相似三角形的判定(角角)教学设计
- 格式:doc
- 大小:154.71 KB
- 文档页数:4
课题:27.2.1相似三角形的判定3学习目标:孙俊峰1.学习并掌握“两角对应相等,两个三角形相似”的判定方法及应用。
2.探究并运用“角角法”,掌握几何分析法及综合法的应用,并体会类比思想。
3. 学习“角角法”及应用,感受几何知识的严谨及应用价值。
学习重点:“角角法”及应用学习难点:1.“角角法”判定相似及相似性质的综合运用2.找准相似中的对应角及对应边学情分析:部分学生书写存在不规范及利用相似计算有困难学习过程教学活动【活动一】复习回忆:我们已学习过哪些判定三角形相似的方法?【活动二】学习新知1问题探究:.问题1:△ABC和△A/B/C/ 中,若∠A=∠A/ ,∠B=∠B/,则△ABC和△A/B/C/相似吗?为什么?结论:两组角对应相等的两个三角形相似几何描述:∵∴【活动三】知识应用1.⊿ABC和⊿A1B1C1中, ∠A=40°,∠B=60°(1)若∠A1=40°,∠B1=60°则⊿ABC和⊿A1B1C1相似吗?(2)若∠A1=40°,∠B1=80°则⊿ABC和⊿A1B1C1相似吗?教师引导学生完成探究教师规范定理的应用格式2.如图,Rt△ABC中,∠C=90°,E是AC上一点,ED⊥AB于D,(1)求证:⊿ADE∽⊿ACB(2)若AB=10,AC=8. AE=5,求AD的长.(3)延长DE,BC交于H,则图中共有几组相似的三角形?为什么?.3.Rt△ABC中,∠ACB=90°,CD⊥AB于D(1)求证:⊿ACD∽⊿ABC(2)找出图中所有的相似三角形并说明理由4如图∠ACB=90°,AC=BC, OA=OB,点E,F分别在AC,BC上,且∠EOF=45°,(1)求证:⊿AOE∽⊿若AB=4 , 求BFAE•的值【活动四】小结师生小结【活动五】课后反思2,3(1)均由学生分析独立完成(3)教师适时引导完成4教师分析引导学生完成。
三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
湘教版数学九年级上册3.4《相似三角形的判定》(第2课时)教学设计一. 教材分析《相似三角形的判定》是湘教版数学九年级上册3.4的内容,这部分内容是在学生已经掌握了相似三角形的概念和性质的基础上进行学习的。
本节课的主要内容是引导学生探究并掌握相似三角形的判定方法,并通过大量的例题和练习题,使学生熟练掌握并应用这些方法。
教材中提供了丰富的教学资源,包括例题、练习题、探究题等,有助于提高学生的学习兴趣和积极性。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的概念和性质有一定的了解。
但是,对于相似三角形的判定方法,他们可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、思考、探究等活动,发现并总结相似三角形的判定方法。
同时,学生可能对一些复杂的问题感到困惑,需要教师给予适当的指导。
三. 教学目标1.知识与技能:使学生掌握相似三角形的判定方法,并能灵活运用。
2.过程与方法:通过观察、思考、探究等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的良好学习习惯。
四. 教学重难点1.重点:相似三角形的判定方法。
2.难点:如何引导学生发现并总结相似三角形的判定方法。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、思考、探究,发现并总结相似三角形的判定方法。
2.例题教学法:教师通过讲解典型例题,使学生掌握相似三角形的判定方法。
3.练习法:教师布置适量的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.教材:湘教版数学九年级上册。
2.教学多媒体设备:用于展示教材内容、例题和练习题。
3.练习题:用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示教材中的例题,引导学生观察、思考,发现相似三角形的判定方法。
相似三角形的判定(两角对应相等)
一、教学目标
1、知识目标
(1)探索判定两个三角形相似的条件,经历操作、归纳从而获得数学结论的过程。
(2)掌握“如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似”,并应用其解决相关问题。
2、能力目标
(1)通过观察、归纳、测量、推理等手段,让学生充分体验得出结论的过程,感受发现的乐趣。
让学生在观察中学会分析,在操作中学会感知,培养学生的合情推理能力、有条理的表达能力。
3、情感目标
(1)培养学生的合作交流意识,培养学生主动探索,敢于实践,勇于发现的科学精神。
(2)通过同学间的交流与合作,培养大家的合作精神。
二、教学重点、难点:
教学重点:探究并应用两角相等两个三角形相似的判定方法。
教学难点:在图形变化过程中应用相似判定方法。
【教学设计说明】。
数学教案三角形相似的判定(优秀3篇)知识结构本文范文为朋友们整理了3篇《数学教案三角形相似的判定》,可以帮助到您,就是本文范文我最大的乐趣哦。
角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。
2.继续渗透和培养学生对类比数学思想的认识和理解。
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4.通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。
应让学生对此有所了解。
定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B 成对应点,对应边分别是斜边和一条直角边。
《相似三角形判定定理的证明》教学设计一、教学目标1、知识与技能目标学生能够理解相似三角形判定定理的内容。
掌握相似三角形判定定理的证明方法,提高逻辑推理能力。
2、过程与方法目标通过探究相似三角形判定定理的证明过程,培养学生的观察、分析和解决问题的能力。
经历“猜想验证证明”的数学探究过程,体会数学思维的严谨性。
3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索、创新的精神。
在合作学习中,增强学生的团队意识和交流能力。
二、教学重难点1、教学重点相似三角形判定定理的证明思路和方法。
2、教学难点如何引导学生构建证明的思路,运用已有的知识进行推理和论证。
三、教学方法讲授法、探究法、讨论法相结合四、教学过程1、复习引入回顾相似三角形的定义和性质。
提问:如何判断两个三角形相似呢?引导学生思考并回忆相似三角形的判定方法(如两角分别相等的两个三角形相似)。
2、提出猜想展示几组相似三角形的图片,让学生观察并猜想相似三角形的判定条件。
引导学生提出猜想:比如三边成比例的两个三角形相似;两边成比例且夹角相等的两个三角形相似等。
3、探究证明以“两角分别相等的两个三角形相似”为例,引导学生分析证明思路。
提问:如何构建两个角分别相等的条件?可以通过作平行线等方法。
让学生分组讨论,尝试写出证明过程。
对于“三边成比例的两个三角形相似”,先引导学生思考如何将三边的比例关系转化为线段的等量关系。
提示学生可以通过构建全等三角形来进行证明。
对于“两边成比例且夹角相等的两个三角形相似”,让学生思考如何利用已有的知识和方法进行证明。
4、证明展示与讲解选取几组学生代表,展示他们的证明过程,并进行讲解。
针对学生证明过程中出现的问题和不足,进行纠正和补充。
5、总结归纳总结相似三角形判定定理的证明方法和思路。
强调证明过程中需要注意的逻辑严谨性和规范性。
6、课堂练习布置一些相关的练习题,让学生巩固所学知识。
巡视学生的练习情况,及时给予指导和帮助。
相似三角形的判定(二)一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法3的运用.3.难点的突破方法(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法.(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据.(3)如果两个三角形是直角三角形,则只要再找到一对锐角相等即可说明这两个三角形相似.三、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD 与△ABC 相似吗?说说你的理由.(3)如(2)题图,△ABC 中,点D 在AB 上,如果∠ACD=∠B, 那么△ACD 与△ABC 相似吗?-—引出课题.四、例题讲解例1已知:如图,矩形ABCD 中,E 为BC 上一点,DF⊥AE 于F,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.解:略(DF=310). 五、课堂练习1.已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.2.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.1. 已知:如图,△ABC 的高AD 、BE交于点F .求证:FDEF BF AF .2.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC•BC=BE•CD;(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长.教学反思。
相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。
2、能运用相似三角形的概念判断两个三角形相似。
3、理解“相似三角形的对应角相等,对应边成比例”的性质。
重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。
知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的对应角相等,对应边成比例。
3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。
2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。
3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。
教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。
以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。
那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。
问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。
2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。
注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。
教学设计
27.2.1相似三角形判定(角角判定)
内容分析:相似三角形的判定是相似三角形研究的重要内容。
前面已学习了“定义”、“平行线”、“三边”“两边及夹角”这几种方法,这些方法都与“边”有关,很自然地提出“无边”能否判定三角形相似。
“两角分别相等的两个三角形相似”是证明两个三角形相似最简单、最常用的方法。
学情分析:九年级学生已具备一定的逻辑推理能力,可放手给学生探究。
但外宿班同学基础较差,教师要适时加以提示点拨。
教学目标:第一,理解三角形相似的角角判定;第二,会运用角角判定解决简单问题;第三,在教学中渗透类比、转化、几何直观思想;第四,培养学生探究、合作精神;第五,通过知识的应用学会正确推理,以理服人
教学重点:理解三角形相似的角角判定,会运用角角判定解决简单问题。
教学难点:三角形相似的角角判定的推导过程及几何证明题的书面文字表达。
教学方法:运用多媒体进行启发式、引导式教学。
教学过程:(运用多媒体教学)
一、知回识顾
相似三角形的判定方法(教师简单板书在黑板左边)
1.定义法:三角对应相等,三边对应成比例的两个三角形相似。
2. 平行法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
3. 边边边(SSS): 三边对应成比例的两个三角形相似。
4.边角边(SAS): 两边对应成比例且夹角相等的两个三角形相似。
学生回答完相似三角形的判定方法后做以下既简单又易错的练习,目的是达到温故知新。
练习:在△ABC和△A′B′C′中,已知:
(1)AB=6 ,BC=8,AC=15,
A′B′=12,B′C′=16,A′C′=35
试判定△ABC与A′B′C′是否相似,并说明理由。
(不相似)
(2) AB=4,BC=5,AC=8,
DE=16,EF=32,DF=20
试判定△ABC与△DEF是否相似,并说明理由。
(相似)教师根据学生的回答强调对应边要对应,不能只看给出的顺序。
二、类比探究
教师用多媒体展示以下图形和问题,让学生类比猜想、探究。
∵∠A=∠A′,∠B=∠B′,∠C=∠C′
∴△ABC∽△A′B′C′?
教师借助动画给出三角对应相等,三边对应成比例的两个三角形相似后,去掉“三角对应相等”条件,留下“三边对应成比例”这个条件,根据前面“边边边”判定易知两个三角形相似,接着去掉“三边对应成比例”条件,只出现“三角对应相等”这个条件,追问学生:三角形相似吗?(打出?)如何证明?此处注意引导学生回顾前面判定定理的证明方法和思想,怎么把“未知”转化成“已知”,给足够的时间让学生思考、探究、交流。
学生思维受阻时教师再给予帮助,因为教材不要求掌握这个定理的证明,只要同学们找到推理方法,口述就可以了,不用文字表达。
全班齐读角角判定定理,教师板书。
角角判定定理:两角分别相等的两个三角形相似。
(课本35页)A'B'B'C'A'C'
AB BC AC
==
结合图形师生共同写出定理的数学符号表示
∵∠A=∠A′,∠B=∠B′
∴ΔABC ∽ΔA′B′C′
三、定理运用
1、眼疾手快
(1)ΔABC和ΔDEF中,
∠A=400,∠B=800,
∠E=800,∠F=600,
ΔABC与ΔDEF
(“相似”或“不相似”)
(2)D为ΔABC边AB上的一点,
且∠ACD=∠B ,则ΔABC与
ΔACD (“相似”或“不相似”)
2、认真思考
如图,△ABC中,∠ACB =90°,
CD是斜边AB上的高,求证:
(1)△ACD ∽△ABC
(2)△CBD∽△ABC
(3)△CBD∽△ACD
第1题单独提问口答,第2题让两位同学上黑板板书(1)(2),留(3)课后做。
教师根据学生板书情况点评,注意因果搭配得当。
四、综合应用
1、例2(课本35页)
如图,Rt ΔABC中,∠C=90 º
AB=10, AC=8, E是AC上一点,
AE=5, ED⊥AB, 垂足为D.
求AD的长.
师生共同分析解答,做为示范例题,教师详细板书在黑板上。
2、大显身手
如图,△ABC中,∠ACB =90°
CD是斜边AB上的高,
若BC=4,AB=10,求BD的长.
这个题目是上个练习题的变式题,注意引导学生通过三角形相似求线段的长,学生上黑板板书。
师生共同总结求线段长的方法。
五、总结归纳
教师引导学生谈谈本节课的收获(个人轮流说),教师最后总结证明三角形相似的方法及求线段长度的常用方法。
六、作业布置
课本第42-43页第4、7题。
课后反思:本节课通过复习引入新知,强调知识的联系,朗读重要定理有利于加深理解。
角角判定不是直接给出,而是引导学生探究,放手让学生想“点子”,这种做法有利于培养学生逻辑思维。
让学生上黑板板书,纠正学生错误,有利于提高学生几何证明的书写。
题目由浅入深,有梯度,学生易于接受,学生积极参与,课堂气氛活跃,教学效果好,不足之处是有个学生想到“点子”证明角角判定定理时我却没有及时表扬。
以后一定要注意!。