当前位置:文档之家› 2二次函数综合问题例谈

2二次函数综合问题例谈

2二次函数综合问题例谈
2二次函数综合问题例谈

二次函数综合问题例谈

二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题.

1.代数推理

由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质.

1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数.

例1 已知f x ax bx ()=+2,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,.

解:由()b a f +=1,()b a f -=-1可解得:

))1()1((21)),1()1((2

1--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得

()()???

? ??--+???? ??+=2)1(2122x x f x x f x f ,

∴ ()()()1312-+=f f f .

又∵214≤≤f (),2)1(1≤-≤f ,

∴ ()1025≤≤f .

例2 设()()f x ax bx c a =++≠2

0,若()f 01≤,()f 11≤,()f -11≤, 试证明:

对于任意-≤≤11x ,有()f x ≤54

. 分析:同上题,可以用()()()1,1,0-f f f 来表示c b a ,,.

解:∵ ()()()c f c b a f c b a f =++=+-=-0,1,1,

∴ ()()()()0)),1()1((2

1),0211(21f c f f b f f f a =--=--+=, ∴ ()()()()()

222102121x f x x f x x f x f -+???? ??--+???? ??+=. ∴ 当01≤≤-x 时,

()()()().4

545)21(1

)1(2212

2102

121222222

222

22≤++-=+--=-+???

? ??-+???? ??+-=-+-++≤-?+-?-++?≤x x x x x x x x x x x x x x f x x f x x f x f

当10-≤≤x 时, ()()()()222102

121x f x x f x x f x f -?+-?-++?≤ 22212

2x x x x x -+-++≤ )1(22222x x x x x -+???? ?

?+-+???? ??+= .4

545)21(1

22≤+--=++-=x x x 综上,问题获证.

1.2 利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --=

例3 设二次函数()()f x ax bx c a =++>2

0,方程()f x x -=0的两个根x x 12,满足0112<<

x x ∈01,时,证明()x f x x <<1.

分析:在已知方程()f x x -=0两根的情况下,根据函数与方程根的关系,可以写出函数()x x f -的表达式,从而得到函数)(x f 的表达式.

证明:由题意可知))(()(21x x x x a x x f --=-.

a x x x 1021<

<<< , ∴ 0))((21>--x x x x a ,

∴ 当()

x x ∈01,时,x x f >)(.

又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f ,

,011,0221>->+-<-ax ax ax x x 且

∴ 1)(x x f <,

综上可知,所给问题获证. 1.3紧扣二次函数的顶点式,44222a b ac a b x a y -+??? ?

?+=对称轴、最值、判别式显合力 例4 已知函数x z a x f 2

2)(-=。 (1)将)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求函数)(x g y =的解析式;

(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求函数)(x h y =的解析式;

(3)设)()(1)(x h x f a x F +=

,已知)(x F 的最小值是m 且72+>m ,求实数a 的取值范围。

解:(1)()();22222---=-=x x a

x f x g

(2)设()x h y =的图像上一点()y x P ,,点()y x P ,关于1=y 的对称点为()y x Q -2,,由点Q 在()x g y =的图像上,所以 y a

x x -=---2222

2, 于是 ,2222

2--+-=x x a y 即 ();2

2222

--+-=x x a x h

(3)22)14(2411)()(1)(+-+??? ??-=+=

x x a a x h x f a x F . 设x t 2=,则21444)(+-+-=

t

a t a a x F . 问题转化为:7221444+>+-+-t

a t a a 对0>t 恒成立. 即 ()0147442>-+--a t t a

a 对0>t 恒成立. (*) 故必有044>-a a .(否则,若044<-a

a ,则关于t 的二次函数()14744)(2-+--=a t t a a t u 开口向下,当t 充分大时,必有()0

a 时,显然不能保证(*)成立.),此时,由于二次函数()14744)(2-+--=a t t a a t u 的对称轴0847>-=a a t ,所以,问题等价于0

????<-?-?->-0144447044a a a a a , 解之得:22

1<->-a a a ,故21444)(+-+-=t a t a a x F 在a

a a t --=4)14(4取得最小值()214442+-?-=a a

a m 满足条件. 2. 数形结合

二次函数()0)(2≠++=a c bx ax x f 的图像为抛物线,具有许多优美的性质,如对称性、单调性、凹凸性等. 结合这些图像特征解决有关二次函数的问题,可以化难为易.,形象直观.

2.1 二次函数的图像关于直线a b x 2-

=对称, 特别关系a

b x x -=+21也反映了二次函数的一种对称性.

例 5 设二次函数()()f x ax bx c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<

<. 解:由题意 ()c x b ax x x f +-+=-)1(2.

由方程()f x x -=0的两个根x x 12,满足0112<<

, 可得 ,121021a x a b x <<--<

<且a

b x x a b 212121---=---, ∴ a b a a b x x a b 211212121---<---=---, 即 1x a

b <-,故 x x 012<. 2.2 二次函数)(x f 的图像具有连续性,且由于二次方程至多有两个实数根. 所以存在实数n m ,使得n m <且0)()(∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .

(1)如果4221<<x ;

(2)如果21

分析:条件4221<<

解:设1)1()()(2

+-+=-=x b ax x x f x g ,则0)(=x g 的二根为1x 和2x . (1)由0>a 及4221<<

??><0)4(0)2(g g ,即???>-+<-+034160124b a b a ,即 ???

????<+?--<-?+,043224,043233a a b a a b 两式相加得

12

b ,所以,10->x ; (2)由a

a b x x 4)1()(2221--=-, 可得 1)1(122+-=+b a . 又0121>=a x x ,所以21,x x 同号. ∴ 21

)1(1202212b a x x ,

即 ???????+-=+>>1)1(120)0(0)2(2b a g g 或???

????+-=+>>-1)1(120)0(0)2(2b a g g

解之得 41

7>b . 2.3 因为二次函数()0)(2≠++=a c bx ax x f 在区间]2,(a b --∞和区间),2[+∞-a

b 上分别单调,所以函数()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或顶点处取得.

例7 已知二次函数f x ax bx c ()=++2,当-≤≤11x 时,有-≤≤11f x (),求证:当-≤≤22x 时,有-≤≤77f x ().

分析:研究)(x f 的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数c b a ,,. 确定三个参数,只需三个独立条件,本题可以考虑)1(f ,)1(-f ,)0(f ,这样做的好处有两个:一是c b a ,,的表达较为简洁,二是由于01和±正好是所给条件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的.

要考虑()x f 在区间[]7,7-上函数值的取值范围,只需考虑其最大值,也即考虑()x f 在区间端点和顶点处的函数值.

解:由题意知:c b a f c f c b a f ++==+-=-)1(,)0(,)1(,

∴ )0()),1()1((21)),0(2)1()1((2

1f c f f b f f f a =--=--+=, ∴ f x ax bx c ()=++2()

2221)0(2)1(2)1(x f x x f x x f -+???? ??--+???? ??+=. 由-≤≤11x 时,有-≤≤11f x (),可得 ,1)1(≤f (),11≤-f ()10≤f . ∴ ()()()()7)0(3)1(1303113)2(≤+-+≤--+=f f f f f f f ,

()()()()7)0(3)1(3103131)2(≤+-+≤--+=-f f f f f f f .

(1)若[]2,22-?-a

b ,则()x f 在[]2,2-上单调,故当[]2,2-∈x 时, ))2(,)2(max()(max f f x f -=

∴ 此时问题获证.

(2)若[]2,22-∈-a b ,则当[]2,2-∈x 时,

)2,)2(,)2(max()(max ??

? ??--=a b f f f x f 又

()72411214)1()1(2022422<=+?+≤--?+=?+≤-=??? ??-f f a

b f b a b

c a b c a b f , ∴ 此时问题获证.

综上可知:当-≤≤22x 时,有-≤≤77f x ().

圆与二次函数难度题(含答案)

水尾中学中考专项训练(压轴题)答案 1.(四川模拟)如图,Rt △ABC 内接于⊙O ,∠ACB =90°,AC =23,BC =1.以AC 为一边,在AC 的右侧作等边△ACD ,连接BD ,交⊙O 于点E ,连接AE ,求BD 和AE 的长. 解:过D 作DF ⊥BC ,交BC 的延长线于F ∵△ACD 是等边三角形 ∴AD =CD =AC =23,∠ACD =60° ∵∠ACB =90°,∴∠ACF =90° ∴∠DCF =30°,∴DF = 1 2 CD =3,CF =3DF =3 ∴BF =BC +CF =1+3=4 ∴BD = BF 2 +DF 2 = 16+3 =19 ∵AC =23,BC =1,∴AB = AC 2 +BC 2 = 13 ∵BE +DE =BD ,∴AB 2 -AE 2 + AD 2 -AE 2 =BD 即 13-AE 2 + 12-AE 2 =19 ∴13-AE 2 =19- 12-AE 2 两边平方得:13-AE 2=19+12-AE 2-2 19(12-AE 2 ) 整理得:19(12-AE 2 ) =9,解得AE = 7 19 57 2.(四川模拟)已知Rt △ABC 中,∠ACB =90°,∠B =60°,D 为△ABC 外接圆⊙O 上 AC ︵ 的中点. (1)如图1,P 为 ABC ︵ 的中点,求证:PA +PC =3PD ; (2)如图2,P 为 ABC ︵ 上任意一点,(1)中的结论还成立吗?请说明理由. (1)证明:连接AD ∵D 为AC ︵ 的中点,P 为 ABC ︵ 的中点 ∴PD 为⊙O 的直径,∴∠PAD =90° D D P 图1 图2

二次函数与特殊四边形综合问题专题训练(有答案)

二次函数中动点与特殊四边形综合问题解析与训练 一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式 (1)抛物线上的点能否构成平行四边形 (2)抛物线上的点能否构成矩形,菱形,正方形 特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。 二、例题精析 ㈠【抛物线上的点能否构成平行四边形】 例一、(2013河南)如图,抛物线2 y x bx c =-++与直线 1 2 2 y x =+交于,C D两点,其 中点C在y轴上,点D的坐标为 7 (3,) 2 。点P是y轴右侧的抛物线上一动点,过点P作 PE x ⊥轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以,,, O C P F为顶点的四边形是平行四边形?请说明理由。 【解答】(1)∵直线 1 2 2 y x =+经过点C,∴(0,2) C ∵抛物线2 y x bx c =-++经过点(0,2) C,D 7 (3,) 2

∴22727 332 2c b b c c =?? =? ?∴??=-++??=?? ∴抛物线的解析式为2 7 22 y x x =-++ (2)∵点P 的横坐标为m 且在抛物线上 ∴2 71 (,2),(,2)22 P m m m F m m -+ ++ ∵PF ∥CO ,∴当PF CO =时,以,,,O C P F 为顶点的四边形是平行四边形 ① 当03m <<时,2 271 2(2)322 PF m m m m m =-+ +-+=-+ ∴2 32m m -+=,解得:121,2m m == 即当1m =或2时,四边形OCPF 是平行四边形 ② 当3m ≥时,2 217 (2)(2)32 2 PF m m m m m =+--+ +=- 232m m -= ,解得:123322 m m += =(舍去) 即当132 m += 时,四边形OCFP 是平行四边形 练习1:(2013?盘锦)如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0), 与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式; (2)当四边形ODEF 是平行四边形时,求点P 的坐标;

二次函数综合应用专题归纳训练一

二次函数综合应用专题归纳训练一 一、相似三角形的存在性问题 1.在平面直角坐标系中,一个二次函数的图像经过A(1,0)B(3,0)两点. (1)写出这个二次函数图像的对称轴; (2)设这个二次函数图像的顶点为D,与y轴交与点C,它的对称轴与x轴交与点E,连接AC、DE和DB.当△AOC与△DEB相似时,求这个二次函数的表达式. 二、等腰三角形的存在性问题 2.如图,直线3 y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x =x 3+ 轴于另一点C(3,0). ⑴求抛物线的解析式 ⑵在抛物线的对称轴上是否存在点Q,使△ABQ 存在,求出符合条件的Q点坐标;若不存在,请说明理由.

3.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线L上的一个动点,当△PAC的周长最 小时,求点P的坐标; (3)在直线L上是否存在点M,使△MAC为等腰三角 形?若存在,直接写出所有符合条件的点M的坐标; 若不存在,请说明理由.

三、平行四边形的存在性问题 4.(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N 的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.

高考资料 二次函数基础练习题大全(含答案)

二次函数基础练习题 练习一 二次函数 1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到 小球滚动的距离s (米)与时间t (秒)的数据如下表: 写出用t 表示s 的函数关系式: 2、 下列函数:① 23 y x ;② 21y x x x ;③ 224y x x x ;④ 2 1 y x x ; ⑤ 1y x x ,其中是二次函数的是 ,其中a ,b ,c 3、当m 时,函数2235y m x x (m 为常数)是关于x 的二次函数 4、当____m 时,函数2221m m y m m x 是关于x 的二次函数 5、当____m 时,函数2564m m y m x +3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.

7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2. 10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1; 当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围 成24米长的旧木料,建造猪舍三间,如图,它们的平 面图是一排大小相等的长方形. (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎 样的函数关系? (2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如 何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍

二次函数与圆结合的压轴题Word版

图6 x y F E H N M P D C B A O 二次函数和圆 【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数k y x = (1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次 函数图象的解析式; (2) 若二次函数图象的顶点为 D ,问当k 为何值时,四边形ADBP 为菱形. 【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线3 2 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.

【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B. (1)求直线CB的解析式; (2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x 轴的交点恰为点E、F,求该抛物线的解析式; (3)试判断点C是否在抛物线上? (4)在抛物线上是否存在三个点,由它构成的三角形与 △AOC相似?直接写出两组这样的点. 【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 【例题5】(南充市)25.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案 一、二次函数 1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D . (1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点, ①求PC PD -的最大值及对应的点P 的坐标; ②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2 ||23y a x a x =-+的图像只有一个公共点,求t 的取值范围. 【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最 ,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或 332t ≤<或72t =. 【解析】 【分析】 (1)先利用对称轴公式x=2a 12a --=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式; (2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标; (3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ?-++≥=?--+

2021届新高考数学(文)复习小题必刷第05练 二次函数与幂函数(解析版)

第05练 二次函数与幂函数 刷基础 1.(2020·贵溪市实验中学高二期末)已知函数( ) 2 53 ()1m f x m m x --=--是幂函数且是(0,)+∞上的增函数, 则m 的值为( ) A .2 B .-1 C .-1或2 D .0 【答案】B 【解析】 由题意得2 11,530,1m m m m --=-->∴=-, 故选:B. 2.(2020·浙江高一课时练习)如图,函数1y x = 、y x =、1y =的图象和直线1x =将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.若幂函数 的图象经过的部分是④⑧,则 可能是( ) A .y =x 2 B .y x = C .12 y x = D .y=x -2 【答案】B 【解析】 由图象知,幂函数()f x 的性质为: (1)函数()f x 的定义域为()0+∞, ; (2)当01x <<时,()1f x >,且()1f x x <;当1x >时,01x <<,且()1 f x x >; 所以()f x 可能是y x = .故选B.

3.(2019·河南高三月考)若e a =π,3e b =,3c π=,则a ,b ,c 的大小关系为( ) A .b a c << B .a b c << C .c a b << D .b c a << 【答案】A 【解析】 因为3x y =在R 上为增函数,所以33e π<,即b c <. 因为e y x =在(0,)+∞为增函数,所以3e e π>,即a b >. 设ln ()x f x x = , 2 1ln ()x f x x -'= ,令()0f x '=,x e =. (0,)x e ∈,()0f x '>,()f x 为增函数, (,)x e ∈+∞,()0f x '<,()f x 为减函数. 则()(3)f f π<,即 ln ln 3 3 π π < ,因此3ln ln3ππ<, 即3ln ln 3ππ<,33ππ<.又33e πππ<<,所以a c <. 所以b a c <<. 故选:A 4.(2020·全国高一专题练习)下列关系中正确的是( ) A .2213 3 3 111252??????<< ? ? ? ?????? B .122333 111225??????<< ? ? ? ?????? C .212333 111522??????<< ? ? ? ?????? D .221333 111522??????<< ? ? ? ?????? 【答案】D 【解析】 因为12x y ??= ???是单调递减函数,1233<,所以12 331122????> ? ????? , 因为幂函数23y x =在()0,∞+上递增,11 52 <; 所以223 3 1152????< ? ? ???? ,

高中数学专题-二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2 ,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入f x ax bx ()=+2 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

三角函数与二次函数综合专题(含解析)

三角函数与二次函数综合卷2 1.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论: ①∠AEF=∠BCE ; ②AF+BC >CF ; ③S △CEF =S △EAF +S △CBE ; ④若= ,则△CEF ≌△CDF . 其中正确的结论是 .(填写所有正确结论的序号) 2.已知:BD 是四边形 ABCD 的对角线,AB ⊥BC ,∠C=60°,AB=1, (1)求tan ∠ABD 的值; (2)求AD 的长. 3.海上有一小岛,为了测量小岛两端A 、B 的距离,测量人员设计了一种测量方法,如图所示,已知B 点是CD 的中点,E 是BA 延长线上的一点,测得AE = 10海里,DE =30海里,且DE ⊥EC ,cos ∠D (1)求小岛两端A 、B 的距离; (2)过点C 作CF ⊥AB 交AB 的延长线于点F ,求sin ∠BCF 的值. A B 4.如图,在△ABC 中,90ACB ∠=,AC BC =,点P 是△ABC 内一点,且135APB APC ∠=∠=.

A B C P (1)求证:△CPA ∽△APB ; (2)试求tan PCB ∠的值. 5.如图,在梯形A B CD 中,?=∠=∠ 90B A 点E 在AB 上,?=∠45AED ,6=DE ,7=CE . (1)求AE 的长; (2)求BCE ∠sin 的值. 6.如图,在△ABC 中, AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,AD=4. (1)求BC 的长; (2)求tan ∠DAE 的值. 7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8内的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=?BOD S , (1)求反比例函数解析式; (2)求C 点坐标. 8.如图,在△ABC 中,BD ⊥AC 于点D , ,,并且. 求的长. AB =BD = 12 ABD CBD ∠=∠AC

二次函数的实际应用题-中考数学题型专项练习

题型04 二次函数的实际应用题 一、单选题 1.如图,隧道的截面由抛物线和长方形OABC 构成,长方形的长OA 是12m ,宽OC 是4m .按照图中所示的平面直角坐标系,抛物线可以用y =﹣ 16 x 2 +bx +c 表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m .那么两排灯的水平距离最小是( ) A .2m B .4m C . D .【答案】D 【分析】根据长方形的长OA 是12m ,宽OC 是4m ,可得顶点的横坐标和点C 的坐标,即可求出抛物线解析式,再把y =8代入解析式即可得结论. 【详解】根据题意,得 OA =12,OC =4. 所以抛物线的顶点横坐标为6, 即﹣2b a =13 b =6,∴b =2. ∵C (0,4),∴c =4, 所以抛物线解析式为: y =﹣ 16 x 2 +2x +4 =﹣ 16 (x ﹣6)2 +10 当y =8时, 8=﹣ 1 6 (x ﹣6)2+10, 解得:x 1 x 2=6﹣ 则x 1﹣x 2 . 所以两排灯的水平距离最小是 43.

故选:D. 【点睛】本题考查了二次函数的应用,解决本题的关键是把实际问题转化为二次函数问题解决. 2.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为() A.33°B.36°C.42°D.49° 【答案】C 【分析】据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题. 【详解】解:由图象可知,物线开口向上, 该函数的对称轴x>1854 2 且x<54, ∴36<x<54, 即对称轴位于直线x=36与直线x=54之间且靠近直线x=36, 故选:C. 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 3.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()

-圆与二次函数综合题精练(带答案)教学文案

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

例谈二次函数综合题的解题策略

□ 孙朝仁 朱松林 二次函数既是中考的重点内容,也是热点问题.而二次函数综合题在各级各类考试中都属于难度较大的问题,要求同学们不但对于二次函数本身的内容掌握要牢固,而且还要善于将二次函数和其他的有关知识(方程、不等式以及几何等知识)“攀亲”,搞好关系,这样问题的综合层次和要求都比较高 .解决这类问题的关键就是要“沉得住气”,认真仔细地将题目中所提供的信息进行加工梳理,有条不紊地进行“抽丝剥茧”,最终解决问题 .下面略举几例,谈谈二次函数综合题的常见的解题策略 . 一、得意知“形”,由“形”想“数” 例1 已知函数y =x 2+bx +2的图象经过点(3,2). (1)求这个函数的关系式; (2)画出它的图象; (3)根据图象指出:当x 取何值时,y ≥2? 分析 首先,利用待定系数法,可以求出b 的值, 从而获得函数表达式;其次,根据函数关系式不难知“形”—— 用描特殊点法画出函数图象;第三,借助函数图象,由“形”想 “数”,要“确定y ≥2时,x 的取值范围”就是要求位于“直线 y=2上方”图象的自变量取值范围. 解 (1)根据题意,得 2=9+3b +2, 解得 b =-3. ∴函数关系式为y =x 2-3x +2. (2)易求该抛物线与x 轴的两个交点坐标为(1,0)、(2,0),与y 轴的交点坐标为(0,2),对称轴为2 3 x .函数y =x 2-3x +2的图象如图1所示. 图1

(3)根据图象可得,当y =2时,对应的x 的值为0和3 .因此,当x ≤0或x ≥3时,y ≥2. 评析 充分利用函数图象的直观性,分析解决问题是体现“数形结合”思想一个重要方面.本题还可以直接指出“当x 取何值时,y ≤2?”以及根据图象写出“不等式x 2 -3x +2≤0的解集”,这两个问题,请同学们自行写出. 二、函数与方程“攀亲”,由方程求函数 例2 如图2,一元二次方程0322 =-+x x 的两根1x ,2x (1x <2x )是抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6). (1)求此二次函数的解析式; (2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标; (3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标. 分析 (1)求出方程的两个根,就相当于知道了B ,C 两 点的坐标,进而由A ,B ,C 三点的坐标,利用待定系数法,很 让容易求出二次函数的解析式;(2)要求交点Q 的坐标,只要 函数与方程“攀亲”,将该抛物线的“对称轴方程”与“直线 AC 的解析式”联立得方程组,解这个方程组就可得到;(3)要 求“MQ+MA ”的最小值,只需作点A 关于x 轴的对称点即可,用 对称性及“两点之间线段最短”的几何知识加以解决. 解 (1)解方程0322=-+x x ,得1x =-3,2x =1. ∴抛物线与x 轴的两个交点坐标为:C (-3,0),B (1,0). 将 A (3,6),B (1,0),C (-3,0)代入抛物线的解析式,得 ?????=+-=++=++.039,0,639c b a c b a c b a 解这个方程组,得 ??? ????-===.23,1,21c b a ∴抛物线解析式为2 3212-+=x x y . x ) ) 图2

人教中考数学专题题库∶二次函数的综合题含答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.(6分)(2015?牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题: (1)求抛物线的解析式; (2)点E (2,m )在抛物线上,抛物线的对称轴与x 轴交于点H ,点F 是AE 中点,连接FH ,求线段FH 的长. 注:抛物线y=ax 2+bx+c (a≠0)的对称轴是x=﹣ . 【答案】(1)y=-2x-3;(2). 【解析】 试题分析:(1)把A,B 两点坐标代入,求待定系数b,c ,进而确定抛物线的解析式;(2)连接BE ,点F 是AE 中点,H 是AB 中点,则FH 为三角形ABE 的中位线,求出BE 的长,FH 就知道了,先由抛物线解析式求出点E 坐标,根据勾股定理可求BE ,再根据三角形中位线定理求线段HF 的长. 试题解析:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0),∴把A,B 两点坐标代入得: ,解得: ,∴抛物线的解析式是:y=-2x-3;(2)∵点 E (2,m )在抛物线上,∴把E 点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E (2,﹣3),∴BE= = .∵点F 是AE 中点,点H 是抛物线的对称轴与 x 轴交点,即H 为AB 的中点,∴FH 是三角形ABE 的中位线,∴FH=BE=×= .∴ 线段FH 的长 . 考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理. 2.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线 y x m =+过顶点C 和点B .

二次函数与圆综合训练(含解析)

二次函数与圆综合提高(压轴题) 1、如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点, 且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图 形L. (1)求△ABC的面积; (2)设AD=x,图形L的面积为y,求y关于x的函数解析式; (3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.解 解:(1)如图3,作AH⊥BC于H, 答: ∴∠AHB=90°. ∵△ABC是等边三角形, ∴AB=BC=AC=3. ∵∠AHB=90°, ∴BH=BC= 在Rt△ABC中,由勾股定理,得 AH=. ∴S△ABC==; (2)如图1,当0<x≤1.5时,y=S△ADE. 作AG⊥DE于G, ∴∠AGD=90°,∠DAG=30°, ∴DG=x,AG=x, ∴y==x2, ∵a=>0,开口向上,在对称轴的右侧y随x的增大而增大,

∴x=1.5时,y 最大=, 如图2,当1.5<x<3时,作MG⊥DE于G, ∵AD=x, ∴BD=DM=3﹣x, ∴DG=(3﹣x),MF=MN=2x﹣3, ∴MG=(3﹣x), ∴y=, =﹣; (3),如图4,∵y=﹣; ∴y=﹣(x2﹣4x)﹣, y=﹣(x﹣2)2+, ∵a=﹣<0,开口向下, ∴x=2时,y最大=, ∵>, ∴y最大时,x=2, ∴DE=2,BD=DM=1.作FO⊥DE于O,连接MO,ME.∴DO=OE=1, ∴DM=DO. ∵∠MDO=60°, ∴△MDO是等边三角形, ∴∠DMO=∠DOM=60°,MO=DO=1. ∴MO=OE,∠MOE=120°,

∴∠OME=30°, ∴∠DME=90°, ∴DE是直径, S⊙O=π×12=π. 2、(2013?压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4), 点B的坐标为(4, 0),点C的坐标为 (﹣4,0),点P在 射线AB上运动,连 结CP与y轴交于点 D,连结BD.过P, D,B三点作⊙Q与 y轴的另一个交点 为E,延长DQ交⊙Q于点F,连结EF,BF. (1)求直线AB的函数解析式; (2)当点P在线段AB(不包括A,B两点)上时. ①求证:∠BDE=∠ADP; ②设DE=x,DF=y.请求出y关于x的函数解析式; (3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由. 解:(1)设直线AB的函数解析式为y=kx+4, 代入(4,0)得:4k+4=0, 解得:k=﹣1, 则直线AB的函数解析式为y=﹣x+4; (2)①由已知得: OB=OC,∠BOD=∠COD=90°, 又∵OD=OD, ∴△BOD≌△COD,

二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1)),1()1((21--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

完整word版,高考数学复习二次函数测试题

高考数学复习二次函数测试题 1.解析式、待定系数法 若()2 f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2 f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为 (0,11),则 A .1,4,11a b c ==-=- B .3,12,11a b c === C .3,6,11a b c ==-= D .3,12,11a b c ==-= 变式2:若()()2 23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2 f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、 ()2,0B x ,且2212269 x x += ,试问该二次函数的图像由()()2 31f x x =--的图像向上平移几个单位得到? 2.图像特征 将函数()2 361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值 或最小值,并画出它的图像. 变式1:已知二次函数()2 f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则 122x x f +??= ??? A .2b a - B .b a - C . c D .244ac b a - 变式2:函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、 ()1f 的大小关系是 A .()()()110f f f <-< B .()()()011f f f <-< C .()()()101f f f <<- D .()()()101f f f -<< 变式3:已知函数()2 f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________. 3.单调性 x y O

二次函数综合专题训练

二次函数综合专题训练 1.1因动点产生的线段和差问题 1.在坐标平面xoy 内,Rt △BOC 如图放置在坐标平面内,已知如图,tan ∠CBO=2,将Rt △BOC 绕直角顶点O 顺时针旋转90°得到△EOA .抛物线y=ax 2 +bx+2经过A,B,C 三点。 (1) 求抛物线的解析式; (2) 设点P 在坐标轴上,△PAE 为等腰三角形,写出点P 的坐标。 (3) 在抛物线的对称轴上是否存在一点M,使|MB-MC |最大? (4) 在抛物线上是否存在点Q ,使△BCQ 为直角三角形?若存在,求出点Q 的坐标,若不 存在,请说明理由. 2.(2012?恩施州)如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN+MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值. x y O B C E A

1.2 因动点产生的特殊三角形问题 3. 如图,在平面直角坐标xOy 中,正方形OABC 的边长为4,边OA 在x 轴的正半轴上,边OC 在y 轴的正半轴上,点D 是OC 的中点,BE ⊥DB 交x 轴于点E . (1)求经过点D 、B 、E 的抛物线的解析式;(4分) (2)将∠DBE 绕点B 旋转一定的角度后,边BE 交线段OA 于点F ,边BD 交y 轴于点G ,交(1)中的抛物线于M (不与点B 重合),如果点M 的横坐标为 512,那么结论OF= 2 1 DG 能成立吗?请说明理由;(4分) (3)过(2)中的点F 的直线交射线CB 于点P ,交(1)中的抛物线在第一象限的部分于点Q ,且使△PFE 为等腰三角形,求Q 点的坐标.(4分) 4.如图,抛物线y=ax 2+bx+c 经过点A (﹣3,0),B (1.0),C (0, 3)。 (1)求抛物线的解析式; (2)若点P 为抛物线在第二象限上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标; (3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。

相关主题
文本预览
相关文档 最新文档