单缝和圆孔夫琅禾费衍射介绍
- 格式:ppt
- 大小:904.00 KB
- 文档页数:15
圆孔的夫朗和费衍射1、圆孔的夫朗和费衍射:根据几何光学,平行光经过球面凸透镜后将会聚于透镜焦平面上一点。
但实际上,由于光的波动性,平行光经过小圆孔后也会产生衍射现象,称为圆孔的夫朗和费衍射。
圆孔的夫朗和费衍射图样为一个圆形的亮斑(称为爱里斑),在爱里斑的周围还有一组明暗相间的同心圆环。
由于光学仪器中所用的孔径光阑、透镜的边框等都相当于一个透光的圆孔,所以圆孔的夫朗和费衍射对光学系统的成像质量有直接影响。
爱里斑光强约占总光强的84% 。
而其1级暗环的角宽度(即爱里斑半角宽度)满足D 22.1R610.0sin 1λλθ==式中R 、D 为小圆孔的半径和直径。
2、光学仪器的分辨本领:由于圆孔衍射现象的限制,光学仪器的分辨能力有一个最高的极限。
下面通过光学仪器分辨本领的讨论,说明为什么有一个分辨极限,并给出分辨极限的大小。
当两个物点S 1、S 2很靠近时(设S 1、S 2光强相等),两个爱里斑将互相重叠而无法分辨。
对一个光学仪器来说,若一个点光源产生的爱里斑的中央刚好与另一个点光源产生的爱里斑瑞的1级暗环相重合,这时两个爱里斑重合部分的光强约为单个爱里斑中央光强的80%左右,一般人眼刚好能分辨出这是两个光点的像。
因此,满足上述条件的两个点光源恰好能被该光学仪器所分辨。
这一条件称为瑞利分辨判据。
(见下图)恰能分辨时两光源发出的光线对透镜光心的夹角Δθ 称为最小分辨角,用δθ表示。
由上讨论可知,最小分辨角δθ等于爱里斑的半角宽度θ1:)D 22.1arcsin(1λθδθ==尤其当θ1 ~ 0D 22.1λδθ≈(或称分辨率),用R 表示:λδθ22.1D 1R ==讨论:⑴ 增大透镜的直径D 可提高镜头的分辨率。
光学天文望远镜的镜头孔径可达数米! ⑵ 设r 、d 为爱里斑的半径和直径,则:f 2d f r D 22.1===λδθ即:D f44.2d λ=f D称为镜头的相对孔径(越大越好)。
如照相机镜头上所标示的502:1字样,即表示镜头的焦距mm 50f =,而镜头的孔径mm 25D =。
夫琅禾费衍射的概念夫琅禾费衍射是物理学中一个重要的光学现象,它描述了光通过一个孔或一个狭缝后在远离孔或狭缝的屏上的分布情况。
夫琅禾费衍射现象的研究对于理解光的传播和干涉现象有着重要的意义。
夫琅禾费衍射的基本概念可以通过一个单缝的情况来进行解释。
当单色光通过一个宽度接近光波长的狭缝时,光波会在狭缝两侧发生衍射现象。
正面入射的平行光束通过狭缝后,将呈现出圆形的衍射图样。
在远离狭缝的屏幕上观察到的图样会呈现出中央亮度较高,并且逐渐向外衰减的特点。
这个图样被称为夫琅禾费衍射图样。
夫琅禾费衍射现象可以通过赫兹斯普龙公式进行数学描述。
根据该公式,通过一个圆形孔或一个狭缝的光波将呈现出一系列同心圆环的亮暗条纹。
这些条纹的亮暗程度取决于入射光的波长、狭缝的大小以及光波与屏幕之间的距离。
当光波波长相对于狭缝宽度较大时,衍射效应将变得更加明显。
夫琅禾费衍射现象的产生可以用光波的波动性来解释。
光波通过狭缝时,会被限制在狭缝的尺寸范围内。
因此,在狭缝两端会形成波前的弯曲。
弯曲后的波前会在远离狭缝的地方重新放松,形成夫琅禾费衍射图样。
这个现象可以被视为光波的干涉效应,即不同部分的波面之间相互干涉所形成的结果。
夫琅禾费衍射现象对于光的成像和恢复过程有着广泛的应用。
在显微镜和望远镜中,通过使用透镜和光阑等光学元件可以控制夫琅禾费衍射的效果,从而使光束聚焦在被观察的目标上,并实现清晰的成像。
此外,夫琅禾费衍射现象也在光纤通信中扮演着重要的角色。
光纤中的光波会因为狭缝的存在而发生衍射,这使得光波能够在光纤内部传播。
总结起来,夫琅禾费衍射是光学中一种重要的现象,它描述了光波通过孔或狭缝后在屏幕上呈现出的衍射图样。
夫琅禾费衍射现象的研究对于理解光的传播和干涉现象具有重要的意义,也在成像和光通信等领域中有广泛应用。
对于夫琅禾费衍射的深入理解将有助于推动光学技术的发展与应用。