确定圆的条件
- 格式:ppt
- 大小:2.42 MB
- 文档页数:12
圆的概念及确定1.圆定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心。
(确定圆的位置)线段OA叫做半径。
(确定圆的大小)记法:以点O为圆心的圆,记作“⊙O”,读作“圆O”注意:(1)圆指的是“圆周”而不是“圆面”。
(2)半径指的是线段,为了方便也把半径的长称为半径。
圆的确定:(1)一个圆心一个半径(2)圆心、圆上一个一个的已知点(3)直径2. 圆的集合定义:(1)角平分线上的点到角两边的距离相等。
到角两边距离相等的点在角的平分线上。
所以:角平分线可以看做是到角的两边距离相等的点的集合。
(2)线段的垂直平分线上的点到线段的两个端点的距离相等。
到线段的两个端点的距离相等的点在线段的垂直平分线上。
线段的垂直平分线可以看做是和线段两个端点距离相等的点的集合。
*把一个图形看成是满足某种条件的点的集合,必须符合:a.图形上的每一点都满足某个条件,b.满足某个条件的每一个点,都在这个图形上。
(3)圆上各点到定点(圆心O)的距离都等于定长(半径r),到定点的距离等于定长的点都在同一个圆上。
(圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形)圆的集合定义:圆是到定点的距离等于定长的点的集合。
点和圆的位置关系有:点在圆内、圆上,圆外三种,设⊙O的半径为r,点P和圆心O的距离为d,则有:点在圆内;点在圆上;点在圆外。
6. 理解定理,不在一直线上的三点确定一个圆,并掌握不在同一条直线上三点作圆的方法。
7. 会用尺规作经过不在同一直线上三点的圆。
8. 了解三角形外心的概念。
9. 过三点的圆确定一个圆有两个基本条件:圆心(定点),确定圆的位置;半径(定长),确定圆的大小。
只有当圆心和半径都确定时,圆才能确定。
此外,下列条件都可以确定圆心和半径,因而都能确定圆:(1)经过不在一直线上的三点的圆;(2)已知圆心和圆上一点的圆;(3)以已知线段为直径的圆。
圆的前提条件
圆是一个几何图形,它有一些前提条件,包括以下几点:
1. 圆心:圆的中心被称为圆心,圆心是确定圆的位置的点。
2. 半径:从圆心到圆上任意一点的线段被称为半径,半径的长度决定了圆的大小。
3. 直径:通过圆心并且两端都在圆上的线段被称为直径,直径是圆中最长的线段,并且直径的长度是半径的两倍。
4. 相等的曲率:圆上任意一点的曲率都是相等的,这意味着圆上的每一个点到圆心的距离都是相等的。
5. 闭合曲线:圆是一个闭合的曲线,它没有起点和终点,圆上的任意一点都与其他点相连。
6. 平面图形:圆是一个平面图形,它存在于二维空间中。
这些前提条件是定义一个圆所必需的。
只有满足这些条件,才能确定一个几何图形为圆。
圆的这些特性使得它在数学、几何、物理学等领域中都有广泛的应用。
圆心的概念
圆心是圆的中心,即到圆的边缘距离都相等且与圆在同一个平面的点。
圆是一条封闭曲线,一个圆把平面上所有的点分成圆内的点、圆上的点、圆外的点三种点的集合,并有:
圆内的点与圆心的距离小于半径的点;
圆上的点与圆心的距离等于半径的点;
圆外的点与圆心的距离大于半径的点。
确定圆的基本条件:
1、确定一个圆必须确定圆心、半径,圆心可确定圆的位置,半径可确定圆的大小;
2、不在同一条直线上的三个点可以确定一个圆。
经过三角形的三个顶点可以做一个圆。
这个圆叫做三角形的外接圆,这个圆的圆心叫做三角形的外心,三角形的外心是三角形三边的垂直平分线的交点,这个三角形叫做这个圆的内接三角形。
5.4确定圆的条件知识点1: 1、定理:不在同一条直线上的三个点确定一个圆.2、三角形的外接圆.定义:经过三角形各项点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形3、三角形的外心:(l)三角形外接圆的圆心叫做三角形的外心;(2)三角形的外心是三角形三边垂直平分线的交点;(3)三角形的外心到三角形的三个顶点的距离相等.练习1:按图填空:(1)是⊙O的_________三角形;(2)⊙O是的_________圆,2、.经过一点作圆可以作个圆;经过两点作圆可以个圆,这些圆的圆心在这两点的上;经过的三点可以作个圆,并且只能作个圆。
3、Rt⊿ABC中,∠C=900,AC=6cm,BC=8cm,则其外接圆的半径为。
4、等边三角形的边长为a,则其外接圆的半径为 .练习2:判断题:(1)经过三点一定可以作圆;()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()(4)三角形的外心是三角形三边中线的交点;()(5)三角形的外心到三角形各项点距离相等.()练习3:钝角三角形的外心在三角形()(A)内部(B)一边上(C)外部(D)可能在内部也可能在外部4.在Rt△ABC中,∠C=90°,若AC=6,BC=8.求Rt△ABC的外接圆的半径和面积。
5.已知AB=7cm,则过点A,B,且半径为3cm的圆有()A 0个B 1个C 2个D 无数个6.如图,平原上有三个村庄A,B,C,现计划打一水井P,使水井到三个村庄的距离相等。
在图中画出水井P的位置。
巩固提高一、选择题1.三角形的外心是()A.三条中线的交点B.三条边的中垂线的交点C.三条高的交点D.三条角平分线的交点2.下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个3.(2010•大庆)在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,-1)D.(3,1)4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块5.下图中,每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( )A .B .C .D .6.在△ABC 中,∠A=30°,∠B=60°,AC=6,则△ABC 外接圆的半径为( )A .23B .33C .3D .37.在△ABC 中,I 是外心,且∠BIC=130°,则∠A 的度数是( )A .65°B.115°C.65°或115°D.65°或130°8.正三角形的外接圆的半径和高的比为( )A .1:2B .2:3C .3:4D .1:39.平面上有不在同一直线上的4个点,过其中3个点作圆,可以作出n 个圆,那么n 的值不可能为( )A .1B .2C .3D .410.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=42 ,则⊙O 的直径等于( )A .225 B .3 2 C .52 D .7二、填空题1.已知直角三角形的两条直角边长分别为6cm 和8cm ,则这个直角三角形的外接圆的半径为 cm .2.(2002•辽宁)△ABC 是半径为2的圆的内接三角形,若BC=23 ,则∠A 的度数为 。
3.5确定圆的条件教学设计(1)线段垂直平分线上的点有怎样的性质?(2)怎样用尺规作一条线段的垂直平分线多媒体出示垂直平分线的画法(3)构成圆的基本要素有哪些?车间工人要将一个如图所示的破损的圆盘复原,确定它的尺寸(圆盘的大小),你有办法吗?思考:那么过几点可以确定一个圆呢?探究2 过两点作圆作圆,使它经过已知点A,B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?探究3 过三点作圆问题1:经过同一直线上的A,B,C三点能作圆吗?问题2:作圆,使它经过已知点A,B,C(A,B,C 三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?归纳:不在同一条直线上的三点确定一个圆讨论:如果三个点在同一直线时可以作圆吗?为什么?当A,B,C三点在同一条直线上时,因为到A,B 两点距离相等的点的集合是线段AB的垂直平分线,到B,C两点距离相等的点的集合是线段BC的垂直平分线,两条直线垂直于同一条直线,所以线段AB 的垂直平分线与线段BC的垂直平分线平行,没有交点,故没有一点到A,B,C三点的距离相等,不存在圆心,从而经过同一直线上的三点不能作圆,当A,B,C三点不在同一条直线上时,这两条垂直平分线的交点满足到A,B,C三点的距离相等,就是所作圆的圆心.OA或OB或OC是半径.因为这两条直线的交点只有一个,所以只有一个圆心,半径也唯一确定,所以只能作出一个满足条件的圆。
试一试:已知△ABC,用直尺与圆规作出过A、B、C三点的圆.由上可知,三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆.这个三角形叫这个圆的内接三角形.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.分别作出锐角三角形、直角三角形、钝角三角形的外接圆,并说明它们外心的位置情况.1.以已知点O为圆心、线段a为半径作圆,可以作( )A.1个圆B.2个圆C.3个圆D.无数个圆2.下列语句正确的是( )A.直径是弦,弦是直径B.相等的圆心角所对的弦相等C.经过圆心的每一条直线都是圆的对称轴D.三点确定一个圆3.三角形的外心具有的性质是()A.到三边的距离相等.B.到三个顶点的距离相等.C.外心在三角形的外.D.外心在三角形内.4.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C 的度数是________.5.如图,△ABC的高AD、BE相交于点H,延长AD 交△ABC的外接圆于点G,连接BG.求证:HD=GD.。
1、在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么其余两组也相等2、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.3、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于其相对圆心角的一半。
4、确定圆的条件:不在同一直线上的三点确定一个圆。
5、直线与圆位置关系:直线与圆相离 <=> d>r直线与圆相切 <=> d=r直线与圆相交 <=> d<r6、切线的性质:见切点,连半径,得垂直7、切线的判定:先判断直线与圆有无交点有交点,连半径,证垂直无交点,作垂直,证半径8、三角形的外心:三角形外接圆的圆心,它是三角形各边中垂线的交点,它到三角形各顶点的距离相等。
锐角三角形外心在三角形内;直角三角形外心在三角形斜边中点上;钝角三角形外心在三角形外。
9、三角形的内心:三角形内切圆的圆心,它是三角形各内角平分线的交点,它到三角形各边的距离相等;三角形内心均在三角形内。
10、普通三角形内切圆半径:cb a S r ++=2(S 为三角形面积,a 、b 、c 为三角形的边) 直角三角形内切圆半径: 2c b a r -+=(c 为斜边,a 、b 为直角边) 11、正多边形: 内角和180)2(⋅-=n ;外角和=360 每个内角n 1802-n ⋅=)( 每个外角=n360=中心角 正三角形的边长为a ,那么正三角形的中心角是120度,半径是a 33,边心距是a 63; 正四边形的边长为a ,那么正四边形的中心角是90度,半径是a 22,边心距是2a ; 正六边形的边长为a ,那么正六边形的中心角是60度,半径是a ,边心距是a 23。
12、弧长=180n r π 扇形面积lr r n 213602==π (l 为弧长,n 为所对圆心角,r 为半径) 13、圆柱侧面积=rh π2 圆柱表面积=222r rh ππ+(r 为底面半径,h 为侧面的高)14、圆锥侧面积=rl π 圆锥表面积=2r rl ππ+圆锥侧面展开图圆心角计算 1802l n r ππ= (l 为圆锥母线,r 为底面半径,在圆锥的侧面展开图中,母线l 将为成为扇形半径,底面周长成为扇形弧长)。