九年级下册 直棱柱、圆锥的侧面展开图 同步练习题 含答案
- 格式:doc
- 大小:184.00 KB
- 文档页数:5
数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
三视图三视图[见B本P90]1.如图29-2-1几何体的主视图是( C )图29-2-12.下列四个立体图形中,主视图为圆的是( B )A B C D3.有一篮球如图29-2-2放置,其主视图为( B )图29-2-2A B C D4如图29-2-3,由三个小立方块搭成的俯视图是( A ) 图29-2-35.如图29-2-4所示的几何体的主视图是( C )29-2-46.从不同方向看一只茶壶,你认为是其俯视图的是( A )图29-2-57. 如图29-2-6是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变图29-2-68.如图四个水平放置的几何体中,三视图如图29-2-7所示的是( D )图29-2-79.如图29-2-8所示几何体的左视图是( C )图29-2-810.球和圆柱在水平面上紧靠在一起,组成如图29-2-9所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是( C )图29-2-9A.两个相交的圆B.两个内切的圆C.两个外切的圆 D.两个外离的圆11.下列几何体中,俯视图相同的是( C )图29-2-10A.①② B.①③ C.②③ D.②④12.将棱长是1 cm的小正方体组成如图29-2-11所示的几何体,那么这个几何体的表面积是( A )图29-2-11A.36 cm2 B.33 cm2 C.30 cm2 D.27 cm213.我国古代数学家利用“牟合方盖”(如图29-2-12甲)找到了球体体积的计算方法,“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图29-2-12乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( B )图29-2-1214.5个棱长为1的正方体组成如图29-2-13所示的几何体.(1)该几何体的体积是________(立方单位),表面积是________(平方单位);(2)画出该几何体的主视图和左视图.图29-2-13第14题答图解:(1)5 22 (2)如图所示.15.图29-2-14是一个蘑菇形小零件图,其上部是一个半球体,下部是圆柱体,作出它的三视图.图29-2-14解:蘑菇形零件的上部为半球体,下部为圆柱体,它的主视图与左视图相同,上部均为半圆,下部为矩形.俯视图为同心圆(不含圆心),内圆被遮为虚线,如图所示.16.作出下面立体图形的三视图.图29-2-15 解:如图所示.第2课时由三视图描述物体的形状[见B本P92]1.下面是一个几何体的三视图,则这个几何体的形状是( B )图29-2-16A.圆柱B.圆锥C.圆台 D.三棱柱2.某几何体的三种视图如图29-2-17所示,则该几何体是( C )图29-2-17A.三棱柱 B.长方体C.圆柱 D.圆锥3.某几何体的三视图如图29-2-18所示,则这个几何体是( A )图29-2-18A.三棱柱 B.圆柱C.正方体 D.三棱锥4.已知一个正棱柱的俯视图和左视图如图29-2-19所示,其主视图为( D ) 图29-2-195.长方体的主视图、俯视图如图29-2-20所示,则其左视图面积为( A )图29-2-20A.3 B.4C.12 D.166.一个长方体的左视图、俯视图及相关数据如图29-2-21所示,则其主视图的面积为( B )A.6 B.8 C.12 D.24图29-2-21图29-2-227.如图29-2-22是一个几何体的主视图和左视图,同学们在探究它的俯视图时,画出了如图29-2-23的几个图形,其中可能是该几何体俯视图的共有( C )图29-2-23A.3个 B.4个C.5个 D.6个8.图29-2-24是一个正六棱柱的主视图和左视图,则图中的a=( B )图29-2-24A.2 3 B. 3 C.2 D.1【解析】从主视图来看,正六棱柱的底面正六边形的直径为4,半径为2,而正六边形的边长等于半径,所以边长也为2,所以a=2sin60°= 3.9.下图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是( B ) A.3 B.4 C.5 D.6图29-2-2510.由n个相同的小正方体堆成的几何体,其视图如图29-2-26所示,则n的最大值是( A )A.18 B.19 C.20 D.21图29-2-2611. 某超市货架上摆放着某品牌红烧牛肉方便面,如图29-2-27是它们的三视图,则货架上的红烧牛肉方便面至少有( B )A.8 B.9 C.10 D.11图29-2-2712. 某几何体的三视图如图29-2-28所示,则组成该几何体共用了小方块( D )A. 12块B. 9块C. 7块D. 6块图29-2-2813.如图29-2-29是某几何体的三视图,则该几何体的体积是( C )图29-2-29A. 18 3B. 54 3C. 108 3D. 216 3【解析】由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=108 3.14.一个几何体的三视图如图29-2-30所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是__abc__.图29-2-30【解析】几何体是长方体,长为a,宽为b,高为c,则V=abc.15.图29-2-31是某实物的三视图,描述该实物的形状.图29-2-31解:观察三视图,可把三视图分解为两组如下图.由第1组三视图可观察出物体下部为一个长方体;由第2组三视图可观察出物体左上部也为一个长方体.综合原三视图可得物体是由两个长方体结合成的一个整体(像沙发),如图所示.第1组第2组16.如图29-2-32,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中,共有1个小立方体,其中1个看得见,0个看不见;如图②中,共有8个小立方体,其中7个看得见,1个看不见;如图③中,共有27个小立方体,其中19个看得见,8个看不见;……则(1)第⑥个图中,看得见的小立方体有________个;(2)猜想并写出第n个图形中看不见的小立方体的个数为多少?图29-2-32解:(1)n=1时,看不见的小立方体的个数为0个;n=2时,看不见的小立方体的个数为(2-1)×(2-1)×(2-1)=1(个);n=3时,看不见的小立方体的个数为(3-1)×(3-1)×(3-1)=8(个);……n=6时,看不见的小立方体的个数为(6-1)×(6-1)×(6-1)=125(个),故看得见的小立方体有63-125=216-125=91(个).(2)第n个图形中看不见的小立方体的个数为(n-1)3个.第3课时 由三视图到表面展开图 [见B 本P94]1.如图29-2-33是某几何体的三视图,其侧面积( C )图29-2-33A .6B .4πC .6πD .12π2.一个几何体的三视图如图29-2-34所示,那么这个几何体的侧面积是( B )图29-2-34A .4πB .6πC .8πD .12π【解析】 由三视图知该几何体是底面直径为2,高为3的圆柱体,所以该几何体的侧面积为2π×3=6π.3.图29-2-35是某几何体的三视图及相关数据,则该几何体的侧面积是( B )图29-2-35A.12ab πB.12ac π C .ab π D .ac π 【解析】 该几何体是圆锥,侧面展开图是扇形,S 扇形=12×a π×c =12ac π.4.如图29-2-36是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是__72__.图29-2-36图29-2-375.图29-2-37是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__左视图__.【解析】 设小正方体的棱长为1,则主视图的面积为5,左视图的面积为3,俯视图的面积为5,所以左视图的面积最小.6.某几何体的三视图如图29-2-38所示,则该几何体的表面积为__270__cm 2__.图29-2-38【解析】 由三视图可知,几何体是一个直三棱柱,其表面积为S 表=(5+12+52+122)×7+2×12×12×5=270( cm 2).7.某冷饮厂要加工一批冰淇淋蛋筒,设计给出了封闭蛋筒的三视图如图29-2-39所示,请你按照三视图确定制作每个蛋筒所需的包装材料面积(π取3.14,精确到0.1 cm 2).图29-2-39【解析】 (1)由三视图知立体图形是圆锥;(2)再由圆锥画它的表面展开图计算表面积. 解:由三视图可知,蛋筒是圆锥形的,如下图所示.蛋筒的母线长为13 cm ,底面的半径为102=5(cm),运用勾股定理可得它的高h =132-52=12(cm).由展开图可知,制作一个冰淇淋蛋筒的材料面积为S 扇形+S 圆=12×2π×5×13+π×52=65π+25π=90π≈282.6(cm 2).8.图29-2-40是某几何体的展开图. (1)这个几何体的名称是____; (2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)图29-2-40【解析】观察展开图,中间是一个矩形,上、下方是相等的圆,易知此几何体为圆柱;圆柱的主视图和左视图是相同的长方形,俯视图为圆,其体积为底面积乘高,且圆柱底面直径为10,高为20.解:(1)圆柱;(2)三视图如图所示.(3)体积为πr2h≈3.14×25×20=1 570.9.某个长方体的主视图是边长为1 cm的正方形,沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形,那么这个长方体的俯视图是( D )【解析】截面是一个正方形,边长为 2 cm,故这个长方体的俯视图是边长分别为1 cm, 2 cm的长方形,选D.10.如图29-2-41是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( C )图29-2-41A .75(1+3)cm 2B .75⎝ ⎛⎭⎪⎫1+32cm 2 C .75(2+3)cm 2D .75⎝⎛⎭⎪⎫2+32cm 2 【解析】 包装盒的侧面展开图是一个长方形,长方形长为(5×6)cm ,宽为 5 cm ,面积为30×5=150 (cm 2),包装盒的一个底面是一个正六边形,面积为6×12×52×32=7523(cm 2),故包装盒的表面积为150+2×7523=150+753=75(2+3)(cm 2),选C.11.一个如图29-2-42所示的长方体的三视图如图29-2-43所示,若其俯视图为正方形,则这个长方体的表面积为( A )图29-2-42 图29-2-43 A .66 B .48C .482+36D .57【解析】 设长方体底面边长为x ,则2x 2=(32)2,∴x =3,∴该长方体表面积为3×4×4+32×2=48+18=66,故选A.12.图29-2-44是某工件的三视图,按图中尺寸求工件的表面积.图29-2-44【解析】 在实际的生产中,三视图和展开图往往结合在一起,常由三视图想象出几何体的形状,再画出其表面展开图,然后根据展开图求表面积.解:观察三视图可知,工件的上部为一个圆锥,下部紧连着一个共底面的圆柱(如图所示).上部圆锥侧面展开图是扇形(半圆),其面积为S 扇=12×(3)2+12×2π=2π(cm 2);下部圆柱侧面展开图是矩形,其面积为S 矩=1×2π=2π(cm 2);底部为圆面,面积为S 圆=π cm 2,所以,所求工件的表面积为S 表=S 扇+S 矩+S 圆=2π+2π+π=5π(cm 2).13.一个几何体的主视图和左视图如图29-2-45所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.图29-2-45解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm ,∴菱形的边长为52 cm ,棱柱的侧面积=4×52×8=80(cm 2).14.如图29-2-46所示是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可得俯视图(等腰梯形)的高为____; (2)在虚线框内画出其左视图,并标出各边的长.图29-2-46【解析】 (1)过上底的顶点向对边引垂线组成直角三角形求解即可;(2)易得左视图为长方形,宽等于(1)中算出的梯形的高,高等于主视图中长方形的高. 解:(1)4(2)如图所示:人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
九年级数学下册第7章空间图形的初步认识专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是某个几何体的展开图,该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱2、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是()A.①B.②C.①②D.①②③3、如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()A.B.C.D.4、如图,矩形纸片ABCD中,AD=9cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则AB的长为()A.4.5cm B.4cm C.5cm D.6cm5、用一个平面去截一个几何体,如果所得截面是三角形,那么该几何体不可能是()A.圆锥B.圆柱C.三棱柱D.四棱柱6、如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B 点到P点的最短路线的长为()A B.C.D.7、如图所示,矩形纸片ABCD中,AB=4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AD的长为()A.8cm B.7cm C.6cm D.5cm8、下列几何体中,是圆锥的为()A.B.C.D.9、用一个平面去截四棱柱,截面形状不可能是()A.三角形B.四边形C.六边形D.七边形10、如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数,则a+b=_____.2、如图,从一块圆形铁皮上剪出一个圆心角为90°,半径为2m的扇形BAC,围成一个圆锥,则圆锥的底面圆的半径是________m.3、如图六棱柱,底面是正六边形,边长为4cm,侧棱长为7cm,则该棱柱的侧面积为_____cm2.4、圆锥的侧面积为60π,底面半径为6,则圆锥的母线长为______.5、已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为 __.三、解答题(5小题,每小题10分,共计50分)1、还记得欧拉公式吗?它讲述的是多面体的顶点数()V、面数()F、棱数()E之间存在的等量关系.(1)通过观察图1几何体,完成以下表格:+-=______.(2)通过对图1所示的多面体的归纳,请你补全欧拉公式:V F E【实际应用】(3)足球一般有32块黑白皮子缝合而成(如图2),且黑色的是正五边形,白色的是正六边形,如果我们可以近似把足球看成一个多面体,你能利用欧拉公式计算出正五边形和正六边形各有多少块吗?请写出你的解答过程.2、图1是由7个小正方体(每个小正方体的棱长都是1)所堆成的几何体.(1)请画出这个几何体从正面、左面、上面三个方面看到的形状图;(2)现要在这个几何体的表面上喷上油漆(不包括下底面),求需要喷上油漆的面积S3、问题提出:最长边长为128的整数边三角形有多少个?(整数边三角形是指三边长度都是整数的三角形.) 问题探究:为了探究规律,我们先从最简单的情形入手,从中找到解决问题的方法,最后得出一般性的结论. (1)如表①,最长边长为1的整数边三角形,显然,最短边长是1,第三边长也是1.按照(最长边长,最短边长,第三边长)的形式记为()1,1,1,有1个,所以总共有111⨯=个整数边三角形. 表①(2)如表②,最长边长为2的整数边三角形,最短边长是1或2.根据三角形任意两边之和大于第三边,当最短边长为1时,第三边长只能是2,记为()2,1,2,有1个;当最短边长为2时,显然第三边长也是2,记为()2,2,2,有1个,所以总共有11122+=⨯=个整数边三角形. 表②(3)下面在表③中总结最长边长为3的整数边三角形个数情况:表③(4)下面在表④中总结最长边长为4的整数边三角形个数情况:表④(5)请在表⑤中总结最长边长为5的整数边三角形个数情况并填空:表⑤问题解决:(1)最长边长为6的整数边三角形有___________个.(2)在整数边三角形中,设最长边长为n,总结上述探究过程,当n为奇数或n为偶数时,整数边三角形个数的规律一样吗?请写出最长边长为n的整数边三角形的个数.(3)最长边长为128的整数边三角形有__________个.拓展延伸:在直三棱柱中,若所有棱长均为整数,则最长棱长为9的直三棱柱有___________个.4、你能算出如图所示(单位:m )“粮仓”的容积吗?(2V r h π=圆柱,213V r h π=圆锥)5、如图,在平整的地面上,用7个棱长都为1cm 的小正方体搭成一个几何体.(1)请利用图中的网格画出从正面、左面和上面看到的几何体的形状图.(一个网格为小立方体的一个面)(2)图中7个小正方体搭成的几何体的表面积(不包括与地面接触的部分)是 2cm .-参考答案-一、单选题 1、B 【解析】 【分析】由展开图可得,改几何体由三个面的长方形,两个面是三角形,据此可得该几何体是三棱柱.【详解】解:由由展开图可得,改几何体由三个面的长方形,两个面是三角形,所以该几何体是三棱柱故选:B.【点睛】本题考查几何体的展开图,从实物出发,结合具体问题,辨析几何体的展开图,通过结合立体图形与平面图象的转化,建立空间观念,是解题关键.2、C【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C.【点睛】本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.3、A【解析】【分析】根据“一线不过四,凹、田应弃之”可以判断所给展开图是否为正方体的表面展开图,逐项判断即可求解.【详解】解:A 、折叠后才能围成一个正方体,故本选项符合题意;B 、含有“田”字形,,故本选项不符合题意;C 、折叠后有一行两个面无法折起来,而且都缺个面,折叠后才不能围成一个正方体,故本选项不符合题意;D 、含有“田”字形,折叠后才不能围成一个正方体,故本选项不符合题意;故选:A【点睛】本题主要考查了几何体的折叠和展开图形,熟练掌握“一线不过四,凹、田应弃之”可以判断所给展开图是否为正方体的表面展开图是解题的关键.4、D【解析】【分析】设cm AB x =,从而可得(9)cm DE x =-,根据扇形的弧长等于圆锥底面圆的周长建立方程,解方程即可得.【详解】解:设cm AB x =,则(9)cm DE x =-,四边形ABCD 是矩形,90B ∴∠=︒, 由题意得:90(9)180x x ππ=-, 解得6(cm)x =,即AB 的长为6cm ,故选:D .【点睛】本题考查了圆锥的计算、矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.5、B【解析】【分析】根据几何体构造及其截面进行判断即可得.【详解】A 、圆锥的截面可能是圆,三角形等,不符合题意;B 、圆柱的截面可能是圆和长方形等,不可能出现三角形,符合题意;C 、三棱柱的截面可能是三角形,长方形等,不符合题意;D 、四棱柱的截面可能是三角形,四边形,五边形,六边形等,不符合题意;故选:B .【点睛】本题考查常见几何体的截面的形状,关键是熟悉几何体的构造来进行排除选项.6、C【解析】【分析】求出圆锥底面圆的周长,则以AB 为一边,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后90BAC ∠=︒,连接BP ,根据勾股定理求出BP 即可.【详解】解:圆锥底面是以BC 为直径的圆,圆的周长是6BC ππ=,以AB 为一边,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,弧长是6l π=,设展开后的圆心角是n ︒,则66180n ππ⨯=, 解得:180n =, 即展开后1180902BAC ∠=⨯︒=︒,132AP AC ==,6AB =, 则在圆锥的侧面上从B 点到P 点的最短路线的长就是展开后线段BP 的长,由勾股定理得:BP故选:C .【点睛】本题考查了圆锥的计算,平面展开-最短路线问题,勾股定理,弧长公式等知识点的应用,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解题的关键是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.7、C【解析】【分析】可求得扇形弧长,则它等于圆锥底面圆的周长,从而可求得圆的半径,则可知DE 的长,从而可得AD 的长.【详解】解:∵AB =4cm ,AB ⊥BF∴AF 的弧长9042(cm)180设圆的半径为r ,则2πr =2π∴r =1由题意得:DE =2cm∵四边形ABEF为正方形∴AE=AB=4cm∴AD=AE+DE=4+2=6(cm)故选:C【点睛】本题考查了正方形的性质,弧长及圆周长的计算,关键是抓住圆锥的侧面展开图是扇形,其弧长等于底面圆的周长.8、A【解析】【分析】根据几何体的特征直接判断即可.【详解】解:下列几何体分别是:A. 是圆锥;B. 是四棱柱;C. 是圆锥;D. 是三棱柱;故选:A.【点睛】本题考查了立体图形的识别,解题关键是明确锥体和柱体的区别:柱体有两个底面互相平行,锥体只有一个底面.9、D【解析】【分析】根据四棱柱有六个面,即可求解.【详解】解:四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选:D.【点睛】本题考查四棱柱的截面,解题的关键是四棱柱有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.10、C【解析】【分析】由平面图形的折叠及几何体的展开图看是否还原成原几何体,注意带图案的一个面是不是底面,对各选项进行一一分析判定即可.【详解】解:选项A正方体展开正确,四棱锥有一个面与正方体侧面重合,为此四棱锥缺一个面,故不正确;选项B能折叠成原几何体的形式,但涂色的面不是底面,故不正确;选项C能折叠成原几何体的形式,故正确;选项D折叠后下面三角形的面与原几何体中的正方形面重合,四棱锥缺一个面,故不正确.故选C.【点睛】本题主要考查了几何体的展开图,解题时勿忘记正四棱柱的特征及正方体展开图的各种情形,注意做题时可亲自动手操作一下,增强空间想象能力,利用折叠还原法应注意涂色面是否为底面.二、填空题1、2【解析】【分析】根据长方体的表面展开图找相对面的方法,同层隔一面,“Z”字两端是对面求出a,b的值即可解答.【详解】解:由题意得:a=﹣1,b=3,∴a+b=﹣1+3=2,故答案为:2.【点睛】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.2、1##0.52【解析】【分析】根据弧长等于底面圆的周长列方程求解.【详解】解:设圆锥的底面圆的半径是r m ,9022180r ππ⨯=, 解得12r =, 故答案为:12.【点睛】此题考查了弧长公式,弧长与圆锥底面圆周长的关系,熟记弧长与圆锥底面圆周长的关系是解题的关键.3、168【解析】【分析】根据题意可知该六棱柱的侧面展开图为长方形,再结合题意可知这个长方形的长和宽,即可求出其面积.【详解】由题意该六棱柱的底面是正六边形,可知它的侧面展开图,如图,∴该六棱柱的侧面积是2467168cm ⨯⨯=.故答案为:168.【点睛】本题考查由展开图求几何体的侧面积.正确的确定该六棱柱的侧面展开图是长方形是解答本题的关键.4、10【解析】【分析】根据侧面扇形的弧长等于底面圆的周长求出弧长,代入扇形面积公式即可求出圆锥的母线长.【详解】解:由题意得2612l ππ=⨯=,设圆锥的母线长为R ,112602R ππ⨯=, 解得R =10,故答案为:10.【点睛】此题考查了圆锥的侧面扇形的弧长计算公式,扇形面积公式,熟记弧长与底面圆的关系的解题的关键.5、15π【解析】【分析】根据面积公式S r l π=⨯⨯计算即可.【详解】∵3,5==,r l∴圆锥的侧面积3515ππ=⨯⨯=,故答案为:15π.【点睛】本题考查了圆锥的侧面积计算,熟记圆锥侧面积计算公式是解题的关键.三、解答题1、(1)6,5,8;(2)2;(3)这个多面体有12个五边形,20个六边形,解答见解析【解析】【分析】(1)观察几何体,即可完成表格;(2)直接利用欧拉公式求出答案;(3)根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有x块,而黑皮共有边数为5x块,依此借助欧拉公式列方程求解即可.【详解】解:(1)填表如下:(2)V+F-E=2.故答案为:2;(3)设正五边形有x块,则正六边形有(32-x)块,则F=32,56(32)19622x xE x+-==-+,V=E÷3×2=-13x+64,根据欧拉公式得:V+F-E=2,则-13x+64+32-(-12x+96)=2,解得:x=12,32-x=20,所以,这个多面体中正五边形有12块,正六边形有20块.【点睛】本题主要考查了欧拉公式以及一元一次方程的应用,正确应用欧拉公式是解题关键.2、(1)见解析;(2)25【解析】【分析】(1)利用几何体分别从三个不同角度看得出的图形,进而得出答案;(2)计算几何体的表面积,即可求解.【详解】解:(1)如图(2)几何体的表面积(不包括下底面)6242525S=⨯+⨯+=【点睛】此题考查了从不同角度观察几何体,以及求几何体的表面积,解题关键是根据几何体画出几何体的形状图.3、问题探究:见解析;问题解决:(1)12;(2)当n为奇数时,整数边三角形个数为2(1)4n+;当n为偶数时,整数边三角形个数为(2)4n n+;(3)4160;拓展延伸:295【解析】【分析】问题探究:根据(1)(2)(3)(4)的具体推算,总结出相同的规律,按规律填好表格即可;问题解决:(1)由最长边长分别为1,2,3,4,5总结出能反应规律的算式,再根据规律直接写出最长边长为6时的三角形的个数;(2)分两种情况讨论:当n 为奇数,当n 为偶数,再从具体到一般进行推导即可;(3)当最长边长128n =时,n 为偶数,再代入(2)4n n +进行计算,即可得到答案; 拓展延伸:分两种情况讨论:当9是底边的棱长时,由最长边长为9的三角形个数有:2(1)1002544n +==个,当9是侧棱长时,底边三角形的最长边可以为1,2,3,4,5,6,7,8,底边三角形共有:1246912162070+++++++=个,从而可得答案.【详解】解:问题探究:问题解决:(1)最长边长为1的三角形有:11⨯个,最长边长为2的三角形有:12⨯个,最长边长为3的三角形有:22⨯个,最长边长为4的三角形有:23⨯个,最长边长为5的三角形有:33⨯个,所以最长边长为6的三角形有:3412⨯=个,故答案为:12(2)由(1)得:最长边长为1的三角形有:22111112+⎛⎫⨯== ⎪⎝⎭个,最长边长为3的三角形有:22312222+⎛⎫⨯== ⎪⎝⎭个,最长边长为5的三角形有:22513332+⎛⎫⨯== ⎪⎝⎭个,•••所以当n为奇数时,整数边三角形个数为2 (1)4n+;最长边长为2的三角形有:2221222+⨯=⨯个,最长边长为4的三角形有:4422322+⨯=⨯个,最长边长为6的三角形有:6623422+⨯=⨯个,•••所以当n为偶数时,整数边三角形个数为(2)4n n+.(3)当最长边长128n=时,n为偶数,可得此时的三角形个数为:()1281282(2)641304160.42n n++==⨯=故答案为:4160拓展延伸:当9是底边的棱长时,最长边长为9的三角形个数有:2(1)1002544n +==个, 而直三棱柱的高分别为:1,2,3,4,5,6,7,8,9,所以这样的直三棱柱共有:259225⨯=个,当9是侧棱长时,底边三角形的最长边可以为1,2,3,4,5,6,7,8,底边三角形共有:1246912162070+++++++=个,所以这样的直三棱柱共有:70个,综上,满足条件的直三棱柱共有22570295+=个.故答案为:295.【点睛】本题考查的是学生的阅读理解能力,探究规律的方法,并运用规律解决问题,同时考查了立体图形的含义,三角形的三边关系,弄懂题意,掌握探究方法,运用规律的能力都是解题的关键.4、345m π【解析】【分析】根据立体图可知,“粮仓”是由一个圆锥和一个圆柱组成的,分别求出圆锥和圆柱的体积即可得出答案.【详解】 “粮仓”的容积为()22316674445m 322πππ⎛⎫⎛⎫⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查组合体的体积,正确的计算是关键.5、(1)见解析;(2)226cm【解析】【分析】(1)根据正面、左面和上面三个方向看几何体的形状,画图即可;(2)求得每个块正方体的表面积,求和即可.【详解】解:(1)根据正面、左面和上面三个方向看几何体的形状,画图如下:(2)棱长为1cm的小正方体的每一个面的面积为21cm几何体的表面积2=++++++=543253426cm【点睛】此题考查了不同方向看几何体所得的形状图,解题的关键是确定几何体在不同方向上的形状图.。
九年级数学下册第7章空间图形的初步认识章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个几何体的展开图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.四棱锥D.圆锥2、“狂风四起,乌云密布.一霎时,雨点连成了线,……”这句话中蕴含的数学现象是()A.点动成线B.线动成面C.面动成体D.雨下的大3、用一个底面为20cm×20cm的长方体容器(已装满水)向一个长、宽、高分别是16cm,10cm和5cm的长方体空铁盒内倒水,当铁盒装满水时,长方体容器中水的高度下降了()A.1cm B.2cm C.10cm D.20cm4、用平面去截图中的正方体,截面形状不可能是()A.B.C.D.5、如图是某立体图形的展开图,则这个立体图形是()A.三棱柱B.三棱锥C.长方体D.圆柱6、如图,在长方体ABCD-EFGH中,与面ADHE平行的面是()A.面ABFE B.面ABCD C.面BCGF D.面EFGH7、如图,圆柱形桶中装一半的水,将桶水平放置,此时桶中水面的形状是()A .B .C .D .8、如图,在这个直三棱柱中,与棱AB 一定相等的棱是( )A .ADB .DEC .ACD .BE9、下列说法中:①用一个平面去截正方体,截面可能是六边形;②正数和负数统称为有理数;③近似数2.5万精确到十分位;④a -b 和6xy 都是整式;@如果a b =,那么a b c c=;错误的个数有( )A .1个B .2个C .3个D .4个 10、一圆锥高为4cm ,底面半径为3cm ,则该圆锥的侧面积为( )A .29cm πB .212cm πC .215cm πD .216cm π第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥的底面直径是80cm ,母线长90cm .它的侧面展开图的圆心角和圆锥的全面积依次是______.2、下列几何体的展开图中,能围成圆锥的是______.3、若一个棱柱有18条棱,则它有________个面.4、小华为参加元旦晚会演出,准备制作一顶圆锥形彩色纸帽,如果纸帽的侧面展开图是半径为9cm,圆心角为120 的扇形,则此圆锥底面圆的半径为_________cm.5、把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为4cm、宽3cm 的长方形绕它的一条边所在的直线旋转一周后,得到的圆柱体的体积是______.(结果保留的π)三、解答题(5小题,每小题10分,共计50分)1、用平面去截一个几何体,如果截面的形状是圆,你能想象出原来的几何体可能是什么吗?如果截面是三角形呢?2、我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是(单选);A.B.C.D.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列平面图形中,可能是该长方体表面展开图的有(多选)(填序号);(3)下图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,请聪明的你写出该长方体表面展开图的最大外围周长为.3、如图是一个食品包装盒的表面展开图.(1)写出这个包装盒形状的几何名称;(2)求这个包装盒的表面积.4、小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(直接写出答案)(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)据小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是88cm,求这个长方体纸盒的体积.5、如图,在单位长度为1的正方形网格中建立平面直角坐标系,一条圆弧经过网格点A(1,4)、B(﹣3,4)、C(﹣4,3),请在网格图中进行如下操作:(1)用直尺画出该圆弧所在圆的圆心M的位置,则圆心M点的坐标为;(2)若扇形MAC是一个圆锥的侧面展开图,求该圆锥底面半径r.-参考答案-一、单选题1、B【解析】【分析】根据简单几何体展开图的特点判断即可.【详解】观察展开图可知,该几何体由四个面组成,且每个面都为三角形,那么该几何体是三棱锥.故选:B.【点睛】本题考查几何体的识别,了解几种简单几何体展开图的特点是解答本题的关键.2、A【解析】【分析】雨点密集成一条直线,所以是点动成线.【详解】解:雨点密集成一条直线,是点动成线的原理,故选:A【点睛】此题主要考查了点、线、面、体,正确理解点线面体的概念是解题的关键.3、B【解析】【分析】先求出长方体空铁盒的体积,再根据长方体容器倒出水的体积,等于长方体空铁盒的体积,得到倒出水的体积,继而求得长方体容器中水下降的高度.【详解】解:∵316105800V cm =⨯⨯=空铁盒,∴倒出水的体积=3800cm , 则长方体容器中水下降的高度80022020cm ==⨯. 故答案选:B .【点睛】本题是利用长方体的体积公式解决实际问题,分析出长方体容器倒出水的体积,等于长方体空铁盒的体积是本题的关键.4、D【解析】【分析】由题意知,平面无法截出圆,进而可得到答案.【详解】解:用平行于正方体一平面的平面去截,截面形状是正方形,故A正确,不符合要求;用过共顶点的3个面的首尾相接的对角线的平面去截,截面形状是等边三角形,故B正确,不符合要求;用过不平行于正方体的平面去截,截面形状可以是梯形,故C正确,不符合要求;平面无法截出圆,故D错误,符合要求;故选D.【点睛】本题考查了几何体的截面视图.解题的关键在于熟练掌握几何体的视图.5、A【解析】【分析】根据常见几何体的展开图形特征进行判断即可.【详解】解:由展开图中间一行可知,该图形的侧面展开后是长方形,则该立体图形为柱体,∵上下两个面为三角形,刚好与3个侧面对应,∴该立体图形为三棱柱,故选:A.【点睛】本题考查常见几何体的展开图形识别,理解并掌握常见几何体的展开图特征是解题关键.6、C【解析】【分析】长方体中相对的两个平面是平行的,找找对面即可.【详解】∵面ADHE的相对面是面BCGF,∴与面ADHE平行的面是面BCGF,故选C.【点睛】本题考查了长方体的相对面的位置关系,准确找到相对面是解题的关键.7、C【解析】【分析】由题意可得水面的形状是平面,用平行于底面的这个平面截这个圆柱体,所得到的截面的形状即为所求.【详解】解:桶内水面的形状,就是用平行于底面的平面截这个圆柱体所得到的截面的形状,而圆柱体用平行于底面的平面去截可得到长方形的截面.故选:C.【点睛】本题主要考查了截几何体,较好的空间想象能力是解答本题的关键.8、B【解析】【分析】根据直棱柱的侧面的特征,得出四边形ABED 为长方形,根据长方形的性质得出AB =DE .【详解】解:∵直棱柱的侧面是长方形,∴四边形ABED 为长方形,∴AB =DE .故选择B .【点睛】本题考查直棱柱的性质,掌握直棱柱的性质,直棱柱的侧面是长方形是解题关键.9、C【解析】【分析】根据面截体,有理数的定义,近似数的定义,整式的定义,以及等式的性质分析即可【详解】解:①因正方体有6个面,所以用一个平面去截正方体,截面可能是六边形,正确; ②整数和分数统称为有理数,故原说法错误;③近似数2.5万精确到千位,故原说法错误;④a -b 和6xy 都是整式,正确; ⑤如果a b =,当0c 时,ab c c =不成立,故原说法错误;故选C .【点睛】本题考查了面截体,有理数的定义,近似数的定义,整式的定义,以及等式的性质,等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.10、C【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm ,底面半径为3cm ,∴圆锥母线5=,∴圆锥的侧面积=1523152ππ⨯⨯⨯=(cm 2).故选C .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题1、160°,52002cm π【解析】【分析】由题意知,圆锥的展开图扇形的r 半径为90cm ,弧长l 为18022π80π2r π=⨯=.代入扇形弧长公式π180n r l =求解圆心角;代入扇形面积公式2π360n r S =侧求出圆锥侧面积,然后加上底面面积即可求出全面积.【详解】解:圆锥的展开图扇形的r 半径为90cm ,弧长l 为18022π80π2r π=⨯= ∵π180n r l = ∴9080π180n π⨯=解得160n =︒ ∵2π360n r S =侧 ∴22160π903600360S cm π⨯⨯==侧 22803600ππ52002S cm π⎛⎫=+⨯= ⎪⎝⎭全 故答案为:160°,25200cm π.【点睛】本题考查了扇形的圆心角与面积.解题的关键在于运用扇形的弧长与面积公式进行求解.难点在于求出公式中的未知量.2、②④##④②【解析】【分析】根据三棱柱、圆柱及圆锥的展开图特点依次判断即可得.【详解】解:①围成三棱柱;②围成圆锥;③围成圆柱;④围成圆锥;综合可得:围成圆锥的有②④;故答案为:②④.【点睛】题目主要考查基本几何体的展开图,熟练掌握基本几何体的展开图特点是解题关键.3、8【解析】【分析】根据棱柱的形体特征,得出棱柱的棱的条数,面数即可.【详解】解:因为n棱柱有3n条棱,(n+2)个面,所以当一个棱柱有18条棱时,即3n=18,解得:n=6,所以这个棱柱是六棱柱,六棱柱有8个面,故答案为:8.【点睛】本题考查认识立体图形以及解一元一次方程,理解棱柱的形体特征是正确判断的前提.4、3【解析】【分析】根据圆锥底面圆的周长=扇形的弧长求解即可.【详解】解:设该圆锥底面圆的半径为r,根据题意得12092180rππ⨯=,解得3r=,即该圆锥底面圆的半径为3.故答案为:3.【点睛】本题主要考查了圆锥的底面半径,掌握弧长公式是关键.5、36πcm3或48πcm3##48πcm3或36πcm3【解析】【详解】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36π(cm3),绕宽所在的直线旋转一周得到圆柱体积为:π×42×3=48π(cm3),故答案为:36πcm3或者48πcm3.【点睛】本题考查点、线、面、体,掌握“面动成体”和圆柱体体积计算方法是解决问题的关键.三、解答题1、圆柱、圆锥、球;正方体、长方体、棱柱和圆锥【解析】【分析】用一个平面截一个几何体得到的面叫做几何体的截面.根据圆柱、棱柱、圆锥、正方体的截面形状进行判断即可.【详解】解:如果截面是圆,原来的几何体可能是圆柱、圆锥、球或其中某些几何体的组合体。
直棱柱、圆锥的侧面展开图1. 下列图形中,是圆锥侧面展开图的是( )2. 下面的图形中,是三棱柱的侧面展开图的是( )3. 经过圆锥顶点的截面的形状可能是( )4. 如图是某个几何体的展开图,该几何体是( )A.圆柱 B.圆锥 C.四棱柱 D.三棱柱5. 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )6. 如图是一个长方体包装盒,则它的平面展开图是( )7. 如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A.1B.34C.12D.138. 若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是( )A .l =2rB .l =3rC .l =rD .l =329. 用一圆心角为120°,半径为6 cm 的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是( )A .1cmB .2cmC .3cmD .4cm10. 将一个圆心角是90°的扇形围成圆锥的侧面,则该圆锥的侧面积S 侧和底面积S 底的关系为( )A .S 侧=S 底B .S 侧=2S 底C .S 侧=3S 底D .S 侧=4S 底11. 若一个圆锥的底面积是侧面积的13,则该圆锥侧面展开图的圆心角度数是_______度.12. 如果圆锥的母线长为5cm ,底面半径为3cm ,那么圆锥的全面积为____ cm 2. 13. 若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是___________.14. 如图,扇形OED 的半径为3,边长为3的菱形OABC 的顶点A ,C ,B 分别在OD ,OE ,DE ︵上,若把扇形OED 围成一个圆锥,则此圆锥的高为_________.15. 在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为22,则这个圆锥的侧面积是_________.16. 如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于_________.17. 如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_________ cm.18. 如图,如果从半径为5 cm 的圆形纸片上剪去15圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是______cm.19. 已知一个扇形的半径为60厘米,圆心角为150°.用它围成一个圆锥的侧面,那么圆锥的底面半径为_______厘米.20. 如图所示,沿虚线折成正方体,对面数字之和为2的数有 对.21. 如图,已知圆锥的母线AB=6,底面半径r=2,求圆锥的侧面展开图的扇形圆心角.22. 要在如图①所示的一个机器零件(尺寸如图②所示,单位:mm)的表面涂上防锈漆,请你帮助计算一下这个零件的表面积.(参考公式:S圆柱侧=2πrh,SS圆=πr2,其中r为底面圆半径,h为高,l为母线长,π取3.14) 圆锥侧=πrl,23. 如图所示的是一个食品包装盒的平面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积(侧面积与两个底面积之和).24. 如图,在半径为50cm的圆形铁片上剪一块扇形铁片,用它制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,求剪下来的扇形的圆心角的度数.25. 如图,有一直径为2m的圆形纸片,要从中去一个最大的圆心角是90°的扇形ABC.(1)求被剪掉的阴影部分的面积;(2)用所留的扇形纸片围成一个圆锥,该圆锥的底面圆的半径是多少?26. 圆锥形烟囱帽的底面直径是100cm,母线长为60cm,求它的侧面展开图中扇形的圆心角及面积.27. 如图,在⊙O中,AB=43,AC是⊙O的直径,AC⊥BD于点F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.28. 如图,有一圆锥形粮堆,其轴截面示意图是边长为6 m的正△ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路径是多少?答案:1---10 BABDC ACABD11. 12012. 24π13. 15π 14. 35215. 3π16. 15π17. 4218. 319. 2520. 321. 解:设圆心角为n°,则有2πr=180n π·AB ∴4π=180n π×6,∴n=120,扇形的圆心角α=120° 22. 解:36424mm 223. (1)这个多面体是直六棱柱(2)S 侧=6ab S 全面积b 224. 解:母线l =50,底面半径r =40,∴圆心角度数θ=r l·360°=288° 25. 解:(1)14πm 2 (2)14m 26. 解:设其展开图中扇形的半径为R ,弧长为l ,圆心角为α,则R =60cm ,l =100πcm.由弧长公式l =n πR 180,得n =180×100π60π=300,即α=n °=300°,S 扇形=12×60×100π=3000π(cm 2) 27. 解:(1)163π (2)4328. 解:设圆锥的底面半径为r ,母线长为l ,展开后所得扇形的圆心角的度数为n °,则底面圆的周长为2πr ,侧面展开图的弧长为n πl 180,∴2πr =n πl 180.由题意知,轴截面△ABC 为等边三角形,∵AB =BC ,即l =2r =6.∴r=3,∴2π×3=n π×6180,∴n =180,即其侧面展开图为半圆,如图,则△ABP 为直角三角形,BP 为最短线路.在Rt △ABP 中,BP =AB 2+AP 2=62+32=35(m),即小猫所经过的最短路程是35m。
备考2022年中考数学一轮复习(湘教版)专题63 直棱柱、圆锥的侧面展开图一、单选题1.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A. 1B. 2C. 3D. 42.下列四个图形中,不能作为正方体的展开图的是()A. B. C. D.3.用一个半径为面积为的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A. B. C. 2 D. 14.如图,正方形的边长为4,以点A为圆心,为半径画圆弧得到扇形(阴影部分,点E在对角线上).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A. B. 1 C. D.5.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A. B. C. D.6.如图所示,正方体的展开图为()A. B. C. D.二、填空题7.用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为 .8.底面半径为3,母线长为4的圆锥的侧面积为 .(结果保留)9.如图是某圆柱体果罐,它的主视图是边长为的正方形,该果罐侧面积为.10.如图,小梅把一顶底面半径为的圆锥形小丑纸帽沿一条母线剪开并展平,得到一个圆心角为的扇形纸片,那么扇形纸片的半径为.11.已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为.(用含π的代数式表示),圆心角为度.12.一个圆柱形橡皮泥,底面积是.高是.如果用这个橡皮泥的一半,把它捏成高为的圆锥,则这个圆锥的底面积是三、作图题13.如图是一张长方形硬纸片,正好分成15个完全相同的小正方形,现要把它们剪切成3份,使每份有5个小正方形相连,折起来都可以围成一个没有盖的正方体纸盒.请在图中用实线画出一种剪切线.14.将立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,可以得到其表面展开图的平面图形. (1)以下两个方格图中的阴影部分能表示立方体表面展开图的是________(填A或B).(2)在以下方格图中,画一个与(1)中呈现的阴影部分不相似(包括不全等)的立方体表面展开图.(用阴影表示)(3)如图中的实线是立方体纸盒的剪裁线,请将其表面展开图画在右图的方格图中.(用阴影表示)15.一个等腰Rt△ABC如图所示,将它绕着直线AC旋转一周,形成一个几何体.(1)画出这个几何体的三视图.(2)依据图中的测量数据,计算这个几何体的表面积.16.画一个正方体的三种平面展开图,要求展开图是中心对称图形.四、解答题17.如图所示,在Rt△ABC中,∠C=90°,AC=4 ,BC=3 .求以直角边所在直线为轴,把△ABC旋转一周得到的圆锥的侧面积.18.如图①是山东舰徽的构图,采用航母度破浪而出的角度,展现山东舰作为中国首艘国产舰母横空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为的弧,若该弧所在的扇形是高为的圆锥侧面展开图(如图②),则该圆锥的母线长为多少?19.如图,为正方形,,以点为圆心,为半径画弧得到扇形,现将该扇形围成一圆锥的侧面,求该圆锥底面圆的半径.20.如图从一块半径为的圆形铁皮上剪出一个圆心角为的扇形,再把此扇形围成一个圆锥,求圆锥的底面半径.五、综合题21.如图①,已知圆锥的母线长l=16cm,若以顶点O为中心,将此圆锥按图②放置在平面上逆时针滚动3圈后所形成的扇形的圆心角θ=270°.(1).求圆锥的底面半径;(2).求圆锥的表面积.22.如图,一个圆锥的高为3 cm,其侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)∠BAC的度数;(3)圆锥的侧面积(结果保留π).23.一个圆锥的侧面展开图是半径为,圆心角为120°的扇形,求:(1).圆锥的底面半径;(2).圆锥的全面积.24.已知圆锥的侧面积为16πcm2.(1).求圆锥的母线长L(cm)关于底面半径r(cm)之间的函数关系式;(2).写出自变量r的取值范围;(3).当圆锥的侧面展开图是圆心角为90°的扇形时,求圆锥的高.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】D4.【答案】D5.【答案】B6.【答案】A二、填空题7.【答案】8.【答案】12π9.【答案】100π10.【答案】3011.【答案】;12.【答案】18三、作图题13.【答案】解:根据题意画图如下:14.【答案】(1)A(2)解:立方体表面展开图如图所示:(3)解:将其表面展开图画在方格图中如图所示:15.【答案】(1)解:如图所示:;(2)解:这个几何体的表面积为:×2π×2×2 +π×22=(4 +4)π.16.【答案】解:符合条件的正方体的平面展开图如图所示:四、解答题17.【答案】解:∵∠C=90°,AC=4 ,BC=3,∴AB=5若以直角边AC所在直线为轴,则所得圆锥侧面积为π·BC·AB=15π若以直角边BC所在直线为轴,则所得圆锥侧面积为π·AC·AB=20π18.【答案】解:圆锥底面周长侧面展开后扇形的弧长在中,,所以该圆锥的母线长为.19.【答案】解:设底面圆的半径为,根据题意得:,解得:,所以该圆锥的底面圆的半径为1.20.【答案】解:如图从一块半径为的圆形铁皮上剪出一个圆心角为的扇形,再把此扇形围成一个圆锥,求圆锥的底面半径.解:扇形的圆心角为,为圆的直径。
三视图(简答题:一般)1、由6个相同的小立方体搭成的几何体如图所示,请画出从三个方向看到的形状图。
2、作图题:(1)如图1是由一些完全相同的小正方体所搭几何体的俯视图,其中小正方形中的数字表示该位置的小正方体的个数,请在图2的方格纸中分别画出这个几何体的主视图和左视图.(2)如图3,在河m(不计河宽)的两岸有A、B两个村庄,现要在河上修一座跨河的大桥P,为方便交通要使桥到两个村庄的距离之和最小,应如何修建?①请在下图中画出这一点P,(用直尺画图,保留作图痕迹).②用一句话表述这么做的依据.3、如图所示的是一个底面为正方形的物体的三视图,想象出它的几何图形,依据所给数据(单位:dm)计算出它的体积.4、如图是一个由小正方体搭成的几何体,无论从正面,还是从左面都可以看到如图所示的图形,请你判断一下:最多可以用几个小正方体?最少可以用几个小正方体?5、已知下图为一几何体的三视图(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积。
6、用小正方体搭一个几何体,使从前面、上面看到的图形如图所示,这样的几何体需要小正方体最多几块?最少几块?7、画出下列组合体的三视图.8、请分别指出与下图中展开图相对应的立体图形的名称.9、如图所示,是一个由小立方块搭成的几何体的俯视图,小正方体中的数字表示在该位置的小立方块的个数,试画出它的主视图与左视图.10、请画出下列几何体的主视图、左视图、俯视图.11、(1)如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图的名称;视图视图(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)12、已知一个模型的三视图如图所示(单位:m).(1)请描述这个模型的形状;(2)制作这个模型的木料密度为360 kg/m3,则这个模型的质量是多少千克?(3)如果要给这个模型刷油漆,每千克油漆可以漆4 m2,需要油漆多少千克?13、某几何体的三视图如图所示,其中主视图是半径为1的半圆及宽为1的矩形;左视图是半径为1的四分之一圆及宽为1的矩形;俯视图是半径为1的圆(含直径),求此几何体的体积.(提示:球的体积公式为V=πR3,R 为球的半径)14、图①②分别是两个物体的三个视图,图③④是这两个物体的实物图,试比较两者的区别与联系,并找出它们各自对应的实物.15、如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.16、试根据图中的三种视图画出相应的几何体.17、根据下列视图(单位:mm),求该物体的体积.18、下图是一个直三棱柱的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸,计算这个几何体的全面积.19、下图是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.19、由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示,方格中的数字表示该位置的小立方块的个数.(1)请在下图方格纸中分别画出该几何体的主视图和左视图;(2)这个几何体的体积为________个立方单位.21、如图所示为一几何体的三视图.(1)写出这个几何体的名称:____________;(2)在虚线框中画出它的一种表面展开图;(3)若主视图中长方形较长一边的长为5cm,俯视图中三角形的边长为2cm,则这个几何体的侧面积是________cm2.22、有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.23、分别在指定位置画出图中几何体的主视图、左视图、俯视图.24、有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.25、如图所示的是某个几何体的三视图.(1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.26、画出下列几何体的三视图27、已知一个模型的三视图如图所示(单位:m).(1)请描述这个模型的形状;(2)制作这个模型的木料密度为360 kg/m3,则这个模型的质量是多少千克?(3)如果要给这个模型刷油漆,每千克油漆可以漆4 m2,需要油漆多少千克?28、某几何体的三视图如图所示,其中主视图是半径为1的半圆及宽为1的矩形;左视图是半径为1的四分之一圆及宽为1的矩形;俯视图是半径为1的圆(含直径),求此几何体的体积.(提示:球的体积公式为V=πR3,R 为球的半径)29、图①②分别是两个物体的三个视图,图③④是这两个物体的实物图,试比较两者的区别与联系,并找出它们各自对应的实物.30、下面是5个相同的长方体堆成的物体,试改变图中物体的形状,使它的俯视图分别如下图所示.请画出改变后的各种堆放形状.31、六个小立方体搭成的几何体的俯视图如图所示,小正方体中数字表示在该位置的小立方体的个数,请画出这几个几何体的主视图和左视图.32、如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积和体积.33、画出图中的正三棱柱的三视图.34、如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方体的个数。
1.2 展开与折叠(2)练习一、目标导航1.了解棱柱、圆柱、圆锥的侧面展开图,并能根据展开图判断和制作简单的立体模型.2.经历展开与折叠、模型制作等活动,发展学生的空间观念,积累数学活动经验,在操作活动中认识棱柱的某些特性.3.能把正方体表面展开成平面图形.4.按照预定的形状把正方体展开成平面图形.二、基础过关1.下面图形经过折叠不能围成棱柱的是( )2.如图,把左边的图形折叠起来,它会变成( )3.右图能折叠成的长方体是 ( )4.一个几何体的面全部展开后铺在平面上,不可能是( )A.一个三角形B.一个圆C.三个正方形D.一个小圆和半个大圆5.(1)侧面可以展开成一长方形的几何体有;(2)圆锥的侧面展开后是一个;(3)各个面都是长方形的几何体是;(4)棱柱两底面的形状,大小,所有侧棱长都 .6.用一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为 cm.7.如图,一个长方体的底面是边长为1cm的正方形,侧棱长为2cm,请你画出展开图.三、能力提升8.已知圆锥的侧面展开图是一个半圆,求它的侧面积与底面积的比.9.如图,在一个正方体木块的两个相距最远的顶点外逗留着1只苍蝇和1只蜘蛛,蜘蛛沿哪条路径去捉苍蝇最快?请说明理由.10.把如左图所示的正方形按虚线剪开后重组得到的图形是下列一组中的 ( )A B C D11.正方体沿棱剪开,需要剪几条棱?正方体的平面展开图是由六个正方形构成的,一共有多少种呢?动手画一画并与同学们一起归纳总结到下面网格中.四、聚沙成塔12.著名的斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,……其实对于前面的两个“欺骗眼睛”的几何问题,都可以用它来丰富、发展,例如仿照82~5×13,设计出132~8×21……,那么除此之外,你还能有新的设计吗?最后,送给大家一句华罗庚教授的话作为结束语,“数缺形时少直观,形少数时难入微”.。
柱、锥、台体、圆的面积与体积公式(一)圆柱、圆锥、圆台的侧面积将侧面沿母线展开在平面上,则其侧面展开图的面积即为侧面面积。
1、圆柱的侧面展开图——矩形圆柱的侧面积2,,,S cl rl r l c π==圆柱侧其中为底面半径为母线长为底面周长2、圆锥的侧面展开图——扇形圆锥的侧面积1,,,2S cl rl r l c π==圆锥侧其中为底面半径为母线长为底面周长3、圆台的侧面展开图——扇环圆台的侧面积(二)直棱柱、正棱锥、正棱台的侧面积把侧面沿一条侧棱展开在一个平面上,则侧面展开图的面积就是侧面的面积。
1、柱的侧面展开图——矩形直棱柱的侧面积2、锥的侧面展开图——多个共点三角形正棱锥的侧面积3、正棱台的侧面展开图——多个等腰梯形正棱台的侧面积说明:这个公式实际上是柱体、锥体和台体的侧面积公式的统一形式 ①即锥体的侧面积公式;②c'=c 时即柱体的侧面积公式;(三)棱柱和圆柱的体积,V Sh h =柱体其中S 为柱体的底面积,为柱体的高斜棱柱的体积=直截面的面积×侧棱长(四)棱锥和圆锥的体积1,3V Sh h =锥体其中S 为锥体的底面积,为锥体的高(五)棱台和圆台的体积说明:这个公式实际上是柱、锥、台体的体积公式的统一形式:①0S=上时即为锥体的体积公式;②S上=S下时即为柱体的体积公式。
(六)球的表面积和体积公式(一)简单的组合几何体的表面积和体积——割补法的应用割——把不规则的组合几何体分割为若干个规则的几何体;补——把不规则的几何体通过添补一个或若干个几何体构造出一个规则的新几何体,如正四面体可以补成一个正方体,如图:四、考点与典型例题考点一几何体的侧面展开图例1. 有一根长为5cm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端A、D,则铁丝的最短长度为多少厘米?D CBA解:展开后使其成一线段ACcm考点二求几何体的面积例2. 设计一个正四棱锥形的冷水塔顶,高是0.85m,底面的边长是1.5m,制造这种塔顶需要多少平方米铁板?(保留两位有效数字)ESO解:)m (40.313.15.1214S 2=⨯⨯⨯=⇒答:略。
第3章投影与视图
3.2 直棱柱、圆锥的侧面展开图同步练习题
1.直六棱柱的其中一条侧棱长为5cm,那么它的所有侧棱长度之和为cm.
2.直三棱柱的底面边长都是3cm,侧棱长为5cm,则它的侧面展开图的面积为cm2.
3.下面几何图形中,是直棱柱的是( )
4.下列各图中,不是直四棱柱的表面展开图的是( )
5.底面半径为1,母线长为2的圆锥的侧面积等于.
6.若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为.
7.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )
A.2
B.4
C.6
D.8
8.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cm
B.15cm
C.103cm
D.202cm
9.下列说法中正确的是( )
A.直四棱柱是四面体
B.直棱柱的侧棱长度不一定相等
C.直五棱柱有5个侧面
D.正方体是直四棱柱,长方体不是直四棱柱
10.下列结论中,一定正确的个数有( )
①直四棱柱是四面体;②直棱柱的侧棱长度不一定相等;③直五棱柱有5个侧面;④正方体是直四棱柱
A.1个
B.2个
C.3个
D.4
11.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )
A.12cm
B.6cm
C.32cm
D.23cm
12.下列几何体中,属于直棱柱的是(填序号).
13.一圆锥的底面半径为1cm,母线长2cm,则该圆锥的侧面积为cm
14.已知一个底面为正方形的直棱柱,高为10cm,体积为250cm3,则这个直棱柱的侧面展开图的面积为
cm2.
15.如图所示是一纸杯,它的母线AC和EF延长后,形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直
径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用π表示).
16.如图,已知圆锥底面半径为10cm,高为1015cm.
(1)求圆锥的表面积;
(2)若一只蚂蚁从底面上一点A出发,绕圆锥一周回到SA上一点M处,且SM=3AM.求它所走的最短距离.
17.如图是一个直四棱柱的表面展开图,根据图中尺寸求这个四棱柱的表面积.
答案: 1. 30 2. 45 3. B 4. C 5. 2π 6. 16 7. D 8. D 9. C 10. B 11. C 12. ③⑤ 13. 2π 14. 200
15. 解:由题意可知,设∠AOB =n°,AO =R ,则
CO =R -8,由弧长公式得
n πR
180
=6π,
n π R -8
180
=4π,
∴⎩⎪⎨⎪⎧
6×180=nR 4×180=nR -8n
,解得:n =45,R =24,故扇形OAB 的圆心角是45度.∵R
=24,R -8=16,∴S 扇形OCD =1
2
×4π×16=32π(cm 2),S
扇形OAB =1
2
×6π×24=
72π(cm 2),纸杯侧面积=S 扇形OAB -S 扇形OCD =72π-32π=40π(cm 2),纸杯底面积=π·22=4π(cm 2),纸杯表面积=40π+4π=44π(cm 2).
16. 解:这是一个长、宽、高为18、7、30的一个直四棱柱,∴它的表面积为:(30×18+30×7+18×7)×2=1752.。