元法解方程组的基本思想是“消元”,也就是把解二元一次方程组转化为解一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。
七年级数学-二元一次方程组练习含解析基础闯关全练1.下列方程中,属于二元一次方程的是( )A .3x-2y=5 B.x ²+y=1 C .x-3=2x D.651=+y x2.已知关于x ,y 的方程81||56-++m n y x 是二元一次方程,则m=____,n=____.3.下列方程组中,不是二元一次方程组的是________,①⎩⎨⎧=-=+;254,10y x y x ②⎩⎨⎧==;5,3y x ③⎪⎩⎪⎨⎧=+=+;21,42y x y x ④⎪⎩⎪⎨⎧=-=+;52,32y x y x4.下列三组数值:①⎩⎨⎧==;2,1y x ②⎩⎨⎧==;2,3y x ③⎩⎨⎧=-=;3,2y x 其中是方程2x-y=4的解的是( )A .①B .②C .③ D.①③5.解为⎩⎨⎧==;2,1y x 的方程组是( )A.⎩⎨⎧=+=-;53,1y x y xB.⎩⎨⎧=--=-;53,1y x y xC.⎩⎨⎧=-=-;13,3y x y xD.⎩⎨⎧=+-=-;53,32y x y x6.在①⎩⎨⎧==,0,0y x ②⎩⎨⎧=-=,1,2y x ③⎩⎨⎧==,2,2y x ④⎪⎩⎪⎨⎧=-=,21,1y x 这四对数值中,____是x-y=0的解,____是x+2y=0的解,因此______是方程组⎩⎨⎧=+=-,02,0y x y x 的解.7.已知关于x ,y 的二元一次方程组⎩⎨⎧-=-=+37,24by x y ax 的解是⎩⎨⎧==,2,1y x 求(a+b)³的值.能力提升全练1.如果方程组⎩⎨⎧=+=+162,★y x y x 的解为⎩⎨⎧==■6y x .那么被“★”“■”遮住的两个数分别是( )A.10,4B.4,10C.3,10D.10,32.已知⎩⎨⎧-=-=2,3y x 是方程组⎩⎨⎧=-=+2,1by cx cy ax 的解,则a 、b 间的关系是( ) A .4b-9a=1 B .3a+2b=1 C .4b-9a= -1 D .9a+4b=13.请写出一个以x ,y 为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成,②方程组的解为⎩⎨⎧==,3,2y x 这样的方程组可以是________________.4.算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推,《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图①,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数,且根据此图可以列出方程:x+10y= 26.请你根据图②列出方程组:________.三年模拟全练 一、选择题1.下列各对x ,y 的值不是二元一次方程3x+2y=7的解的是( )A .⎩⎨⎧==21y xB .⎩⎨⎧-==13y xC .⎩⎨⎧-==45y xD .⎩⎨⎧-=-=51y x 2.如果⎩⎨⎧=-=1,2y x 是二元一次方程mx+y=3的一个解,则m 的值是( ) A.-2 B.2 C.-1 D .1二、填空题。
一、选择题1.甲、乙两人共同解关于x ,y 的方程组532ax by x cy +=⎧⎨+=⎩①②,甲正确地解得21x y =⎧⎨=-⎩乙看错了方程②中的系数c ,解得31x y =⎧⎨=⎩,则2()a b c ++的值为( )A .16B .25C .36D .492.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩3.如图,长方形的宽为a ,长为b ,2a b a <<,第一次分割出一个最大的正方形1M ,第二次在剩下的长方形中再分割出一个最大的正方形2M ,依次下去恰好能把这个长方形分成四个正方形1M ,2M ,3M ,4M ,并且无剩余,则a 与b 应满足的关系是( )A .53b a = B .53b a =或43b a = C .43b a =或54b a = D .53b a =或54b a =4.《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x 斗,斗酒y 斗,可列二元一次方程组为( )A .2105030x y x y +=⎧⎨+=⎩B .2501030x y x y +=⎧⎨+=⎩ C .2301050x y x y +=⎧⎨+=⎩D .2103050x y x y +=⎧⎨+=⎩5.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改成横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是23213219x y x y +=⎧⎨+=⎩.类似地,图2所示的算筹图所对应的二元一次方程组的解为( )A .32x y =⎧⎨=⎩B .61x y =⎧⎨=⎩C .813x y =⎧⎨=⎩D .21x y =⎧⎨=⎩6.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( ) A .3分钟B .4分钟C .5分钟D .6分钟7.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个①当5a =时,方程组的解是1020x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =③不存在一个实数a 使得x y =; ④若23722a y -=,则2a =. A .1B .2C .3D .48.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于( )A .60cmB .65cmC .70cmD .75cm9.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( )A .2B .-2C .1D .-110.关于x ,y 的,二元一次方程()()12520a x a y a -+++-=,当a 取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是( )A.35xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.12xy=⎧⎨=⎩D.31xy=⎧⎨=-⎩二、填空题11.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.12.已知关于x、y的方程组254x yax by+=⎧⎨+=⎩与524bx ayx y+=⎧⎨+=⎩有相同的解,则a b+的值为________.13.若x=2,y=﹣1是关于x,y的二元一次方程2mx+4ny﹣9=3的一个解,则m﹣n的值为__.14.某纸厂要制作如图的甲、乙两种无盖的小长方体盒子.该厂利用边角材料裁出了长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等.现用150张正方形纸片和300张长方形纸片制作这两种小盒,恰好用完.设可做成甲、乙两种盒子各x、y 个,根据题意,可列正确的方程组为 __.15.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k=_____.16.在平面直角坐标系中,将点P向左平移2个单位长度,再向上平移3个单位长度,得到P'(﹣1,3),则点P坐标为___.17.关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,当m______时,是一元一次方程;关于,x y的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,当m______时,它是二元一次方程.18.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A植树点植树,乙、丁两组到B植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A、B两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.19.若2a m+2n b7+a5b n﹣2m+2的运算结果是3a5b7,则2m2+3mn+n2的值是 ___.20.某出租车起步价所包含的路程为02km,超过2km的部分按每千米另收费.小江乘坐这种出租车走了7km,付了16元;小北乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元.根据题意,可列方程组为_________.三、解答题21.对a ,b 定义一种新运算T ,规定:T (a ,b )=(a +2b )(ax +by )(其中x ,y 均为非零实数).例如:T (1,1)=3x +3y .(1)已知T (1,﹣1)=0,T (0,2)=8,求x ,y 的值;(2)已知关于x ,y 的方程组()()113028T a T a ⎧-=-⎪⎨=⎪⎩,,,若a ≥﹣2,求x +y 的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A (x ,y )落在坐标轴上,将线段OA 沿x 轴向右平移2个单位,得线段O ′A ′,坐标轴上有一点B 满足三角形BOA ′的面积为9,请直接写出点B 的坐标. 22.阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x y -=_______,x y +=_______;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=_______.23.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?24.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?25.对于不为0的一位数m 和一个两位数n ,将数m 放置于两位数之前,或者将数m 放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为(),F m n .例如:当1m =,68n =时,可以得到168,618.较大三位数减去较小三位数的差为618168450-=,而4501530÷=,所以()1,6830F =. (1)计算:()2,17F .(2)若a 是一位数,b 是两位数,b 的十位数字为x (18x ≤≤,x 为自然数),个位数字为8,当()()11,509,862F a F b +=时,求出所有可能的a ,b 的值.26.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由. 27.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.28.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.29.某企业用规格是170cm ×40cm 的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a 、b 的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材 张,乙型板材 张; ②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?30.如图,α∠和β∠的度数满足方程组2230320αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)用解方程的方法求α∠和β∠的度数; (2)求C ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值. 【详解】把21x y =⎧⎨=-⎩代入得:2562a b c -=⎧⎨-=⎩,解得:c =4,把31x y =⎧⎨=⎩代入得:3a +b =5,联立得:2535a b a b -=⎧⎨+=⎩,解得:21a b =⎧⎨=-⎩,则(a +b +c )2=(2﹣1+4)2=25. 故选B . 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.C解析:C 【详解】分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得. 详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.3.B解析:B 【分析】根据长方形的宽为a ,长为b 进行分割,第一次分割出边长a 的正方形,第二次分割出边长(b -a )的正方形,并进行分类讨论,画出几何图形,利用边长的关系即可得出a 、b 的关系. 【详解】 解:①如图:∵AB =AE =a ,AD =BC =b , ED =EI =IG =GF =b -a , ∴a =3(b -a ), ∴4a =3b , ∴43b a =②如图:∵AB =AF =BE =a ,AD =BC =b , ∴EI =IC =2a -b , ∴b =a +2a -b +2a -b , ∴53b a = 综上所述:43b a =或53b a =故选:B . 【点睛】本题考查了矩形和正方形边长的关系,准确的画出图形,进行分类讨论是解题的关键.4.B解析:B 【分析】设能买醇酒x 斗,行酒y 斗,利用总价=单价⨯数量,结合用30钱共买2斗酒,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】解:设能买醇酒x 斗,行酒y 斗. 买2斗酒,2x y ∴+=;醇酒1斗,价格50钱;行酒1斗,价格10钱,且共花费30钱,501030x y ∴+=.联立两方程组成方程组2501030x y x y +=⎧⎨+=⎩.故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解题的关键是找准等量关系,正确列出二元一次方程组.5.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10或5,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式,然后化简计算即可. 【详解】解:根据题意可得:第一个方程x 的系数为3,y 的系数为2,相加的结果为8;第二个方程x 的系数为6,y 的系数为1,相加的结果为13,所以可列方程组为328613x y x y +=⎧⎨+=⎩,解之得:21x y =⎧⎨=⎩,故选:D . 【点睛】考查列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.6.D解析:D 【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间. 【详解】解:设8路公交车的速度为x 米/分,小王行走的速度为y 米/分,同向行驶的相邻两车的间距为s 米.每隔12分钟从背后驶过一辆8路公交车,则 1212x y s -=①每隔4分钟从迎面驶来一辆8路公交车,则 44x y s +=②由①+②可得6s x =, 所以6sx=, 即8路公交车总站发车间隔时间是6分钟. 故选:D . 【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.7.B解析:B 【分析】①把a =5代入方程组求出解,即可作出判断;②由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ③若x =y ,代入方程组,变形得关于a 的方程,即可作出判断; ④根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:①把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故①错误;②当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩,整理,得82(3)35(4)x a x a =⎧⎨=-⎩,由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故②正确;③若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∴不存在一个实数a 使得x =y ,故③正确;④352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∴原方程组的解为2515x ay a =-⎧⎨=-⎩,∵23722a y -=, ∴2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故④错误; ∴正确的选项有②③两个.故选:B .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.8.D解析:D【分析】设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意列出方程组求出解即可得出结果.【详解】解:设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意,得9060a x y a y x +-=⎧⎨+-=⎩, 两式相加,得 2a =150,解得 a =75,故选:D .【点睛】本题考查了二元一次方程组的应用.解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程中求解.9.A解析:A【详解】(1)−(2)得:6y=−3a ,∴y=−2a , 代入(1)得:x=2a ,把y=−2a ,x=2a 代入方程3x+2y=10, 得:6a−a=10,即a=2.故选A.10.D解析:D【分析】根据题意可得关于x 、y 的方程组,根据解方程组,可得答案.【详解】解:原方程整理为:(x +y -2)a +(-x +2y +5)=0,由方程的解与a 无关,得:20250x y x y +-⎧⎨-++⎩==, 解得31x y ⎧⎨-⎩==, 故选:D .【点睛】本题考查了二元一次方程组的解,正确理解题意、得出方程组是解题关键.二、填空题11.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】 分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案. 解答:解:把代入, 得,解得,c=-2. 再把代入ax+by=-2, 得, 解得: , 所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.12.3【分析】由题意可知方程组与有相同的解,由可得x +y =3,再由可得a (x +y )+b (x +y )=9,即可求a +b 的值.【详解】解:∵方程组与有相同的解,∴方程组与的解相同,中①+②得,中解析:3【分析】由题意可知方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解,由2524x y x y +=⎧⎨+=⎩可得x +y =3,再由45ax by bx ay +=⎧⎨+=⎩可得a (x +y )+b (x +y )=9,即可求a +b 的值. 【详解】解:∵方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解, ∴方程组2524x y x y +=⎧⎨+=⎩与45ax by bx ay +=⎧⎨+=⎩的解相同, 2524x y x y +=⎧⎨+=⎩①②中①+②得3x y +=, 45ax by bx ay +=⎧⎨+=⎩③④中,③+④ 得a (x +y )+b (x +y )=9, 将3x y +=代入,得339a b +=,∴3a b +=,故答案为:3.【点睛】本题考查二元一次方程组的解,此题采用整体求解的方法较为简便,求出x +y =3是解题的关键.13.3【分析】将x =2,y =﹣1代入方程2mx+4ny ﹣9=3即可得到m ﹣n =3.【详解】∵x =2,y =﹣1是方程2mx+4ny ﹣9=3的一个解,∴4m ﹣4n ﹣9=3,∴m ﹣n =3,故答案解析:3【分析】将x =2,y =﹣1代入方程2mx +4ny ﹣9=3即可得到m ﹣n =3.【详解】∵x =2,y =﹣1是方程2mx +4ny ﹣9=3的一个解,∴4m﹣4n﹣9=3,∴m﹣n=3,故答案为:3【点睛】本题考查二元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.熟练掌握定义是解题关键.14..【分析】根据题意和图示可知,甲种小盒需要一个正方形和4个长方形,乙种小盒需要2个正方形和3个长方形,甲、乙两种小盒需要的正方形总量=150=做成甲种小盒的个数+做成乙种小盒的个数×2,甲、乙两解析:2150 43300x yx y+=⎧⎨+=⎩.【分析】根据题意和图示可知,甲种小盒需要一个正方形和4个长方形,乙种小盒需要2个正方形和3个长方形,甲、乙两种小盒需要的正方形总量=150=做成甲种小盒的个数+做成乙种小盒的个数×2,甲、乙两种小盒需要的长方形总量=300=做成甲种小盒的个数×4+做成乙种小盒的个数×3.根据以上条件可列出方程组.【详解】设可做成甲种小盒x个,乙种小盒y个.根据题意,得2150 43300x yx y+=⎧⎨+=⎩,故答案为:2150 43300x yx y+=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是弄清题意,观察图形,找出合适的等量关系,列出方程组.15.-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组中x的值比y的相反数大2,∴x=﹣y解析:-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k 的值.【详解】解:∵方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2, ∴x =﹣y +2,∴4(﹣y +2)+5y =10,解得:y =2,把y =2代入4x +5y =10中,得:4x +10=10,解得:x =0,则方程组的解是x=0y=2⎧⎨⎩, ∴﹣(k ﹣1)×2=8,解得:k =﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解. 16.(1,0)【分析】根据向左平移,横坐标减,向上平移,纵坐标加的性质进行分析,通过列二元一次方程组并求解,即可得到答案.【详解】设点P 坐标为(x ,y ).将点P 向左平移2个单位长度,再解析:(1,0)【分析】根据向左平移,横坐标减,向上平移,纵坐标加的性质进行分析,通过列二元一次方程组并求解,即可得到答案.【详解】设点P 坐标为(x ,y ).将点P 向左平移2个单位长度,再向上平移3个单位长度,得:()2,3x y -+∴2133x y -=-⎧⎨+=⎩∴10x y =⎧⎨=⎩ ∴点P 坐标为(1,0).故答案为:(1,0).【点睛】本题考查了坐标、平移、二元一次方程组的知识;解题的关键是熟练掌握坐标、平移的性质,从而完成求解.17.=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.解析:=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.【详解】解:∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是一元一次方程,∴m2﹣4=0且m+2=0,且m+1≠0,解得:m=﹣2;∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是二元一次方程,∴m2﹣4=0且m+2≠0,m+1≠0,解得:m=2.故答案为:=﹣2;=2.【点睛】此题主要考查了二元一次方程和一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.18.320【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两解析:320【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量.【详解】解:设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵.根据题意得:0.8xa+(0.8x-2)(50-a )+36(2x-5)=(50+36)x整理得:13x+a=140a=140-13x因为x,0.8x 都是正整数,可得x 是5的倍数,又因为0<a <50,a 是正整数,经试算可得x=10,a=10,所以我校学生一共植树: 0.8xa+(0.8x-2)(50-a )=0.8×10×10+(0.8×10-2)(50-10)=320棵故答案为320.【点睛】本题考查了代数式,多元一次方程,和求二元一次方程的特殊解.题中数量关系比较复杂,难度较大.19.2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵的运算结果是,∴解得:∴故答案为:2.【点睛】本题考查合并同解析:2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵275222m n n m a b a b +-++的运算结果是573a b ,∴25227m n n m +=⎧⎨-+=⎩解得:13m n =-⎧⎨=⎩ ∴2223m mn n ++()()22213133=⨯-+⨯-⨯+299=-+2=故答案为:2.【点睛】本题考查合并同类项,涉及到解二元一次方程组,解题的关键是根据同类项的定义求得m 、n 的值.20.【分析】根据小江乘坐这种出租车走了,付了16元;小北乘坐这种出租车走了,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为元,超过后每千米收费解析:(72)16(132)28x y x y +-=⎧⎨+-=⎩【分析】根据小江乘坐这种出租车走了7km ,付了16元;小北乘坐这种出租车走了13km ,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,由题意得:(72)16(132)28x y x y +-=⎧⎨+-=⎩, 故填:(72)16(132)28x y x y +-=⎧⎨+-=⎩. 【点睛】本题考查由实际问题抽象出二元一次方程组,解题关键是理解题意,找到题目中的等量关系.三、解答题21.(1)x =1,y =1;(2)9x y +≥-;(3)(12,0)或(12,0)-或(0,9)或(0,9)-或(0,18)或(0,18)-【分析】(1)根据新运算T 定义建立方程组,解方程组即可得出答案;(2)应用新运算T 定义建立方程组,解关于x 、y 的方程组可得23x a y a =-⎧⎨=⎩,进而得出(23)33x y a a a +=-+=-,再运用不等式性质即可得出答案;(3)根据题意得(23,)A a a -,由平移可得(21,)A a a '-,根据点(23,)A a a -落在坐标轴上,且2a -,分类讨论即可.【详解】解:(1)根据新运算T 的定义可得:(112)()0(022)(02)8x y x y -⨯⋅-=⎧⎨+⨯⋅⋅+=⎩,解得:11x y =⎧⎨=⎩; (2)由题意得:()3448x y a y a --=-⎧⎨⨯=⎩, 解得:23x a y a=-⎧⎨=⎩, (23)33x y a a a ∴+=-+=-,2a -,36a ∴-,339a ∴--,9x y ∴+-;(3)由(2)知,23x a y a =-⎧⎨=⎩, (23,)A a a ∴-,将线段OA 沿x 轴向右平移2个单位,得线段O A '',(21,)A a a ∴'-,点(23,)A a a -落在坐标轴上,且2a -,230a ∴-=或0a =,32a ∴=或0a =; ①当32a =时,3(2,)2A ', 若点B 在x 轴上,13922BOA S OB ∆'=⨯⨯=,12OB ∴=,(12,0)B ∴或(12,0)-;若点B 在y 轴上,1292BOA S OB ∆'=⨯⨯=, 9OB ∴=,(0,9)B ∴或(0,9)-;②当0a =时,(1,0)A '-;∴点B 只能在y 轴上,1192BOA S OB ∆'=⨯⨯=,18OB ∴=, (0,18)B ∴或(0,18)-;综上所述,点B 的坐标为(12,0)或(12,0)-或(0,9)或(0,9)-或(0,18)或(0,18)-.【点睛】本题考查了新运算T 定义,解二元一次方程组,不等式性质,平移变换的性质,理解并应用新运算T 定义是解题关键.22.(1)1-;5;(2)购买6支水笔、6块橡皮、6本记事本共需48元;(3)11-.【分析】(1)利用①−②可得x -y 的值,利用()13+①②可得出x +y 的值; (2)设铅笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,根据“买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①-②可得m n p ++的值,再乘5即可求得结果;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a b c ++的值,从而可求得结果.【详解】(1)2728x y x y +=⎧⎨+=⎩①② 由①−②可得:x -y =-1,由()13⨯+①②可得x +y =5 故答案为:1-;5.(2)设水笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,依题意,得:203235395362m n p m n p ++=⎧⎨++=⎩①②, 由2⨯-①②可得8m n p ++=,6666848m n p ∴++=⨯=.故购买6支水笔、6块橡皮、6本记事本共需48元.(3)依题意得:35154728a b c a b c ++=⎧⎨++=⎩①② 由3×①−2×②可得:11a b c ++=-即1*111=-故答案为:11-.【点睛】本题考查了二元一次方程组的应用及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x -y ,x +y 的值;(2)(3)找出等量关系,正确列出三元一次方程组. 23.(1)见解析;(2)6元【分析】(1)设单价为20元的书买了x 本,单价为24元的书买了y 本,根据总价=单价×数量,结合购买两种书30本共花费(700−38)元,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,结合x ,y 的值为整数,即可得出小明搞错了;(2)设单价为20元的书买了a 本,则单价为24元的书买了(30−a )本,笔记本的单价为b 元,根据总价=单价×数量,即可得出关于a ,b 的二元一次方程,化简后可得出a =14+24b +,结合0<b <10,且a ,b 均为整数,可得出b =2或6,将b 值代入a =14+24b +中可求出a 值,再结合单价为20元的书多于24元的书,即可确定b 值. 【详解】解:(1)设20元的书买了x 本,24元的书买了y 本,由题意,得30202470038x y x y +=⎧⎨+=-⎩,解得14.515.5x y =⎧⎨=⎩, ∵x ,y 的值为整数,故x ,y 的值不符合题意(只需求出一个即可)∴小明搞错了;(2)设20元的书买了a 本,则24元的书买了()30a -本,笔记本的单价为b 元, 由题意,得:()20243780003a a b +=-+-, 化简得:5821444b b a ++==+ ∵110b ≤<,∴2b =或6.当2b =,15a =,即20元的书买了15本,24元的书买了15本,不合题意舍去 当6b =,16a =,即20元的书买了16本,则24元的书买了14本∴6b =.答:笔记本的价格为6元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程. 24.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则 4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,。
数学七年级下册二元一次方程组性质数学七年级下册二元一次方程组性质导语:书是人类进步的阶梯,这句话说得真不错,我总是爱看书。
因为我从书本里明白了很多很多的道理。
下面是小编为大家整理的,数学知识,想要知更多的资讯,请多多留意CNFLA学习网!第一章二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:a1x + b1y = c1 已知二元一次方程组a2x + b2y = c2①、②、③、当a1/a2 ≠ b1/b2 时,有唯一解; 当a1/a2 = b1/b2 ≠ c1/c2时,无解; 当a1/a2 = b1/b2 = c1/c2时,有无数解。
x + y = 4 2x + 2y = 8x + y = 4 x + y = 3 例如:对应方程组:①、②、③、 3x - 5y = 9 2x + 2y = 5例:判断下列方程组是否为二元一次方程组:a +b = 2 ②、x = 4 ③、3t + 2s = 5 ④、x = 11 ①、b +c = 3 y = 5 ts + 6 = 0 2x + 3y = 03、用含一个未知数的代数式表示另一个未知数:用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。