§3.4 确定圆的条件
- 格式:ppt
- 大小:514.50 KB
- 文档页数:27
浙教版-9年级-上册-数学-第3章《圆的基本性质》分节知识点一、圆的有关概念及圆的确定要点一、圆的定义1、圆的描述概念(1)如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:(1)圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;(2)圆是一条封闭曲线.2、圆的集合概念(1)圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.(2)平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.(3)圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:(1)定点为圆心,定长为半径;(2)圆指的是圆周,而不是圆面;(3)强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.要点二、点与圆的位置关系(1)点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.(2)若⊙O的半径为r,点P到圆心O的距离为d,那么:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.“”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:(1)点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1、弦:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.要点诠释:(1)直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.(2)为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2、弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.要点诠释:(1)半圆是弧,而弧不一定是半圆;(2)无特殊说明时,弧指的是劣弧.3、等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:(1)等弧成立的前提条件是在同圆或等圆中,不能忽视;(2)圆中两平行弦所夹的弧相等.4、同心圆与等圆(1)圆心相同,半径不等的两个圆叫做同心圆.(2)圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5、圆心角:顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.二、图形的旋转要点一、旋转的概念(1)一般地,一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转.这个固定的定点叫做旋转中心,转过的角叫做旋转角.如下图,点O为旋转中心,∠AOA′(或∠BOB′或∠COC′)是旋转角.要点诠释:(1)旋转的三个要素:旋转中心、旋转方向和旋转角度.(2)如上图,如果图形上的点A经过旋转变为点A′,那么这两个点叫做这个图形旋转的对应点.点B与点B′,点C与点C′均是对应点,线段AB与A′B′、线段AC与A′C′、线段BC与B′C′均是对应线段.要点二、旋转的性质一般地,图形的旋转有下面的性质:(1)图形经过旋转所得的图形和原图形全等;(2)对应点到旋转中心的距离相等;(3)任意一对对应点与旋转中心连线所成的角度等于旋转的角度.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点三、旋转的作图(1)在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.三、垂径定理知识点一、垂径定理1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图,几何语言为:CD 是直径要点诠释:2、推论(1)定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(2)定理2:平分弧的直径垂直平分弧所对的弦.要点诠释:(1)分一条弧成相等的两条弧的点,叫做这条弧的中点.(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:(1)在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)四、圆心角要点一、圆心角与弧的定义1、圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB 就是一个圆心角.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)圆心角∠AOB 所对的弦为线段AB,所对的弧为弧AB.2、1°的弧的定义:1°的圆心角所对的弧叫做1°的弧.如下图,要点诠释:(1)圆心角的度数和它所对的弧的度数相等.注意不是角与弧相等.即不能写成圆心角∠AOB=.CD ⊥ABAE=BE(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).要点二、圆心角定理及推论1、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.要点诠释:(1)圆心到圆的一条弦的距离叫做弦心距.(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.(3)注意定理中不能忽视“同圆或等圆”这一前提.2、圆心角定理的推论:(1)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.要点诠释:(1)在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.五、圆周角要点一、圆周角1、圆周角定义:(1)像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2、圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)3、圆周角定理的推论1:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、圆周角定理的推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.六、圆内接四边形要点一、圆内接四边形(1)如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.要点二、圆内接四边形性质定理(1)圆内接四边形的对角互补.(2)圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).要点诠释:圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.七、正多边形和圆知识点一、正多边形的概念(1)各边相等,各角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).知识点二、正多边形的重要元素1、正多边形的外接圆和圆的内接正多边形(1)正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2、正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3、正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.知识点三、正多边形的性质(1)正多边形都只有一个外接圆,圆有无数个内接正多边形.(2)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.(3)正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.(4)边数相同的正多边形相似。
圆的确定条件1. 你知道吗,一个圆的确定那可不是随便说说的事儿!就好比盖房子,得有坚实的根基呀。
比如说给你一个点,那能确定一个圆吗?当然不能啦!就像只有一块砖可盖不成房子一样。
2. 嘿,圆的确定条件可重要啦!想想看,如果没有足够的条件,那不就像在大海里没有方向地漂流吗?比如给你一段弧,这能完整地确定一个圆吗?显然不行呀!3. 哇塞,圆的确定条件真的很神奇呢!这就好像拼图,得有足够的碎片才行。
要是只给你圆心,没有半径,能画出一个完整的圆吗?不可能的呀!4. 哎呀呀,圆的确定条件可不是闹着玩的!就像一场比赛要有明确的规则一样。
给你几个点,它们能唯一确定一个圆吗?这可得好好琢磨琢磨呢!5. 哟呵,圆的确定条件可太有意思啦!好比搭积木,少了一块都不行。
要是只知道圆上的几个点,能准确地确定圆吗?那可不一定哦!6. 嘿呀,圆的确定条件那可是关键得很呐!就像走路要有目的地一样。
给你一个直径,能就此确定一个圆吗?这可不是那么简单的哟!7. 哇哦,圆的确定条件真的很有讲究呢!如同做菜要有合适的食材和调料。
要是只有一个模糊的概念,能确定出一个圆吗?肯定不行啦!8. 哎呀,圆的确定条件可不是随随便便的哟!好比选班长要有明确的标准。
给你一个扇形,能确定这个圆吗?想想就知道不可以呀!9. 嘿,圆的确定条件可不能小瞧呀!就像建造一座大桥,需要精确的设计。
只给你一些断断续续的线索,能确定一个圆吗?当然不能咯!10. 哇,圆的确定条件真的是太重要啦!如同一场精彩的演出需要各个环节的完美配合。
要是没有足够准确的信息,能画出一个完美的圆吗?绝对不可能呀!我的观点结论:圆的确定条件是非常明确和关键的,缺少任何一个重要条件都无法准确地确定一个圆。
我们必须要清楚地认识和理解这些条件,才能更好地掌握与圆相关的知识和应用。
(说课稿)确定圆的条件今天我要为大伙儿说课的课题是《确定圆的条件》,我将从教材分析、学情分析、教学目标、教学重、难点、教学过程这五个方面进行课时说课,第一,我对本课教材进行简单分析.一、教材分析本课内容位于(北师版)初中数学九年级下册第三章第五节,是学过的《圆的初步认识》和刚学过的《圆的对称性》相关知识的连续学习,同时也为后面深入学习圆的内接四边形等圆的相关知识奠定基础.本课要紧研究内容是“过不在同一直线上三个点作圆”,其广泛用于数学作图,图案设计,建筑造型,工艺品制作等众多领域,关于培养学生作图技能和探究问题能力也具有不可替代的作用.依照以上我对教材的明白得我确定了本课的重点为:把握过不在同一条直线上的三个点作圆的方法,这也是本课的要紧学习目标之一.二、学情分析学生前面差不多学习了圆的相关概念,明白确定圆的两个要素是圆心和半径.另外学生还学习了线段的垂直平分线的性质、判定及画法,这些知识储备都为本课的顺利学习奠定了良好的基础. 我们明白作一个符合规定的圆需要找到圆心和半径,而圆心的分布规律是隐藏的,学生可能会产生一定的思维障碍;另一方面,圆心是在两点连线的垂直平分线上,学生有可能建立不了圆与垂直平分线两者之间的联系,依照以上分析我确定本课的难点为:确定圆的条件的思维过程.三、教学目标:基于以上我对教材和学生的认识,我从知识、技能、情感三方面设定了本课的教学目标.1.知识目标经历不在同一条直线上的三个点确定一个圆的探究过程;了解三角形的外接圆、三角形的外心等概念.[来源:Z.xx.k ]2.技能目标把握过不在同一条直线上的三个点作圆的方法.3.情感目标树立探究数学问题的意识,敢于发表自己的观点,从问题的解决中获得成功的体验,学会与他人合作,并能交流思维的过程和结果.四、教学重、难点重点:把握过不在同一条直线上的三个点作圆的方法.难点:确定圆的条件的思维过程.下面介绍我在教学中如何突出重点、突破难点的?我在教学内容的设计上采纳由生活中问题导入,由浅入深、层层递进的方式;在活动方式上采纳自主探究、合作交流、集中展现、归纳总结来关心学生明白得;在能力培养上,充分以学生为主体,给学生充分的探究时刻和空间,引导学生反思,以上三点三管齐下,力求突出本节课的重点.关于难点的突破,我采取如下措施:1、利用学案提早设计好复习题,力争课前扫清与本课相关的知识障碍;2、设计好探究问题,调动学生学习积极性,使学生从上课开始到终止思维一直处于亢奋状态,有利于灵活、高效的解决问题;3、多让学生动手操作和展现,动手操作会更有利于发觉规律;展现过程中,学生会在思维碰撞中找到问题的正确解决方法;4、降低思维门槛,要解决过三个点作圆的问题,先解决过一个点、过两个点作圆的问题,引导学生循序渐进的探究确定圆的条件,最终落脚点是三个点作圆问题.五、教学过程我的教学过程共设计了如下十一个环节.环节一:创设情境教师:同学们!我们都有爱美之心,都喜爱照镜子,老师也爱美,每次出门前都要照照镜子,一天我的圆形镜子碎成四块,我想带其中一块到玻璃店修复它,应该带那一块去呢?课件演示:破镜如何重圆?有一天家里的圆形玻璃镜子打碎了,其中四块碎片如图所示,为配到与原先大小一样的圆形镜片,带到商店去的一块镜子碎片应该是哪一块?设计说明:我的设计意图是利用生活实际问题引发学生摸索,激发学生求知欲,又为新知识的应用埋下伏笔,能专门自然的引出课题,并板书课题.环节二:认定目标课件展现:学习目标:[来源:学_科_网Z_X_X_K][来源:学,科,网Z,X, X,K]1.经历探究过程,明白得“不在同一直线上的三个点确定一个圆”.2.了解三角形的外接圆、三角形的外心、圆的内接三角形的概念.3.会过不在同一直线上的三个点作圆.设计说明:学习目标是给学生看的,本着简洁、通俗易明白的目的设计本课学习目标.让学生一起读一读,让学生对本课学什么有一个大致的了解,真正落实目标在教学过程中,真正回扣目标是在课堂小结处.环节三:复习巩固课件演示:课前延伸1.线段垂直平分线的相关知识(1)线段垂直平分线的性质:.(2)线段垂直平分线的判定:.(3)作图:在图1中,作出线段AB的垂直平分线.2.圆的相关知识(1)平面内的点与圆有种位置关系.分别是.(2)确定一个圆的两个要素是和;它们分别决定圆的和.设计说明:第1题复习线段垂直平分线,因为作一个圆,必需先找到圆心,探究二、三都需要利用线段垂直平分线找圆心,没有那个知识储备,学生全然找不到圆心,本课也就无法顺利进行;第2题复习圆的相关知识,复习点与圆的位置关系为通过点作圆做好铺垫,因为通过点的意思确实是点在圆上.重点强调确定一个圆的两个要素是圆心和半径,作圆问题离不开这两个先决条件.[来源:1ZXXK]环节四:自主探究教师:本节课我们学习确定圆的条件,先从最简单条件开始研究,请看问题探究一.课件演示:探究一:如图2,通过一点A作圆,你能作出多少个圆?A A B图2 图3设计说明:我开门见山点明要研究目标,告诉学生从最简单的条件开始探究,为两个点及多个点探究埋下伏笔,也符合学生由简单到复杂循序渐进的学习规律.重点是让学生动手操作,在操作中学会画圆,明白圆心、半径都不确定,因此通过一点可作许多个圆,既不能确定一个圆.要求学生课前完成,统一答案后进入探究环节.教师:同学们!通过一点不能确定圆,通过两点能否确定一个圆呢?请看问题探究二.课件演示:探究二:如图3,通过两点A、B作圆,你能作出多少个圆?这些圆的圆心在哪里?设计说明:一个点不能确定圆,自然过渡到两个点问题,关键是是让学生在探究中发觉圆心分布规律,即在AB两点的垂直平分线上.我想放手学生先独立操作,遇到问题小组交流,最后让学生展现,在探究活动中悟出新知.教师:同学们!通过两点不能确定圆,通过三点能否确定一个圆呢?请看问题探究三.课件演示:探究三:通过任意三点A、B、C能做出一个圆吗?假如能,如何样作出过这三点的圆?通过这三点的圆的圆心在哪里?通过这三个点能够作出多少个圆?请在下面空白处作出图形.设计说明:由两个点过渡到三个点顺理成章,我改变课本原先设计,课本是直截了当提出过不在同一直线三个点作圆,我觉如此设计限制了学生思维,而我的设计是把“不在同一直线”那个条件去掉,假如学生没想到三点共线这种情形,再加以适当引导成效会更好.对那个问题的探究,我想给学生充分的时刻和空间,因为这是本课最重点内容,此处处理的是否得当关系到这节课的成败.学生展现时我还要适时追问,圆心如何找到的?过这三个点还能作一个不同的圆吗?过任意三个点能作一个圆?追问促使学生摸索,从而明确过不在同一直线三个点只能作一个圆,得出本课核心问题确定圆的条件,得出结论以后,留出时刻让学生记一记,对重点内容的强化经历,促进学生更好的学以致用.环节五:知识应用课件演示:破镜重圆:利用刚学过知识解决创设情境中提出的问题,带到商店去的一块镜子碎片应该是哪一块?尝试在这一块残缺镜片上破镜重圆.设计说明:此环节是对上课一开始设置悬念的回扣,也是对新学知识的即时应用,赶忙用有两个好处,一是检验学生学习状况,二是让学生产生一种利用新知解决问题的成就感,提升学生学习积极性.环节六:自学领会我会分析黑板上学生三个点作圆图形,并用不同颜色笔标记图中的三角形.教师:这三个点连起来之后就组成一个三角形,三角形和圆也有了专门的位置关系,它们又分别称作什么呢?请同学们自学课本117页,找出相应概念!设计说明:因为三角形和圆具备了新的位置关系,从而产生新的概念,概念相对简单,因此安排学生自学,这也是放手学生的的重要表达.学生自学完以后,要对学生学习情形及时反馈,追问“内”,“外”和“接”的含义,为进一步拓展圆内接四边形及圆内接多边形等内容做好铺垫.赶忙跟上练习反馈学习情形!请尝试做出以下练习.课件演示:跟踪练习:1.填空:(1)△ABC是⊙O的三角形;(2)⊙O 是△ABC的圆;(3)点O是△ABC的.2.知识拓展:摸索:什么是圆的内接四边形?设计说明:第1题专门简单,要紧是即时反馈学生对概念的明白得,另一方面看看学生能否学会知识迁移,把数学文字语言转化为符号语言.设计第2题要紧是拓展新学内容,让学生真正明确“内”,“外”和“接”的含义,也进一步为学生设置悬念,延伸本课与后续学习内容的联系.教师:今后学习中,除了学习圆内接四边形,还要学习圆内接五边形、多边形等内容,请看大屏幕!课件演示:[来源:学§科§网]设计说明:通过课件展现几个圆内接多边形,利用图形的形象直观性,让学生深刻明确所学概念.学案上没有设计这组图形,要紧缘故是文字叙述更容易引导学生摸索,直截了当出示图形反而让学生对知识学习停留在表面想象,不利于认识问题的本质.环节七:学以致用课件演示:已知:△ABC,求作⊙O,使它通过A、B、C三点,并观看外心与三角形位置.(注:小组分工,每人选一种类型的三角形作出图形,作完后小组交流分享!)交流发觉:(1)三角形外心与三角形位置关系是:.(2)三角形外心还有哪些性质:.设计说明:本设计抓住学生刚学会三角形外接圆概念想尽快应用的心理,顺理成章过渡,也进一步明确三角形形外接圆定义;另一方面,学生能利用本课学习的三点作圆来解决那个问题,因此本设计是对前面两块知识的巩固和应用,也含有反馈学生前段学习情形的意义.设计三种类型三角形,是为了让学生通过画图体会三角形外心与三角形的位置关系,让学生在操作展现中,学会分类分析问题,提炼数学观点,形成数学能力.环节八:课堂小结总结你的收成:知识……方法……感悟……设计说明:本设计引导学生从这三方面总结本课学习内容,改变原先学生只总结知识,而忽视能力和方法的学习适应.为了更好让学生明白这节课的知识结构,我还设计了规范的板书,板书实际是重要内容和思维主线的最好表达.环节九:当堂检测课件演示:自我检测1.判定:(1)三点确定一个圆.()(2)任意一个三角形一定有一个外接圆,同时只有一个外接圆. ()(3)任意一个圆一定有一个内接三角形,同时只有一个内接三角形. ()(4)三角形的外心是三角形三边中线的交点.()(5)三角形的外心到三角形各顶点距离相等.()2.Rt△ABC中,∠C=900,AC=6cm,BC=8cm,则其外接圆的半径为.设计说明:设计这组测验为了反馈学生学习情形,第1题较简单,也是为了让提高学生学习士气,体会到成功的欢乐;第2题略微有点挑战性,利用直角三角形外心位置规律解答,也满足不同层次学生的不同需求.教师可们采纳抢答方式调动学生积极性,学生抢答,师生共同反馈答题情形,教师最后出示正确答案并做总结性评判.环节十:布置作业课件演示:拓展延伸1.摸索:通过4个(或4个以上的)点是不是一定能作圆?2.作业:设计说明:设计第1题的缘故保证了知识的完整性,学生在探究完三个点作圆以后,确信有一个思维连续,不在同一直线上三个点确定一个圆,四个点又会如何样?四个点又分共线和不共线两种情形,不共线的四点作圆问题又能用三点确定一个圆去说明,本题既应用了新学知识,又给学生提供了更广泛地摸索空间.第2题,要紧是让学生进一步巩固新学知识,规范解题步骤. 在作业设计时,既面向全体学生,又尊重学生的个体差异,以把握知识形成能力为要紧目的.环节十一:完美收官课件展现:教师:同学们!是圆让我们相识,一块共同学习是我们的缘分,愿我们的友谊源远流长,愿我们学过的知识象三角形一样的稳固,愿我的生活想圆一样的完美!设计说明:这是本课亮点之一,因为本课所学重点知识都凝聚在那个图形中,出示本图是对本课内容的进一步小结,又是对学生情绪的调动和鼓舞,让学生在激情与诗意中满载而归!以上教学过程在内容出现上采纳了“创设情境——提出问题——自主探究——合作交流——应用拓展的模式”,也是我校235高效课堂教学模式延伸和应用.整体设计思路是:在学生熟悉的实际背景中创设情境,激发学生的求知欲,让学生在积极的思维状态下进入探究活动.以“作出符合条件的圆”为主线,设置三个探究活动,让学生经历不在同一条直线上的三个点确定一个圆的探究过程,三个问题由易到难、层层递进,引导学生积极参与探究从而让其发觉结论,并过渡到三角形外接圆、外心等概念的学习.学了新知识赶忙解决开始提出的“破镜重圆”问题,然后进一步应用新知解决其它相关问题,让学生在做中学,进而学以致用,体会到应用数学知识解决问题的成就感,提高学好数学的信心和积极性.以上是我对本节课教学的一些设想,不当之处,敬请各位专家批判指正!感谢大伙儿!。
5.4确定圆的条件知识点1: 1、定理:不在同一条直线上的三个点确定一个圆.2、三角形的外接圆.定义:经过三角形各项点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形3、三角形的外心:(l)三角形外接圆的圆心叫做三角形的外心;(2)三角形的外心是三角形三边垂直平分线的交点;(3)三角形的外心到三角形的三个顶点的距离相等.练习1:按图填空:(1)是⊙O的_________三角形;(2)⊙O是的_________圆,2、.经过一点作圆可以作个圆;经过两点作圆可以个圆,这些圆的圆心在这两点的上;经过的三点可以作个圆,并且只能作个圆。
3、Rt⊿ABC中,∠C=900,AC=6cm,BC=8cm,则其外接圆的半径为。
4、等边三角形的边长为a,则其外接圆的半径为 .练习2:判断题:(1)经过三点一定可以作圆;()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()(4)三角形的外心是三角形三边中线的交点;()(5)三角形的外心到三角形各项点距离相等.()练习3:钝角三角形的外心在三角形()(A)内部(B)一边上(C)外部(D)可能在内部也可能在外部4.在Rt△ABC中,∠C=90°,若AC=6,BC=8.求Rt△ABC的外接圆的半径和面积。
5.已知AB=7cm,则过点A,B,且半径为3cm的圆有()A 0个B 1个C 2个D 无数个6.如图,平原上有三个村庄A,B,C,现计划打一水井P,使水井到三个村庄的距离相等。
在图中画出水井P的位置。
巩固提高一、选择题1.三角形的外心是()A.三条中线的交点B.三条边的中垂线的交点C.三条高的交点D.三条角平分线的交点2.下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个3.(2010•大庆)在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,-1)D.(3,1)4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块5.下图中,每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( )A .B .C .D .6.在△ABC 中,∠A=30°,∠B=60°,AC=6,则△ABC 外接圆的半径为( )A .23B .33C .3D .37.在△ABC 中,I 是外心,且∠BIC=130°,则∠A 的度数是( )A .65°B.115°C.65°或115°D.65°或130°8.正三角形的外接圆的半径和高的比为( )A .1:2B .2:3C .3:4D .1:39.平面上有不在同一直线上的4个点,过其中3个点作圆,可以作出n 个圆,那么n 的值不可能为( )A .1B .2C .3D .410.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=42 ,则⊙O 的直径等于( )A .225 B .3 2 C .52 D .7二、填空题1.已知直角三角形的两条直角边长分别为6cm 和8cm ,则这个直角三角形的外接圆的半径为 cm .2.(2002•辽宁)△ABC 是半径为2的圆的内接三角形,若BC=23 ,则∠A 的度数为 。