PLC控制三相异步电动机
- 格式:doc
- 大小:197.00 KB
- 文档页数:14
PLC在三相异步电动机控制中的应用摘要可编程控制器可靠性高、操作简单,在电机、在电动机精确控制方面起到重要作用。
传统的三相异步电动机一般用继电器-接触器系统来完成起停的控制方式。
本文首选对传统起停控制电路做了改进设计,其次详细说明了用PLC 对三相异步电动机进行电气控制系统改造的方法,从而使控制系统操作方便、更安全可靠,响应迅速、成本降低、减少了维护、维修工作量,提高系统整体的工作性能。
关键词PLC;梯形图;控制系统0 引言可编程序控制器简称PLC(Programmable Logic Controller),它是基于微处理器的通用工业控制装置。
PLC能执行各种形式和各种级别的复杂控制任务,它的应用面广、功能强大、使用方便,是当代工业自动化的主要支柱之一。
PLC 对用户友好,不熟悉计算机但是熟悉继电器系统的人能很快学会用PLC来编程和操作。
PLC已经广泛地应用在各种机械设备和生产过程的自动控制系统中,在其他领域的应用也得到了迅速的发展[1]。
本文采用德国西门子公司生产的S7-200小型PLC为研究对象,设计将三相异步电动机用PLC来控制,通过PLC 控制与传统的电气控制相对比,最终得出PLC控制系统具其可靠性高、易于操作,反应快等优点。
1 继电器-接触器控制系统本文以三相异步电动机的起动和停止为研究对象,采取减压起动,并在停车的控制环节中加以改进,使电动机能够串电阻反接制动。
所谓反接制动,是将电动机的三根进线中的两根对调,使其定子旋转磁场反方向旋转,在转子上同时产生反方向的电磁转矩,形成制动转矩,在此作用下电动机的速度迅速下降到零。
主电路中串入限流电阻R,其作用是当电动机起动时作为减压起动,并且在制动停车时由于反接制动电流比直接起动时的起动电流还要大,就必须串入电阻R 来限制电流保护电路。
继电器接触器控制系统工作原理如图1所示。
该控制回路中中间继电器为短接电阻R实现升压控制做准备,KM1实现减压起动控制,KM2实现制动控制,KM3实现升压控制。
三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。
利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。
本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。
1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。
如图1 所示。
2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。
一般说来,在断路器和变频器之间,应该有接触器。
a. 可通过按钮开关方便地控制变频器的通电与断电。
b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。
另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。
2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。
a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。
因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。
b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。
另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。
通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。
三相异步电动机的plc步骤
PLC在控制三相异步电动机时的步骤如下:
输入继电器0001动合触点关闭,输出继电器0500线圈闭合并且完成自锁,接触器KM1主触点完成闭合,三相异步电动机M开始正向工作。
输入继电器0000关闭,输出继电器0500线圈断开电源,KM1主触点断电,三相异步电动机M断开电源停止正向工作。
输入继电器0002动合接通,0501线圈闭合并且完成电路自锁,KM2主触接通闭合,三相异步电动机M开始接通电源并且方向工作。
以上步骤仅供参考,在实际操作中请根据实际情况进行调整。
PLC控制三相异步电动机正反转设计毕业设计论文摘要:本文基于PLC控制技术,设计了一种三相异步电动机的正反转控制系统。
通过分析三相异步电动机的工作原理和控制方式,确定了系统的控制策略和硬件配置。
通过对PLC编程,实现了对电动机的正反转控制和过载保护功能。
实验结果表明,该系统可稳定、可靠地实现三相异步电动机的正反转控制,具有较好的应用前景。
关键词:PLC;三相异步电动机;正反转控制;过载保护1.引言三相异步电动机广泛应用于工业生产中,具有体积小、功率大、效率高等特点。
在实际应用过程中,正反转控制和过载保护是三相异步电动机控制系统中的重要功能,对于保证电机的正常运行和延长电机的使用寿命具有重要作用。
本文基于PLC技术,设计了一种三相异步电动机的正反转控制系统,旨在实现电动机的正反转控制和过载保护功能。
2.三相异步电动机的工作原理和控制方式三相异步电动机由定子和转子组成,在工作过程中,通过三相交流电源提供的电磁场与定子的电磁场产生转矩,从而驱动电动机的转子旋转。
三相异步电动机的控制方式主要包括定时控制和矢量控制两种。
定时控制是根据电动机运行的需要,通过调节电源的相位和频率实现对电动机的控制;矢量控制是基于电动机的数学模型和转子位置的反馈信息,通过控制电源的电压和频率,实现对电动机的精确调控。
3.设计方案基于PLC控制技术,本文设计了一种三相异步电动机的正反转控制系统。
系统由PLC控制器、三相交流电源、电动机和传感器组成。
通过PLC编程,实现了对电动机的正反转控制和过载保护功能。
具体的设计方案如下:3.1硬件配置系统的硬件配置包括PLC控制器、三相交流电源、电动机和传感器。
PLC控制器是系统的核心部件,负责电动机控制和过载保护的实现。
三相交流电源提供电动机的驱动能源。
电动机是执行器,根据PLC的控制信号,实现正反转和停止操作。
传感器用于检测电动机的工作状态和转速。
3.2PLC编程通过PLC编程,实现了对电动机的正反转控制和过载保护功能。
本文下载地址:搜索PLC实验二PLC 控制三相异步电动机正反转实验一、实验目的1.学习和掌握PLC的实际操作和使用方法;2.学习和掌握PLC控制三相异步电动机正反转的硬件电路设计方法;3.学习和掌握PLC控制三相异步电动机正反转的程序设计方法;4.学习和掌握PLC控制系统的现场接线与软硬件调试方法。
二、实验原理三相异步电动机定子三相绕组接入三相交流电,产生旋转磁场,旋转磁场切割转子绕组产生感应电流和电磁力,在感应电流和电磁力的共同作用下,转子随着旋转磁场的旋转方向转动。
因此转子的旋转方向是通过改变定子旋转磁场旋转的方向来实现的,而旋转磁场的旋转方向只需改变三相定子绕组任意两相的电源相序就可实现。
如图2.1所示为PLC控制异步电动机正反转的实验原理电路。
图2.1 PLC控制三相异步电动机正反转实验原理图左边部分为三相异步电动机正反转控制的主回路。
由图 2.1可知:如果KM5的主触头闭合时电动机正转,那么KM6 主触头闭合时电动机则反转,但KM5 和KM6 的主向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2;继电器KA4、KA5 分别接于PLC 的输出口Y33、Y34,KA4、KA5 的触头又分别控制接触器KM5和KM6的线圈。
实验中所使用的PLC为三菱FX2N系列晶体管输出型的,由于晶体管输出型的输出电流比较小,不能直接驱动接触器的线圈,因此在电路中用继电器KA4、KA5 做中间转换电路。
在KM5和KM6线圈回路中互串常闭触头进行硬件互锁,保证软件错误后不致于主回路短路引起断路器自动断开。
电路基本工作原理为:合上QF1、QF5,给电路供电。
当按下正向按钮,控制程序要使Y33为1,继电器KA4线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序要使Y34 为1,继电器KA5 线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。
目录一、可行性报告 (2)1、项目目的 (2)2、项目背景及发展概况 (2)3、可行性 (3)二、设计说明 (3)1、器材 (3)2、整体思路 (4)3、系统流程图 (4)4、实验步骤 (5)三、三相异步电机的正反转PLC控制 (5)3.1 PLC定时器控制电动机正反转电路的主接线图 (7)3. 2 PLC定时器控制三相异步电动机正反转的梯形图 (8)3.3定时器控制电动机正反转的指令表程序 (9)3.4 PLC的I/O分配 (10)3.5 实体框形图 (11)结论 (12)电机控制一、可行性报告1、项目目的1)、了解机床电气中三相电机的正反转控制和星三角启动控制。
2)、掌握电动机的常规控制电路设计。
3)、了解电动机电路的实际接线。
4)、掌握GE FANUC 3I 系统的电动机启动程序编写。
2、项目背景及发展概况三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它,要合理的控制它。
这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化设备提供了非常可靠的控制应用,它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业,企业对自动化的需要。
PLC 控制三相异步电动机正反转实验PLC 控制三相异步电动机正反转实验本文下载地址:搜索PLC实验二PLC控制三相异步电动机正反转实验一、实验目的1.学习和掌握PLC的实际操作和使用方法;2.学习和掌握PLC控制三相异步电动机正反转的硬件电路设计方法;3.学习和掌握PLC控制三相异步电动机正反转的程序设计方法;4.学习和掌握PLC控制系统的现场接线与软硬件调试方法。
二、实验原理三相异步电动机定子三相绕组接入三相交流电,产生旋转磁场,旋转磁场切割转子绕组产生感应电流和电磁力,在感应电流和电磁力的共同作用下,转子随着旋转磁场的旋转方向转动。
因此转子的旋转方向是通过改变定子旋转磁场旋转的方向来实现的,而旋转磁场的旋转方向只需改变三相定子绕组任意两相的电源相序就可实现。
如图2.1所示为PLC控制异步电动机正反转的实验原理电路。
图2.1PLC控制三相异步电动机正反转实验原理图左边部分为三相异步电动机正反转控制的主回路。
由图2.1可知:如果KM5的主触头闭合时电动机正转,那么KM6主触头闭合时电动机则反转,但KM5和KM6的主触头不能同时闭合,否则电源短路。
右边部分为采用PLC对三相异步电动机进行正反转控制的控制回路。
由图可知:正向按钮接PLC的输入口某0,反向按钮接PLC的输入口某1,停止按钮接PLC的输入口某2;继电器KA4、KA5分别接于PLC的输出口Y33、Y34,KA4、KA5的触头又分别控制接触器KM5和KM6的线圈。
实验中所使用的PLC为三菱F某2N系列晶体管输出型的,由于晶体管输出型的输出电流比较小,不能直接驱动接触器的线圈,因此在电路中用继电器KA4、KA5做中间转换电路。
在KM5和KM6线圈回路中互串常闭触头进行硬件互锁,保证软件错误后不致于主回路短路引起断路器自动断开。
电路基本工作原理为:合上QF1、QF5,给电路供电。
当按下正向按钮,控制程序要使Y33为1,继电器KA4线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序要使Y34为1,继电器KA5线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。
目录引言 (1)第一章三相感应电动机系统总体设计方案 (2)1.1三相感应电动机的基本结构 (2)1.1.1 三相感应电动机定子 (2)1.1.2三相感应电动机转子 (3)1.2三相感应电动机的工作原理 (3)1.3三相异步电动机的正反转工作过程 (3)1.3.1 三相感应电动机的原理 (3)1.3.2 三相感应电动机的制动 (4)1.4三相感应电动机系统变量定义及分配表 (4)1.5三相感应电动机系统接线图 (5)1.6三相感应电动机系统流程图 (6)1.7三相感应电动机时序图设计 (7)第二章 PLC基础的知识 (10)2.1关于PLC的定义 (10)2.2PLC与继电器控制的区别 (10)2.3PLC的工作原理 (10)第三章三相感应电动机的PLC控制 (12)3.1三相感应电机的正反转PLC控制 (12)3.2PLC定时器控制电动机正反转互锁的设计 (13)3.2.1 PLC定时器控制电动机正反转电路的主接线图 (13)3.2.2 PLC定时器控制三相感电动机正反转的梯形图 (13)3.3三相感应电动机使用PLC控制优点 (13)第四章系统调试及结果分析 (15)结论 (16)参考文献 (17)引言三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。
要合理的控制它。
我研究的这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
三相异步电动机正反转控制实验一、实验目的:1.学习和掌握PLC的实际操作和使用方法;2.学习和掌握利用PLC控制三相异步电动机正反转的方法。
二、实验内容及步骤:本实验采用PLC对三相异步电动机进行正反转控制,其主电路和控制电路接线图分别为图2-1和图2-2 。
图中:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2,KM5为正向接触器,KM6反向接触器。
继电器KA5、KA6分别接于PLC的输出口Y33、Y34。
其基本工作原理为:合上QF1、QF5,PLC运行。
当按下正向按钮,控制程序使Y33有效,继电器KA5线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序使Y34有效,继电器KA6线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。
实验步骤:1.在断电的情况下,学生按图2-1和图2-2接线(为安全起见,控制电路的PLC外围继电器KA5、KA6以及接触器KM5、KM6输出线路已接好);2.在老师检查合格后,接通断路器QF1、QF5 ;3.运行PC机上的工具软件FX-WIN,输入PLC梯形图;4.对梯形图进行编辑﹑指令代码转换等操作并将程序传至PLC;5.运行PLC,操作控制面板上的相应开关及按钮,实现电动机的正反转控制。
在PC 机上对运行状况进行监控,同时观察继电器KA5、KA6和接触器KM5 、KM6的动作及变化情况,调试并修改程序直至正确;6。
记录运行结果。
图2-1 主控电路图2-2 控制电路接线图三.实验说明及注意事项1.本实验中,继电器KA5、KA6的线圈控制电压为24V DC,其触点5A 220V AC(或5A 30V DC);接触器KM5、KM6的线圈控制电压为220V AC,其主触点25A 380V AC。
2.三相异步电动机的正、反转控制是通过正、反向接触器KM5、KM6改变定子绕组的相序来实现的。
用PLC控制三相异步电动机正、反转用PLC控制三相异步电动机正、反转:三相交流异步电动机是生产设备常用的动力元件,PLC控制电动机的转动,是生产设备自动控制的最常用,也是基本的控制。
PLC控制电动机,用PLC控制负载,编程是主要的任务,接线驱动负载是次要的任务,不要本末倒置,将接线当成首要任务,编程当成次要任务。
用PLC控制三相异步电动机正、反转设计步骤控制案例:给正转信号,电动机正转运行;给反转信号,电动机反转运行;给停止信号,无论电动机正转还是反转,都要停止运行。
即电动机的控制能实现正反停。
1.电动机正反转的主电路中,交流接触器KM1和KM2的主触点不能同时闭合,并且必须保证,一个接触器的主触点断开以后,另一个接触器的主触点才能闭合。
2.为了做到上面一点,梯形图中输出继电器Y0、Y1的线圈就不能同时带电,这样在梯形图中就要加程序互锁。
即在输出Y0线圈的一路中,加元件Y1的常闭触点;在输出Y1线圈的一路中,加元件Y0的常闭触点。
当Y0的线圈带电时,Y1的线圈因Y¬0的常闭触点断开而不能得电;同样的道理,当Y1的线圈带电时,Y0的线圈因Y¬1的常闭触点断开而不能得电。
3.为了保证电动机能从正转直接切换到反转,梯形图中必须加类似按钮机械互锁的程序互锁。
即在输出Y0线圈的一路中,加反转控制信号X1的常闭触点;在输出Y1线圈的一路中,加正转控制信号X0的常闭触点。
这样能做到电动机正反转的直接切换。
当电动机加正转控制信号时,输入继电器X0的常开触点闭合,常闭触点断开。
常闭触点断开反转输出Y1的线圈,交流接触器KM2的线圈失电,电动机停止反转,同时Y1的常闭触点闭合,正转输出继电器Y0的线圈带电,交流接触器KM1的线圈得电,电动机正转。
当电动机加反转控制信号时,输入继电器X1的常开触点闭合,常闭触点断开。
常闭触点断开正转输出Y0的线圈,交流接触器KM1的线圈失电,电动机停止正转,同时Y 0的常闭触点闭合,反转输出继电器Y1的线圈带电,交流接触器KM2的线圈得电,电动机正转。
用PLC实现三相异步电动机的正反转控制电路教学设计方案嘿,大家好!今天我来给大家分享一个实用的教学设计方案——用PLC实现三相异步电动机的正反转控制电路。
作为一名有着十年方案写作经验的大师,我会尽量让这个方案简单易懂,跟着我一起来探索吧!一、教学目标1.让学生掌握PLC的基本原理和编程方法。
2.培养学生运用PLC实现电动机正反转控制电路的能力。
3.提高学生的实际动手操作能力和创新思维。
二、教学内容1.PLC的基本原理和编程方法。
2.三相异步电动机的正反转控制电路原理。
3.PLC与电动机控制电路的连接方法。
三、教学重点与难点1.教学重点:PLC的编程方法和电动机正反转控制电路的设计。
2.教学难点:PLC与电动机控制电路的连接及编程技巧。
四、教学步骤1.理论讲解(1)介绍PLC的基本原理和编程方法。
PLC(可编程逻辑控制器)是一种以微处理器为核心,采用可编程存储器存储用户程序,实现各种逻辑、定时、计数、运算等功能的控制器。
它广泛应用于工业控制领域,具有可靠性高、编程简单、易于扩展等优点。
(2)讲解三相异步电动机的正反转控制电路原理。
三相异步电动机的正反转控制电路是指通过改变电动机的电源相序,实现电动机的正反转运行。
通常采用接触器来实现电源相序的改变,从而实现电动机的正反转控制。
2.实践操作(1)准备实验设备①PLC控制器②三相异步电动机③接触器④继电器⑤电源(2)连接PLC与电动机控制电路①将PLC的输入端与电动机控制电路的输入端相连。
②将PLC的输出端与接触器的线圈相连。
③将接触器的触点与电动机的电源相连。
(3)编写PLC程序①分析电动机正反转控制电路的输入信号和输出信号。
②根据输入信号和输出信号,编写PLC程序。
//正转IF(按钮1按下)THEN输出1=1;//接触器1得电,电动机正转输出2=0;//接触器2失电,电动机不反转ENDIF//反转IF(按钮2按下)THEN输出1=0;//接触器1失电,电动机不反转输出2=1;//接触器2得电,电动机反转ENDIF(4)调试与优化(2)拓展学生的学习思路,引导学生思考如何将PLC应用于其他工业控制场景。
PLC控制三相异步电动机**:**班级:10级农电学号:**********摘要本论文文设计了2个三相异步电动机的PLC控制电路,分别是三相异步电动机的正反转控制和两台电动机顺序起动联锁控制,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强等优点。
非常实用。
关键词PLC; 三相异步电动机; 继电器目录摘要 (I)绪论 (1)1 三相异步电动机基础 (2)1.1 三相异步电动机的结构 (2)1.2 三相异步电动机的工作原理 (2)1.3 三相异步电动机的工作过程 (3)2 PLC基础 (6)2.1 PLC的定义 (6)2.2 PLC与继电器控制的区别 (6)2.3 PLC的工作原理 (6)2.4 PLC的应用 (6)3 三相异步电动机的PLC控制 (8)3.1 三相异步电动机的正反转控制 (8)3.2 两台电动机顺序起动联锁控制 (9)3.3三相异步电动机使用PLC控制优点 (10)结论 (12)绪论三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。
要合理的控制它。
我研究的这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化设备提供了非常可靠的控制应用,它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业,企业对自动化的需要。
进入20世纪80年代,由于计算机技术和微电子技术的迅猛发展,极大地推动了PLC的发展,使得PLC的功能日益增强,目前,在先进国家中,PLC已成为工业控制的标准设备,应用面几乎覆盖了所有工业,企业。
由于PLC综合了计算机和自动化技术,所以它发展日新月异,大大超过其出现时的技术水平,它不但可以很容易的完成逻辑,顺序,定时,计数,数字运算,数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动化控制。
特别是超大规模集成电路的迅速发展以及信息,网络时代的到来,扩展了PLC的功能,使它具有很强的联网通讯能力,从而更广泛的运用于众多行业。
三相异步电动机基础1.1 三相异步电动机的基本结构三相异步电动机由定子和旋转的转子两个重要部分组成,定子和转子之间由气隙分开。
图1-1为三相异步电动机结构示意图。
(a) 外形图; (b) 内部结构图图1-1 三相异步电动机结构示意图1.1.1 定子定子主要由定子铁心、定子绕组、机座三部分组成。
机座的主要作用是用来支撑电机各部件,因此应有足够的机械强度和刚度,通常用铸铁制成。
为了减少涡流和磁滞损耗,定子铁心用0.5 mm厚涂有绝缘漆的硅钢片叠成,铁心内圆周上有许多均匀分布的槽,槽内嵌放定子绕组,如图1-2所示。
图1-2 三相异步电动机的定子1.1.2 转子转子由转子铁心、转子绕组、转轴和风扇等组成。
转子铁心也用0.5 mm厚硅钢片冲成转子冲片叠成圆柱形,压装在转轴上。
其外围表面冲有凹槽,用以安放转子绕组。
按转子绕组形式不同,可分为绕线式和鼠笼式两种。
1.2 三相异步电动机的工作原理图1-3为三相异步电动机工作原理示意图。
图中用一对磁极来进行分析。
当向三相定子绕组中通过入对称的三相交流电时,就产生了一个以同步转速n1沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。
由于旋转磁场以n1转速旋转,转子导体开始时是静止的,故转子导体将切割定子旋转磁场而产生感应电动势。
由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。
转子的载流导体在定子磁场中受到电磁力的作用。
电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转图1-3 三相异步电动机工作原理图1.3 三相异步电动机的工作过程1.3.1 三相异步电动机的起动三相异步电动机接通电源,使电机的转子从静止状态到转子以一定速度稳定运行的过程称为电动机的起动过程。
起动方法有直接起动和降压起动两种。
1.直接起动直接起动又称为全压起动,起动时,将电机的额定电压通过刀开关或接触器直接接到电动机的定子绕组上进行起动。
直接起动最简单,不需附加的起动设备,起动时间短。
只要电网容量允许,应尽量采用直接起动。
但这种起动方法起动电流大,一般只允许小功率的三相异步电动机进行直接起动;对大功率的三相异步电动机,应采取降压起动,以限制起动电流。
2.降压起动通过起动设备将电机的额定电压降低后加到电动机的定子绕组上,以限制电机的起动电流,待电机的转速上升到稳定值时,再使定子绕组承受全压,从而使电机在额定电压下稳定运行,这种起动方法称为降压起动。
起动转矩与电源电压的平方成正比,所以当定子端电压下降时,起动转矩大大减小。
这说明降压起动适用于起动转矩要求不高的场合,如果电机必须采用降压起动,则应轻载或空载起动。
常用的降压起动方法有下面三种。
(1) Y-△降压起动这种起动方法适用于电动机正常运行时接法为三角形的三相异步电动机。
电机起动时,定子绕组接成星形,起动完毕后,电动机切换为三角形。
图1-4 Y-△降压起动控制线路图1-4是一个Y-△降压起动控制线路,起动时,电源开关QS闭合,控制电路先使得KM2闭合,电机星形起动,定子绕组由于采用了星形结构,其每相绕阻上承受的电压比正常接法时下降了。
当电机转速上升到稳定值时,控制电路再控制KM1闭合,于是定子绕组换成三角形接法,电机开始稳定运行。
定子绕组每相阻抗为|Z|,电源电压为U1,则采用△连接直接起动时的线电流为采用Y连接降压起动时,每相绕组的线电流为则(1-5)由式(1-5)可以看出,采用Y-△降压起动时,起动电流比直接起动时下降了1/3。
电磁转矩与电源电压的平方成正比,由于电源电压下降了,所以起动转矩也减小了1/3。
以上分析表明,这种起动方法确实使电动机的起动电流减小了,但起动转矩也下降了,因此,这种起动方法是以牺牲起动转矩来减小起动电流的,只适用于允许轻载或空载起动的场合。
(2)自耦变压器降压起动这种起动方法是指起动时,定子绕组接三相自耦变压器的低压输出端,起动完毕后,切掉自耦变压器并将定子绕组直接接上三相交流电源,使电动机在额定电压下稳定运行。
1.3.2 三相异步电动机的制动三相异步电动机脱离电源之后,由于惯性,电动机要经过一定的时间后才会慢慢停下来, 但有些生产机械要求能迅速而准确地停车,那么就要求对电动机进行制动控制。
电动机的制动方法可以分为两大类:机械制动和电气制动。
机械制动一般利用电磁抱闸的方法来实现;电气制动一般有能耗制动、反接制动和回馈发电制动三种方法。
1.能耗制动正常运行时,将QS闭合,电动机接三相交流电源起动运行。
制动时,将QS 断开,切断交流电源的连接,并将直流电源引入电机的V、W两相,在电机内部形成固定的磁场。
电动机由于惯性仍然顺时针旋转,则转子绕阻作切割磁力线的运动,依据右手螺旋法则,转子绕组中将产生感应电流。
又根据左手定则可以判断,电动机的转子将受到一个与其运动方向相反的电磁力的作用,由于该力矩与运动方向相反,称为制动力矩,该力矩使得电动机很快停转。
制动过程中,电动机的动能全部转化成电能消耗在转子回路中,会引起电机发热,所以一般需要在制动回路串联一个大电阻,以减小制动电流。
这种制动方法的特点是制动平稳,冲击小,耗能小,但需要直流电源,且制动时间较长,一般多用于起重提升设备及机床等生产机械中。
2.反接制动反接制动是指制动时,改变定子绕组任意两相的相序,使得电动机的旋转磁场换向,反向磁场与原来惯性旋转的转子之间相互作用,产生一个与转子转向相反的电磁转矩,迫使电动机的转速迅速下降,当转速接近零时,切断电机的电源,如图1-6所示。
显然反接制动比能耗制动所用的时间要短。
(a) 接线图; (b) 原理图图1-6反接制动示意图正常运行时,接通KM1,电动机加顺序电源U—V—W起动运行。
需要制动时,接通KM2,从图可以看出,电动机的定子绕组接逆序电源V—U—W,该电源产生一个反向的旋转磁场,由于惯性,电动机仍然顺时针旋转,这时转子感应电流的方向按右手螺旋法则可以判断,再根据左手定则判断转子的受力F。
显然,转子会受到一个与其运动方向相反,而与新旋转磁场方向相同的制动力矩,使得电机的转速迅速降低。
当转速接近零时,应切断反接电源,否则,电动机会反方向起动。
反接制动的优点是制动时间短,操作简单,但反接制动时,由于形成了反向磁场,所以使得转子的相对转速远大于同步转速,转差率大大增大,转子绕组中的感应电流很大,能耗也较大。
为限制电流,一般在制动回路中串入大电阻。
另外,反接制动时,制动转矩较大,会对生产机械造成一定的机械冲击,影响加工精度,通常用于一些频繁正反转且功率小于10 kW的小型生产机械中。
3.回馈发电制动回馈发电制动是指电动机转向不变的情况下,由于某种原因,使得电动机的转速大于同步转速,比如在起重机械下放重物、电动机车下坡时,都会出现这种情况,这时重物拖动转子,转速大于同步转速,转子相对于旋转磁场改变运动方向,转子感应电动势及转子电流也反向,于是转子受到制动力矩,使得重物匀速下降。
此过程中电动机将势能转换为电能回馈给电网,所以称为回馈发电制动。
2 PLC基础2.1 PLC的定义可编程逻辑控制器,一种数字运算操作的电子系统,专为在工业环境应用而设计的。
它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。
2.2 PLC与继电器控制的区别1.控制方式继电器的控制是采用硬件接线实现的,是利用继电器机械触点的串联或并联极延时继电器的滞后动作等组合形成控制逻辑,只能完成既定的逻辑控制。
PLC采用存储逻辑,其控制逻辑是以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可,称软接线。
2.控制速度继电器控制逻辑是依靠触点的机械动作实现控制,工作频率低,毫秒级,机械触点有抖动现象。
PLC是由程序指令控制半导体电路来实现控制,速度快,微秒级,严格同步,无抖动。
3.延时控制继电器控制系统是靠时间继电器的滞后动作实现延时控制,而时间继电器定时精度不高,受环境影响大,调整时间困难。