直线与圆的位置关系(说课课件)
- 格式:ppt
- 大小:1.88 MB
- 文档页数:34
24.2.2直线与圆的位置关系(第1课时)实验中学孙士洋【教学任务分析】【教学环节安排】【当堂达标自测题】一、填空题.1.如图24.2.2.1-3,PA切⊙O于点A,该圆的半径为3,PO=5,则PA的长等于_____.图24.2.2.1-3图24.2.2.1-4图24.2.2.1-52.如图24.2.2.1-4,⊙O的半径为5,PA切⊙O•于点A,•∠APO=•30•°,•则切线长PA•为______.3.如图24.2.2.1-5,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=______.二、选择题4.如图24.2.2.1-6,直线AB切⊙O于点C,∠OAC=∠OBC,则下列结论错误的是()图24.2.2.1-6A.OC是△ABO中AB边上的高 B.OC所在直线是△ABO的对称轴C.OC是∠AOB的平分线 D.AC>BC5.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含6.下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③B.①②C.②③D.③三、解答题7.如图24.2.2.1-7所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?图24.2.2.1-7 8.如图24.2.2.1-8,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB•的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.。
直线与圆的位置关系说课稿(第一课时)尊敬的各位老师,大家好。
今天我说课的题目是《直线与圆的位置关系》,这是人教版九年级第二十四章《圆》的第二节的内容。
这节课分两个课时,我说的是第一课时。
下面我将从教材分析,说教法,说学法,与教学过程四个方面对本课进行说明。
一、教材分析1、教材的地位与作用“直线和圆的位置关系”是《圆》这章的重点内容之一,是在学生已经学习过圆的有关性质基础上进行的,它既是对前面所学知识的进一步深化,又是以后学习圆的切线的判定与性质的预备知识。
另外,向学生渗透数形结合与转化思想进而渗透由量变到质变的辨证唯物主义思想。
根据教材的地位和作用,我制定了如下的教学目标。
2、教学目标1)知识目标1、从具体的事例中认识和理解直线与圆的三种位置关系并能概括其定义。
2、会用定义来判断直线与圆的位置关系。
3、探究直线与圆的位置关系的数量表示,并运用其关系。
2)能力目标:体验数学活动中的探索与创造,培养学生的观察、归纳能力,以及分析问题,解决实际问题的能力。
3)情感目标:1、体会事物间的相互渗透,初步掌握转化的思想;2、感受数学思维的严谨性,并在合作学习中获得成功的体验。
3、教材的重点难点直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
二、说教法本节课中我采取自主探究与类比迁移法,并结合多媒体直观演示、数形结合、动手操作等多种形式的教学手段进行教学,这样不仅充分调动了学生的积极性,也让整个课堂活跃起来。
三、说学法教是为了学生更好地学,学生是课堂教学的主体,现代教育更重视在教学过程中对学生的学法指导。
我主要指导学生采用小组讨论、分析及归纳等多种学习方法,从而真正落实到把课堂还给学生,让学生成为课堂的主角。
四、教学过程复习导入、回顾旧知——创设情境,提出问题——探究发现,建构知识——应用举例,巩固提高——回顾反思,拓展延伸1、复习导入、回顾旧知1.点和圆的位置关系有哪几种?2.如何判定点和圆的位置关系?【设计意图】通过提问帮助学生复习了点和圆的位置关系的相关知识,既加深了学生对点与圆位置关系的认识,同时也为本节课从数量关系判定直线和圆的位置关系打下了伏笔2创设情境,提出问题首先利用唐诗中的“大漠孤孤烟直,长河落日圆”体会这里蕴涵的数学意境,再让学生观察太阳升起的过程,我们能发现什么?引出课题【设计意图】问题是数学的心脏,是学生思维和兴趣的开始。
24.2.2直线与圆的位置关系(第2课时)【教学任务分析】
【教学环节安排】
【当堂达标自测题】
一、填空题
1.过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.
2.以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.
3.△ABC中,∠C=90°,AB=13,AC=12,以B为圆心,5为半径的圆与直线AC的位置关系是二、选择题
4.若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与射线AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定
5.Rt△ABC中,∠C=90°,AB=10,AC=6,以C为圆心作⊙C和AB相切,则⊙C的半径长为()A.8 B.4 C.9.6 D.4.8
6.下列直线是圆的切线的是()
A.与圆有公共点的直线B.到圆心的距离等于半径的直线
C.垂直于圆的半径的直线D.过圆直径外端点的直线
三、解答题
7.如图24.2.2.2-7,AB是半径⊙O的直径,弦AC与AB成30°角,且AC=CD.
(1)求证:CD是⊙O的切线;(2)若OA=2,求AC的长.
图24.2.2.2-7
8.如图24.2.2.2-8,AB是半圆O的直径,AD为弦,∠DBC=∠A.
(1)求证:BC是半圆O的切线;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.
图24.2.2.2-8。