夫琅禾费单缝衍射
- 格式:doc
- 大小:97.50 KB
- 文档页数:5
单缝夫琅禾费衍射强度摘要:1.单缝衍射概述2.夫琅禾费衍射原理3.衍射强度的计算方法4.夫琅禾费衍射的应用正文:1.单缝衍射概述单缝衍射是一种光的波动现象,当光线通过一个缝隙时,会在其后方形成一系列明暗交替的条纹。
这些条纹是由于光波在传播过程中遇到缝隙,发生衍射现象而产生的。
单缝衍射的研究对于理解光的波动性质以及发展光纤通信、光学仪器等技术具有重要意义。
2.夫琅禾费衍射原理夫琅禾费衍射,又称为夫琅禾费衍射公式,是由德国物理学家夫琅禾费(Fraunhofer)在19 世纪初提出的。
夫琅禾费衍射原理描述了单缝衍射条纹的亮度分布规律,其基本公式为:I = (b / a) * (L / d)^2 * sin^2(α)其中,I 表示衍射强度,b 表示光源到缝的距离,a 表示缝到观察屏的距离,L 表示光源到观察屏的距离,d 表示缝的宽度,α表示入射光线与缝的中心线的夹角。
3.衍射强度的计算方法根据夫琅禾费衍射原理,我们可以通过测量衍射条纹的亮度来计算衍射强度。
具体方法是,在实验中改变光源到缝的距离、缝到观察屏的距离以及入射光线与缝的中心线的夹角,观察不同条件下衍射条纹的亮度变化,然后利用夫琅禾费衍射公式计算衍射强度。
4.夫琅禾费衍射的应用夫琅禾费衍射在实际应用中具有重要价值。
例如,在光纤通信中,夫琅禾费衍射原理可以用于计算光纤的传输性能,以提高通信质量和传输距离;在光学仪器的研制中,夫琅禾费衍射可以用于评估仪器的分辨率和成像质量。
此外,夫琅禾费衍射还在物理、光学等领域的科研和教学中具有广泛的应用。
总之,夫琅禾费衍射作为一种重要的光学现象,对于理解光的波动性质以及发展光纤通信、光学仪器等技术具有重要意义。
物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论家庭单缝夫琅禾费衍射实验实验目的:1、了解夫琅禾费(Fraunhofer Lines)被用于把窄线宽的原子谱线用来测量光谱中的原子或分子信号2、研究夫琅禾费把反谱仪角度和反谱仪对散射算法的影响实验材料:铂家具,反谱仪,单缝夫琅禾费模板,衍射模板,记录仪等实验方法使用反射仪配合衍射模板测量夫琅禾费的宽度和强度,同时配合相应的数据记录仪记录下测量得到的值。
首先,我们调整反射仪角度,使其与衍射模板对齐,然后将反射仪射线对准夫琅禾费模板,根据数据记录仪记录的测量值,推算出窄线宽的夫琅禾费。
然后,我们可以确定单缝夫琅禾费模板反射仪角度和反射仪对散射算法的影响。
最后,我们可以使用夫琅禾费把反谱仪角度和反谱仪对散射算法进行测量,记录数据,并比较结果。
实验结果通过实验,我们测量出夫琅禾费窄线宽的宽度,测量结果如下所示:第一组:夫琅禾费宽度为0.64 nm。
第二组:夫琅禾费宽度为0.62 nm。
第三组:夫琅禾费宽度为0.61 nm。
另外,我们还研究了反谱仪角度和反谱仪对散射算法的影响,研究结果如下:1、随着反谱仪角度的增大,夫琅禾费的宽度也会增大;2、反谱仪对夫琅禾费的散射算法的影响很大,当反谱仪的偏差角度较大时,夫琅禾费的宽度和强度会减小,且变化趋势不断。
结论本次实验通过配合衍射模板测量夫琅禾费的宽度和强度,我们可以推算出窄线宽的夫琅禾费。
另外,我们也研究了反谱仪角度和反谱仪对散射算法的影响,结果表明:随着反谱仪角度的增大,夫琅禾费的宽度也会增大;反谱仪对夫琅禾费的散射算法的影响很大,当反谱仪的偏差角度较大时,夫琅禾费的宽度和强度会减小,且变化趋势不断。
本次实验为理解夫琅禾费的原理,及其对光谱中原子或分子信号的测量提供了重要的实验经验。
单缝夫琅禾费衍射明暗纹公式
夫琅禾费衍射是物理学的一个重要分支,用于研究光的衍射现象。
夫琅禾费衍射的基本原理是:当通过一条狭缝或一些微小孔洞的光线照射一个物体时,会发生弯曲和散射。
这种现象被称为衍射。
夫琅禾费衍射明暗纹的公式是:
dsin(θ) = mλ
其中,d是狭缝孔径的宽度,θ是散射光线和中心光线之间的夹角,m是干涉级数,λ是波长。
夫琅禾费衍射明暗纹公式的含义是,照射物体的光线被散射,形成明暗不同的衍射纹。
这些纹理取决于狭缝孔径宽度与照射光线波长之比、衍射角度等因素。
在实际应用中,夫琅禾费衍射广泛用于光学、激光技术、人体健康、科学研究等领域。
例如,科学家们能够通过夫琅禾费衍射技术,在人体细胞和组织中观察到各种有用信息,以帮助研究人类疾病的发病机理和治疗方法。
总之,夫琅禾费衍射明暗纹公式是物理学中重要的公式,用于描述狭缝或孔洞光散射过程中形成的明暗纹的特征。
夫琅禾费单缝衍射公式1. 什么是夫琅禾费单缝衍射?好家伙,今天咱们聊聊一个神奇的现象——单缝衍射。
别看名字听起来复杂,实际上这就是光的一种神奇行为。
想象一下,你在阳光下打着一个小小的洞,光透过这个缝隙后,就像水流过一个狭窄的地方一样,开始波动。
这种波动就叫“衍射”,而夫琅禾费则是这项技术的老前辈之一,给它起了个名字,听起来特别牛逼!在科学的世界里,夫琅禾费就是个大佬,他发现了光在通过狭缝的时候,会像一个大明星一样,开始发散、变形,最后形成一些特别有趣的图案。
简单点说,就是光并不总是直线走,它也喜欢在缝隙中“逛逛”,变得有些“顽皮”。
这可不是光的任性,而是它的本性。
2. 单缝衍射的公式好吧,话不多说,进入正题。
单缝衍射的公式其实也不难理解。
公式的样子是这样的:a sin theta = n lambda 。
这里的“a” 是缝的宽度,“θ” 是衍射角,“n” 是一个整数,代表衍射的级数,“λ” 则是光的波长。
听起来有点复杂,但别担心,咱们慢慢来,像吃麻辣火锅一样,细嚼慢咽!首先,缝的宽度“a”就像是一个小小的门,越窄,光透过后就越疯狂。
如果你把门打开得大一点,光就乖乖的直走,没什么好玩的。
如果门太小,光一进去就开始“逛”,形成了一个个花花绿绿的光斑,像是在开派对,特别热闹!然后是“θ”,就是光散开的方向。
光是个调皮捣蛋的家伙,喜欢向不同的方向乱跑,而“θ”就是记录这些方向的好帮手。
每当你看到那些漂亮的条纹图案,实际上就是光在争先恐后想要找到出口的结果。
3. 衍射现象的应用说到这里,很多朋友可能会问:“这个衍射有什么用啊?”嘿嘿,别着急,应用可多了去了!首先,单缝衍射在科学实验中可是个老帮手,尤其是在光学仪器中。
比如,显微镜和望远镜就常常用到这招,帮我们看清那些微小的细节。
再者,衍射现象也应用在音乐里。
听过古典音乐的朋友可能会发现,音色的变化和光的衍射有异曲同工之妙。
音乐的和声就像光的干涉,让不同的音波交织在一起,产生出美妙的旋律。
§16.2 单缝和圆孔的夫琅禾费衍射
§16.2.1 单缝的夫琅禾费衍射
( 1 ) 单缝衍射的实验装置和现象
夫琅禾费衍射是平行光的衍射,在实验中可借助于两个透镜来实现。
位于物方焦面上的点光源经透镜L1后成为一束平行光,照射在开有一条狭缝的衍射屏上。
衍射屏开口处的波前向各方向发出子波或衍射光线,方向相同的衍射光线经透镜L2后会聚在象方焦面上的同一点,各个方向的衍射光线在屏幕上形成了衍射图样,它在与狭缝垂直的方向上扩展开来。
衍射图样的中心是一个很亮的亮斑,两侧对称地分布着一系列强度较弱的亮斑,中央亮斑的宽度为其他亮斑的两倍,且它们都随狭缝宽度的减小而加宽。
如果用与狭缝平行的线光源代替点光源,则在接收屏幕上将会看到一组平行于狭缝的衍射条纹。
图16 - 4 单缝的夫琅禾费衍射
( 2 ) 单缝衍射的光强分布公式
考虑点光源照明时的单缝夫琅禾费衍射。
取z轴沿光轴,y轴沿狭缝的走向,x轴与狭缝垂直。
因为入射光仅在x方向受到限制,衍射只发生在x - z平面内,因此具体分析可在该平面图中进行。
按惠更斯 菲涅耳原理,我们可以把单
缝内的波前AB分割为许多等宽的窄条,它们是振幅相等的相干子波源,朝各个方向发出子波。
由于接收屏幕位于透镜L2的象方焦面上,因此角度θ相同的衍射光线将会聚于屏幕上同一点进行相干叠加。
图16 - 5 衍射矢量图
设入射光与光轴Oz平行,则在波面AB上无相位差。
为求单缝上、下边缘A和B到点的衍射光线间的光程差∆L和相位差δ,自A点引这组平行的衍射光线的垂线AN,于是就是所要求的光程差。
设缝宽为b,则有
(16.4)
(16.5)
矢量图解法:用小矢量代表波前每一窄条对点处振动的贡献,由A点作一系列等长的小矢量,首尾相接,逐个转过相同的小角度,最后到达B点,总共转过的角度就是单缝上、下边缘到点的衍射光线间的相位差δ. 若取波前每一窄条的面积,则由这些小矢量连成的折线将化为圆弧,其圆心角2α = δ. 由于整个缝宽AB内的波前在点处产生的合振幅等于弦长,而在的点处的合振幅A0等于弧长,故有
,
即, (16.6)
其中. (16.7)单缝夫琅禾费衍射的光强分布公式:利用,而表示中央亮斑中心O处的光强,由式(16.6)可得
, . (16.8) ( 3 ) 单缝衍射光强分布的特点
单缝的夫琅禾费衍射图样的中心有一个主极强(零级衍射斑),两侧都有一系列次极强和暗斑。
主极强出现在
= 0, = 0
的地方,到这里的各条衍射光线有相同的相位,它们相干叠加的结果具有最大的光强。
几何光学中的光线就是零级衍射线,几何光学中的象点就是零级衍射斑的中心。
例如,在图16-4(a)所示的装置中,如果点光源的位置上下左右移动,则该点光源在接收屏幕上的象点将朝相反的方向移动,并可算出移动的距离,由此即可确定零级衍射斑的位置。
如果只是单缝的位置上下左右平行移动,则其夫琅禾费衍射图样的位置并不改变。
在单缝衍射因子具有极大值的地方,即在
图16 - 6 单缝衍射因子
的地方,除了在处出现衍射主极强外,还在一系列位置上出现衍射的次极强。
利用图解法求解超越方程
,
可得决定次极强位置的α和=值分别为:
,
. (16.9)各次极强的光强近似为I0的4.7 %,1.7 %,0.8 %,都比I0小得多。
考虑到倾斜因子的影响,高级衍射斑的光强还要减小,衍射后绝大部分光能都集中在零级衍射斑。
单缝衍射暗斑中心位置由(但)决定,即
(16.10)我们规定,以相邻暗斑中心之间的角距离作为其间亮斑的角宽度。
在衍射角θ很小的情况下,≈θ,式(16.10)可以写为
.
零级亮斑在之间,其半角宽度为
, (16.11)它等于其他亮斑的角宽度。
几点说明:
1 ) ∆θ是屏幕上衍射斑大小的量度,也是衍射场中波线取向弥散程度的量度。
零级衍射斑集中了绝大部分光能,它的半角宽度∆θ的大小是衍射效应强弱的标志。
2 ) 对于给定的波长,∆θ与缝宽b成反比。
缝宽b越小,在波前上对光束的限制越大,则衍射场越弥散,衍射斑铺开得越宽,即∆θ越大;当缝宽b很大时,光束几乎自由传播,∆θ→ 0,衍射斑几乎收缩为几何光学的象点。
3 ) 在保持缝宽b不变的条件下,∆θ与λ成正比。
波长越长,衍射效应越显著;波长越短,衍射效应越可忽略,几何光学是波动光学在λ→0时的短波极限。