模糊控制仿真
- 格式:doc
- 大小:320.50 KB
- 文档页数:6
模糊控制及其MATLAB仿真教学设计一、模糊控制简介1.1 模糊控制的概念模糊控制是一种基于模糊逻辑思想的控制方法。
与传统的精确控制方法不同,它允许在处理不确定性和模糊性时采用一种定性的方法。
在模糊控制中,运用了模糊集合论的理论和方法,能很好地解决那些传统方法难以解决的非线性、时变、模糊等问题。
1.2 模糊控制的原理模糊控制的基本原理是将问题抽象为一些模糊集合,然后通过模糊推理和模糊逻辑运算实现模糊控制。
模糊控制的输入是经过模糊化后的模糊变量,输出是某个或某些经过去模糊化的控制变量。
1.3 模糊控制的优点模糊控制在面对复杂、非线性的控制问题时往往比传统控制方法更为有效。
其主要优点有: - 基于定性的知识 - 可以有效处理模糊、不确定性问题 - 快速响应和适应性强二、MATLAB仿真教学设计2.1 MATLAB仿真工具MATLAB是一种强大、多功能的科学计算软件,可以在其中进行模拟仿真实验。
在仿真实验中,MATLAB提供了多种工具来方便用户模拟不同的控制算法。
其中,使用Simulink可以创建模型,在其中加入不同的模块来构建模拟仿真实验。
2.2 模糊控制仿真实验可以使用Simulink在MATLAB中创建一个模糊控制的仿真实验。
具体步骤如下:1. 打开MATLAB,点击Simulink新建一个模型; 2. 在Simulink中选择Fuzzy Logic Toolbox,并将Fuzzy Logic Controller加入模型; 3. 加入Fuzzy Logic Controller后,可以进入FIS Editor编辑器,设置输入和输出变量,构建模糊控制规则; 4. 设置好规则之后,添加输入信号源和输出信号源; 5. 进行仿真和调试。
2.3 仿真教学设计为了更好地进行模糊控制的MATLAB仿真教学,可以采用以下设计方案: - 设计实验1:基础概念实验,通过模拟一个简单的控制过程,让学生了解模糊控制基本概念和原理。
题目:模糊控制系统建模与仿真分析一、实验目的1、熟悉Matlab软件的基本操作方法2、掌握用matlab/Fuzzy logic toolbox进行模糊控制系统建模仿真的基本方法。
3、熟悉模糊控制系统设计的基本方法二、实验学时:4学时三、实验原理MATLAB R2008提供了建立模糊逻辑推理系统的仿真工具箱——Fuzzy Logic Toolbox,版本为Fuzzy Logic Toolbox2.2.7。
建立模糊逻辑推理系统有两种基本方法,第一种方法是借助模糊推理系统编辑器(Fuzzy Logic Editor)的图形界面工具建立模糊逻辑推理系统,第二种方法是利用命令建立模糊逻辑推理系统。
第一种方法使用简单、建模方便,适合于初学模糊逻辑控制系统建模与仿真的读者。
第二种方法稍难一些,但对深入了解模糊逻辑推理系统的MATLAB仿真知识大有帮助。
下面分别讲述两种方法,读者可自行选择阅读。
1模糊逻辑工具箱图形界面工具模糊逻辑工具箱图形工具是为了方便用户建立模糊推理系统而推出的图形化设计工具,在这里可快速方便的建立模糊推理系统并观测模糊规则、推理输出等。
模糊逻辑推理图形工具主要包括:基本模糊推理系统编辑器(fuzzy)、隶属函数编辑器(mfedit)、模糊规则编辑器(ruleedit)、模糊规则观测器(ruleview)、模糊推理输入输出曲面观测器(surfview)。
下面分别介绍它们的基本使用方法。
1.1基本模糊推理系统编辑器在Command Windows输入“fuzzy”命令,弹出如下图 1所示的“FIS Editor”(模糊推理系统编辑器)窗口。
在这里可以对包括输入、输出模糊语言变量的名称、模糊推理系统的类型和名称、模糊逻辑推理的各种运算(与、或、蕴含、规则合成、解模糊化)等高层属性进行编辑。
同时,还可以打开模糊推理系统的隶属函数编辑器(mfedit)、模糊规则编辑器(ruleedit)、模糊规则观测器(ruleview)、模糊推理输入输出曲面观测器(surfview)。
模糊控制系统的仿真实验实验目的:现有被控对象一:G(s)=1/(s2+2s+1)被控对象二:G(s)=K /【(T1s+1)(T2s+1) 】试设计一个模糊控制系统来实现对它的控制,并完成以下任务:任务一:通过仿真分析模糊控制器的参数的变化(主要讨论控制器解模方法和量化因子的变化)对系统性能的影响。
任务二:在控制器参数一定的情况下改变被控对象的参数,分析对象参数变化时fuzzy controller的适应能力。
任务三:在控制器参数一定的情况下改变被控对象的结构,分析对象结构变化时fuzzy controller的适应能力。
实验分析:要完成以上任务应分两个步骤:一设计模糊控制器,二用matlab的模糊逻辑工具箱建立模糊推理系统,并在simulink中实现对模糊系统的仿真。
接下来就以对象一为例说明模糊控制系统的仿真。
一、模糊控制器的设计模糊控制器的设计步骤为:1、选择控制器的输入输出:选择误差e及误差变化量ec为输入,u作为输出用于控制对象,这样模糊控制器具有二输入一输出的结构。
2、模糊集及论域的定义:z输入e的模糊子集为{NB NM NS NO PO PS PM PB}z输入ec和输出u的模糊子集均为{NB NM NS ZO PS PM PB}z e的论域为{-6 -5 -4 -3 -2 -1 -0 +0 1 2 3 4 5 6 }z ec的论域为{-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 }z u的论域为{-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 }我们选择三角形作为隶属度函数的形状,e的隶属度函数如下图所示:图1-1 ec的隶属度函数如下图所示:图1-2 u的隶属度函数如下图所示图1-3表1-14、选择输入输出变量的量化因子:这里暂时选定输入输出的量化因子Ke=Kc=Ku=1,接下来的仿真过程还可以调整。
5、择模糊规则前提交的方法为min,模糊推理方法为min,而反模糊化方法可以在仿真过程中设置。
华侨大学厦门工学院《智能控制技术》实验报告专业:电气工程及其自动化班级:时间:年月日~年月日―――――――以下指导教师填写―――――分项成绩:出勤设计报告总成绩:指导教师:目录摘要 (1)一、设计的目的 (2)二、设计要求 (2)三、设计过程 (3)1.系统模型建立 (3)2.模糊控制器设计 (3)2.1 模糊集合及论域的定义 (3)2.2模糊控制规则设计 (6)2.3系统的参数选择 (7)2.4仿真结果 (7)四、设计分析 (9)1.改变模糊控制隶属度函数对控制效果的影响 (9)2.给系统模型加扰动对控制效果的影响 (12)3.改变系统的参数对控制效果的影响 (13)五、模糊控制的优点 (15)六、总结 (15)致谢 (16)参考文献 (16)摘要模糊控制的研究主要体现在控制器的研究和开发以及各类实际应用中, 目前模糊控制已经应用在各个行业。
各类模糊控制器也非常多, 模糊控制器的研究一直是控制界研究的热点问题, 而关于模糊控制系统的稳定性分析则是模糊控制需要研究和解决的基本问题。
目前已经出现了为实现模糊控制功能的各种集成电路芯片。
用MATLAB软件实现模糊控制系统的仿真结果,仿真结果表明MATLAB软件不但简单实用,而且响应速度快,超调量小,控制效果良好。
关键词:模糊控制仿真 MATLAB设计目标说明一、设计的目的:1. 通过本次设计,进一步了解模糊控制的基本原理、模糊模型的建立和模糊控制器的设计过程。
2. 提高学生有关控制系统的程序设计能力。
3. 熟悉Matlab 语言以及在智能控制设计中的应用。
二、设计要求:图1 模糊控制系统Simulink 仿真模型图1、用Matlab 中的Simulink 工具箱,组成一个模糊控制系统。
任意带模糊控制器的系统均可,例如一简单二阶加纯滞后系统(图1所示)为,传递函数12()(1)(1)d sf f Ke G s T s T s τ-=++。
其中各参数分别为1240,10,60,2f f d K T T τ====。
模糊控制实例及simulink仿真实验报告
一、背景介绍
模糊控制是一种基于模糊逻辑的控制方法,其优点在于可以很好地处理复杂的非线性和不确定性系统,而且不需要精确的数学模型和计算,能够快速实现控制的优化。
二、实例介绍
本次实例采用一个双轮小车为对象,实现小车在平面上向指定位置运动的控制。
通过小车的速度和转向角两个输入变量,输出一个模糊控制信号,控制小车前进和转向。
三、实验过程
1. 建立模糊控制系统模型
打开Simulink软件,建立一个新模型,模型中包括输入变量、输出变量和控制器。
2. 设计输入变量和输出变量
(1)设计输入变量
本实例选择小车速度和转向角两个输入变量,每个变量包含三个模糊集合,速度变量分别为“慢速”、“中速”、“快速”,转向角变量分别为“左转”、“直行”、“右转”。
(2)设计输出变量
模糊控制信号输出变量选择小车的前进和转向,每个变量包含三个模糊集合,分别为“慢行”、“中行”、“快行”、“左转”、“直行”、“右转”。
3. 建立控制器
建立模糊控制器,包含输入变量和输出变量的关系,建立控制规则库和模糊关系。
4. 仿真实验
在Simulink下进行仿真实验,调整控制器参数,观察小车运动状态,对比试验。
四、实验结果
经过多次试验和调整,得到最优的小车模糊控制参数,可以实现小车的平滑运动
和准确转向。
五、实验结论
本实验通过建立一个小车的模糊控制系统,可以有效实现小车的平滑运动和准确转向,控制效果优于传统的PID控制方法。
模糊控制可以很好地处理非线性、不确定性和模糊性的系统,适合许多需要快速优化控制的场合。
模糊控制系统的建模与仿真设计方法摘要:模糊控制系统是一种基于模糊逻辑的控制方法,广泛应用于工业控制、自动驾驶等领域。
本文介绍了模糊控制系统的基本原理,详细讨论了建模与仿真设计的方法,包括输入输出的模糊集合划分、规则库的构建、模糊推理与输出解模糊等关键步骤,并通过实例分析验证了方法的有效性。
1. 引言模糊控制系统是一种使用模糊逻辑进行决策和控制的方法,相较于传统的精确控制方法,具有更强的适应性和鲁棒性。
在实际应用中,模糊控制系统已被广泛运用于工业控制、自动驾驶等各个领域。
为了设计高性能的模糊控制系统,合理的建模与仿真设计方法至关重要。
2. 模糊控制系统的建模建模是模糊控制系统设计的第一步,其目的是将实际控制问题转化为模糊集合及其规则库的形式,方便进行模糊推理。
模糊控制系统的建模过程一般包括以下几个步骤:2.1 输入输出模糊集合划分对于待控制的对象,需要对输入和输出的变量进行模糊化,即将实际输入输出的连续取值划分为若干个模糊集合。
划分过程可以基于专家知识或实际数据,常用的划分方法包括三角法、梯形法和高斯法等。
2.2 规则库的构建规则库是模糊控制系统的核心,其中包含了模糊控制的知识和经验。
规则库的构建需要依据专家知识或经验,并将其转化为一系列模糊规则的形式。
每条规则一般由若干个模糊集合的条件和一个模糊集合的结论组成。
2.3 模糊推理通过将实际输入值映射到对应的模糊集合上,利用推理方法将输入与规则库中的规则进行匹配,得到模糊输出。
常用的推理方法包括最大值法、加权平均法和模糊积分法等。
2.4 输出解模糊由于模糊输出是一个模糊集合,需要对其进行解模糊得到具体的输出。
常用的解模糊方法包括最大值法、面积平衡法和最大隶属度法等。
3. 模糊控制系统的仿真设计模糊控制系统的仿真设计是为了验证所设计的模糊控制系统在实际情况下的性能。
仿真设计通常包括以下步骤:3.1 系统建模根据实际控制对象的特性,将其建模为数学模型,包括输入与输出的关系、系统的动态特性等。
模糊控制MALTAB系统仿真实验报告可编程控制器智能控制技术仿真实验题目: 模糊控制系统MATLAB仿真实验报告院系名称:电气工程学院专业班级:电气学生姓名:学号:模糊控制系统MATLAB仿真实验报告一、实验目的 1、通过本次设计,了解模糊控制的基本原理、模糊模型的建立和模糊控制系统的设计过程。
2、熟悉在MATLAB下建立模糊控制器的方法,并能利用MATLAB对给定参数的模糊控制系统予以仿真二、实验项目1、实验题目本设计要求设计一个采用模糊控制的加热炉温度控制系统。
被控对象为一热处理工艺过程中的加热炉,加热设备为三相交流调压供电装置,输入控制信号电压为0~5V,输出相电压0~220V,输出最大功率180KW,炉温变化室温~625℃,电加热装置如图所示:图1-1电加热装置示意图3、实验数据:本实验输入变量为偏差e和偏差的变化ec,输出变量为控制电压U,变量模糊集量化论域均为[-6 6]采用的常用的三角形隶属函数。
控制规则表: U 输入变量ec NB NM NS ZO PS PM PB 输入变量 e NB NB NB NB NB NM NS ZO NM NB NB M, M, MS ZO ZO NS NV NM NM NS ZO ZO PS ZO NM NS NS ZO PS PS PM PS NS ZO ZO PS PM PM PB PM ZO ZO PS PM PM PB PB PB ZO PS PM PB PB PB PB 三、实验步骤 1、建立系统仿真图:在MATLAB主窗口单机工具栏中的Simulink快捷图标弹出“Simulink Library Browser”窗口,单击“Create a new model”快捷图标弹出模型编辑窗口。
依次将Signal Generator(信号源)、Subtract(减运算)、Gain(增益)、Derivative(微分)、Mux(合成)、Fuzzy Logic Controller(模糊逻辑控制器)、TransferFcn(传递函数)、Saturation(限幅)、Memory(存储器)、Scope(显示器)模块拖入窗口并连接成系统仿真图如图1-2 图1-2 系统仿真图 2、在模糊推理系统编辑器中设置变量:在MATLAB 命令窗口输入fuzzy并按回车键,启动FISEditor(模糊推理系统编辑器)。
智能控制实验报告模糊控制器的仿真
一.实验目的
1.了解模糊控制的原理
2.学习Matlab模糊逻辑工具箱的使用
3.使用工具箱进行模糊控制器的仿真
二.实验设备
1.计算机
2.Matlab软件
3.window 7操作系统
三.实验原理
模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。
图1-1是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。
针对模糊控制器每个输入,输出,各自定义一个语言变量。
因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。
所以在模糊控制器的设计中,通常取系统的误差值e和误差变化率ec为模糊控制器的两个输入,则在e的论域上定义语言变量“误差E”,在ec的论域上定义语言变量“误差变化EC”;在控制量u的论域上定义语言变量“控制量U”。
通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e,对误差取微分得到误差变化率ec,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。
四.实验步骤
1、在MATLAB主窗口中单击工具栏中的Simulink快捷图标,弹出“Simulink Library Browser”窗口,单击Create a new model快捷图标,弹出模拟编辑窗口,用Matlab中的Simulink 工具箱,组成一个模糊控制系统,如图所示:
2、在MATLAB命令窗口输入fuzzy,并按回车键,弹出如下的FIS Editer界面,即模糊推理系统编辑器。
3、在FIS编辑器界面上,执行菜单命令“Edit”“—Add Variable—“Input”,即可成为二维模糊推理系统,并在窗口将变量名称修改为E、EC和U,对误差E、误差变化EC机控制量的模糊集合及其论域定义如下:E、EC和U的模糊集合均为{NB、NM、NS、O、PS、PM、PB},E和EC的显示范围为[-6,6],结果如下图所示:
图示二维模糊推理系统
变量E的编辑结果
变量EC的编辑结果
变量EC和U的编辑结果
模糊控制器控制规则编辑器
所有规则填入后,选菜单View, 选择Rules,弹出一新界面Rule Viewer,结果如图所示。
在图中选菜单View, 选择Surface,弹出一新界面Surface Viewer,弹出控制器的三维图,所示。
控制规则浏览器
输入/输出特性曲线三维效果图
五.心得体会
通过这次仿真实验,了解到了对于模糊控制器FLC的一点仿真基础,在这次实验过程中,遇到了种种问题,都是由于没有仔细的看书和听老师的悉心教导,通过上面我深深的体会到,在做实验之前,一定要将课本上的知识熟悉,这是做实验的基础,否则,在老师讲解的时候就会听不懂,这将使我在做实验的时候难度加大,浪费做实验的宝贵时间,在下次实验时一定注意。
通过这次实验,以为从书上看来就是简单的输入,在做的过程中才体会其中的难度,纸上学来终觉浅,要动手才能体会其中的知识。
在这次实验中,我学到了很多东西,希望在以下的实验中收获更多。