二次函数综合题(5)--运动类问题
- 格式:doc
- 大小:267.85 KB
- 文档页数:6
二次函数投篮问题1.在一场篮比赛中,甲球员在距篮4米处跳投,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.75米,然后球准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的平面直角坐标系,求抛物线的解析式;(2)乙球员身高为1.91米,跳起能摸到的高度为3.15米,此时他上前封盖,在离投篮甲球员2米处时起跳,问能否成功封盖住此次投篮?(3)在(2)条件下若乙球员想要成功封盖甲球员的这次投篮,他离甲球员的距离至多要多少米?﹣﹣×时,﹣x2.如图,一位运动员在距篮下4.5米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,篮筐中心到地面距离为3.05米,建立坐标系如图.该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,他跳离地面的高度为0.2米,问这次投篮是否命中,为什么?若不命中,他应向前(或向后)移动几米才能使球准确命中?,则该抛物线解析式为,时,时,+3.5=3.05,即3.(2011•宝山区一模)如图1,小杰在一个智能化篮球场的罚球区附近练习投篮,球出手前,他测得篮框A的仰角为16.7°、篮球架底端B的俯角为24.2°,又已知篮框距离地面约3米.(1)请在答题纸上把示意图及其相关信息补全,并求小杰投篮时与篮框的水平距离;(2)已知球出手后的运动路线是抛物线的一部分,若球出手时离地面约2.2米,球在空中运行的水平距离为2.5米时,达到距离地面的最大高度为3.45米,试通过计算说明球能否准确落入篮框.(注:篮球架看作是一条与地面垂直的线段,篮框看作是一个点;投篮时球、眼睛看作是在一条与地面垂直的直线上.备用数据:sin16.7°=0.29,cos16.7°=0.96,tan16.7°=0.30;sin24.2°=0.41,cos24.2°=0.91,tan24.2°=0.45;),∴4..一名跳水运动员进行10m跳台跳水训练,在正常情况下,运动员必须在距水面5m以前完成规定的动作,并且调整好入水姿势,否则就容易出现失误,根据经验,运动员起跳后的时间t(s)与运动员距离水面的高度h(m)满足关系式:h=10+2.5t﹣5t2,那么运动员最多有多长时间完成规定动作?﹣=5.(2013•婺城区一模)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3.6米,问此次跳水会不会失误?.,或﹣,,x))×=,=6.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板AB 长为2m,跳水板距水面CD的高BC为3m,CE=5m,CF=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点hm(h≥1)到达距水面最大高度4m,规定:以CD为横轴,CB 为纵轴建立坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内如水时才能达到压水花的训练要求,求达到压水花的训练要求时h的取值范围.[x﹣(≤]7.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段.已知跳水板AB 长为2m,跳水板距水面CD的高BC为3m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距hm(h≥1)时达到距水面最大高度4m.规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.[x﹣(≤]。
二次函数与运动轨迹问题二次函数是数学中一个非常重要的概念,它描述了一个物体的运动轨迹。
在实际生活中,我们经常遇到物体的运动问题,比如投篮、射门、跳高等等。
这些运动问题都可以用二次函数来描述。
首先,我们来了解一下什么是二次函数。
二次函数的一般形式是y=ax^2+bx+c(a≠0),其中a、b、c是常数,x是自变量,y是因变量。
这个函数的图像是一个抛物线,顶点是(−b/2a,c−b^2/4a),对称轴是x=−b/2a。
在运动轨迹问题中,物体的运动可以看作是重复的直线运动和曲线运动的组合。
直线运动是物体在一段时间内沿直线移动,可以用一次函数来描述;曲线运动是物体在一段时间内沿曲线移动,可以用二次函数来描述。
以投篮为例,当篮球离开手后,它会由于重力的作用沿一条弧线运动,这条弧线的形状可以用二次函数来描述。
具体来说,如果以t表示时间,x表示篮球的水平位移,y表示篮球的垂直位移,那么篮球的运动轨迹可以表示为y=kx^2+h(k≠0),其中k和h是常数。
通过这个例子,我们可以看出二次函数在描述物体的运动轨迹方面具有重要作用。
在实际应用中,我们可以通过测量物体的运动数据,比如时间、位置、速度、加速度等,来拟合出物体的运动轨迹方程,从而更好地预测和控制物体的运动。
除了投篮,二次函数还可以描述其他类型的运动轨迹问题。
比如跳高运动中,运动员的腾空高度随时间的变化可以用二次函数来描述;在发射卫星时,卫星的轨道高度随时间的变化也可以用二次函数来描述。
总之,二次函数是描述物体运动轨迹的一个重要工具。
通过掌握二次函数的性质和应用方法,我们可以更好地解决实际生活中的运动轨迹问题,提高我们的生活质量和工作效率。
二次函数应用一.解答题(共6小题)1.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0),如图记录了甲运动员起跳后的三组数据.(1)直接写出甲运动员起跳后的y与x的函数关系式为;(2)运动员起跳后,裁判根据跳跃后的水平距离打出跳跃得分,其总分为60+1.4(x﹣90)分,求甲运动员完成本次动作的跳跃得分.(3)乙运动员的跳跃轨迹近似抛物线,满足函数关系y=a′x2﹣60a′x+c(a′≠0),若乙运动员的跳跃成绩要超过甲运动员,直接写出a′的取值范围.2.某公园有一个截面由抛物线和矩形构成的观景拱桥,如图1所示,示意图如图2,且已知图2中矩形的长AD为16米,宽AB为6米,抛物线的最高处E距地面BC为10米.(1)请根据题意建立恰当的平面直角坐标系,并求出抛物线的函数解析式.(2)若观景拱桥下放置两根长为7.5米的对称安置的立柱,求这两根立柱之间的水平距离.3.掷实心球是河南省2022年中考体育考试选考项目.一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图所示,掷出时起点处高度为,当水平距离为3m时,实心球行进至最高点3m处.设抛物线的表达式为y=a(x﹣h)2+k.(1)求y关于x的函数表达式;(2)下表是2022年新乡市体育考试女生标准,若你是评分员,请你为该女生打分.2022年新乡市中招体育考试女生标准掷实心7.87.77.67.57.47.27.17.06.96.86.66.56.46.36.26.05.85.45.04.54.0球(米)得分109.89.69.49.29.08.78.48.17.87.57.26.96.66.36.05.04.03.02.01.0(注:4.0以下均按“0”分)4.如图是小智用数学软件模拟弹球运动轨迹的部分示意图,已知弹球P从x轴上的点A向右上方弹射出去,沿抛物线l1:y=﹣x2+2x+15运动,落到图示的台阶S1﹣S5某点Q处后,又立即向右上方弹起,运动轨迹形成另一条与L1,形状相同的抛物线L2,抛物线L2的顶点N与点Q的垂直距离为4,点A到台阶底部O的距离为3,最高一是台阶S1到x 轴的距离为9,S1~S5每层台阶的高和宽均分别为1和1.5.台阶的各拐角均为直角.(1)求弹球P上升到最高点M时,弹球到x轴的距离;(2)①指出落点Q在哪一层台阶上,并求出点Q的坐标;②求出抛物线L2的解析式;(3)已知△BCD的BC边紧贴x轴,∠C=90°,BC=1,CD=2,当弹球沿粘物线L2下落能击中△BCD时,求点C的横坐标的最大值与最小值.5.小明进行实心球训练,他尝试利用数学模型来研究实心球的运动情况,建立了如图所示的平面直角坐标系,实心球从y轴上的点A处出手,运动路径可看作抛物线,在点B处达到最高位置,落在x轴上的点C处.小明某次试投时的数据如图所示.(1)根据图中信息,求出实心球路径所在抛物线的表达式.(2)若实心球投掷距离(实心球落地点C与出手点A的水平距离OC的长度)不小于9.6m,成绩为满分,请通过计算,判断小明此次试投的成绩是否能达到满分.6.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x (单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.。
一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。
初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)1.一同学推铅球,铅球高度y(m)关于时间x(s)的函数表达式为y=ax 2+bx(a≠0).若铅球在第7秒与第14秒时的高度相等,则在第m 秒时铅球最高,则m 的值为( ) A .7B .8C .10.5D .212.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .篮圈中心的坐标是()4,3.05B .此抛物线的解析式是21 3.55y x =-+ C .此抛物线的顶点坐标是()3.5,0 D .篮球出手时离地面的高度是2m3.如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m4.一学生推铅球,铅球行进的高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,则学生推铅球的距离为( ) A .35m B .3mC .10mD .12m飞行的高度()h m 与发球后球飞行的时间()t s 满足关系式22 1.5h t t =-++,则该运动员发球后1s 时,羽毛球飞行的高度为( ) A .1.5mB .2mC .2.5mD .3m6.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y =-112x 2+23x +53.则该运动员此次掷铅球的成绩是( ) A .6 mB .12 mC .8 mD .10 m7.从地面竖直向上先后抛出两个小球,小球的高度h (单位:)m 与小球运动时间t (单位:)s 之间的函数关系式为240(3)409h t =--+,若后抛出的小球经过2.5s 比先抛出的小球高103m ,则抛出两个小球的间隔时间是( )s A .1 B .1.5 C .2 D .2.58.一个运动员打高尔夫球,若球的飞行高度y (m )与水平距离x (m )之间的函数表达式为:y 150=-(x ﹣25)2+12,则高尔夫球在飞行过程中的最大高度为( )m . A .12B .25C .13D .149.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定10.如图,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y =﹣22531312x x ++,则此运动员把铅球推出多远( )11.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是______m .12.如图,是一学生掷铅球时,铅球行进高度()y cm 的函数图象,点B 为抛物线的最高点,则该同学的投掷成绩为________米.13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则他将铅球推出的距离是__________m .14.校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度()y m 与水平距离(m)x 之间的函数关系式为21251233y x x =-++,小明这次试掷的成绩是__________.15.从地面竖直向上抛出一小球,小球离地面的高度h (米)与小球运动时间t (秒)之间关系是h=30t ﹣5t 2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是______米. 16.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管的长为_____.17.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2510042y x x x =-+≤≤.水珠可以达到的最大高度是________(米).18.某运动员对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该运动员此次实心球训练的成绩为____米.19.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y =﹣5x 2+20x ,在飞行过程中,当小球的行高度为15m 时,则飞行时间是_____.20.如图,铅球运动员掷铅球的高度y (m )与水平距离x (m )之间的函数关系式是y=﹣112x 2+23x+53,则该运动员此次掷铅球的成绩是_____ m .21.一个斜抛物体的水平运动距离为x (m ),对应的高度记为h (m ),且满足h =ax 2+bx ﹣2a (其中a≠0).已知当x =0时,h =2;当x =10时,h =2. (1)求h 关于x 的函数表达式;(2)求斜抛物体的最大高度和达到最大高度时的水平距离.22.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是53m . (1)求羽毛球经过的路线对应的函数关系式; (2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为3124m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.23.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示. ()1求演员弹跳离地面的最大高度;()2已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.24.小明跳起投篮,球出手时离地面m ,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m 处达到最高度4m .已知篮筐中心距地面3m ,与球出手时的水平距离为8m ,建立如图所示的平面直角坐标系. (1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?25.在一次篮球比赛中,如图队员甲正在投篮.已知球出手时离地面209m ,与篮圈中心的水平距离为7 m ,球出手后水平距离为4 m 时达到最大高度4 m ,设篮球运行轨迹为抛物线,篮圈距地面3 m.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,对方队员乙在甲面前1 m 处跳起盖帽拦截,已知乙的最大摸高为3.1 m ,那么他能否获得成功?26.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓球与端点A的水平距离为x(米),距桌面的高度为y (米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)0 0.16 0.2 0.4 0.6 0.64 0.8 …x(米)0 0.4 0.5 1 1.5 1.6 2 …y(米)0.25 0.378 0.4 0.45 0.4 0.378 0.25 …(1)如果y是t的函数,①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;②当t为何值时,乒乓球达到最大高度?(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?27.在一场篮球比赛中,一名球员在关键时刻投出一球,已知球出手时离地面高2米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,已知篮球运行的轨迹为抛物线,篮圈中心距离地面3.19米.(1)以地面为x轴,篮球出手时垂直地面所在直线为y轴建立平面直角坐标系,求篮球运行的抛物线轨迹的解析式;(2)通过计算,判断这个球员能否投中?28.如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.()1在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)()2守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?29.初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?30.如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.(1)a=,c=;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?参考答案1.C 【解析】 【分析】由由第7秒和第14秒的高度相同,知道这两个点是关于抛物线的对称轴对称的,从而求出抛物线的对称轴,知道顶点的横坐标,得到答案. 【详解】解:由第7秒和第14秒的高度相同,知道抛物线的对称轴为7142122x +==, 所以顶点的横坐标为212,即函数取得最大值,铅球最高时的时间,所以10.5m =. 故选C . 【点睛】本题考查的是抛物线的性质,掌握抛物线上纵坐标相等的两个点是关于抛物线对称轴对称的是关键. 2.A 【解析】 【分析】设抛物线的表达式为y=ax 2+3.5,依题意可知图象经过的坐标,由此可得a 的值,可判断A ;根据函数图象可判断B 、C ;设这次跳投时,球出手处离地面hm ,因为求得21 3.55y x =-+,当x=-2,5时,即可判断D . 【详解】解:A 、∵抛物线的顶点坐标为(0,3.5), ∴可设抛物线的函数关系式为y=ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5, ∴a=15-, ∴21 3.55y x =-+,故本选项正确; B 、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误; C 、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误; D 、设这次跳投时,球出手处离地面hm ,因为(1)中求得y=-0.2x2+3.5,∴当x=-2.5时,h=-0.2×(-2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m,故本选项错误.故选:A.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.3.C【解析】【分析】直接利用h=15以及结合配方法求出二次函数最值分别分析得出答案.【详解】A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选C.此题主要考查了二次函数的应用,灵活运用所学知识是解题关键.4.C【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 令函数式21251233y x x =-++中,y =0, 即21251233x x -++=0, 解得1210,2x x ==- (舍去),即铅球推出的距离是10m.故选C.【点睛】考查二次函数的应用以及函数式中自变量与函数表达式的实际意义,需要结合题意. 5.C【解析】【分析】根据函数关系式,求出t=1时的h 的值即可.【详解】22 1.5h t t =-++∴t=1s 时,h=-1+2+1.5=2.5故选C.【点睛】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.6.D【解析】【分析】依题意,该二次函数与x 轴的交点的x 值为所求.即在抛物线解析式中.令y=0,求x 的正【详解】把y=0代入y=-112x 2+23x+53得: -112x 2+23x+=0, 解之得:x 1=10,x 2=-2.又x >0,解得x=10.故选D .7.B【解析】【分析】把t=2.5代入240(3)409h t =--+,求得3509h =,当35010320939h =-=时,解方程即可得出结论.【详解】解:把t=2.5代入240(3)409h t =--+,得3509h =, 当35010320939h =-=时,即240320(3)4099t --+=, 解得 t=4或t=-2(不合题意,舍去)∴抛出两个小球间隔的时间是4-2.5=1.5.故选B.【点睛】本题主要考查了二次函数的应用,正确理解题意是解题的关键.8.A【解析】【分析】直接根据二次函数的图象及性质即可得出答案.【详解】解:∵y 150=-(x ﹣25)2+12, 顶点坐标为(25,12), ∵150-<0, ∴当x =25时,y 有最大值,最大值为12.故选:A .【点睛】本题主要考查二次函数的最大值,掌握二次函数的图象和性质是解题的关键.9.C【解析】分析:(1)将点A (0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x =9和x =18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A (0,2)代入2(6) 2.6y a x =-+,得:36a +2.6=2, 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x =9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网, 当x =18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.10.B【解析】【分析】令y =﹣22531312x x ++=0,解得符合题意的x 值,则该值为此运动员把铅球推出的距离,据此可解.【详解】解:令y =﹣22531312x x ++=0 则:x 2﹣8x ﹣20=0∴(x+2)(x ﹣10)=0∴x 1=﹣2(舍),x 2=10由题意可知当x =10时,符合题意故选:B.【点睛】本题考查二次函数的实际应用,利用数形结合思想解题是本题的关键.11.10【解析】【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令0y =,求出x 的值,x 的正值即为所求.【详解】 在函数式21(4)312y x =--+中,令0y =,得 21(4)3012x --+=,解得110x =,22x =-(舍去), ∴铅球推出的距离是10m.【点睛】 本题是二次函数的实际应用题,需要注意的是21(4)312y x =--+中3代表的含义是铅球在起始位置距离地面的高度;当0y =时,x 的正值代表的是铅球最终离原点的距离.12.(4+【解析】【分析】根据函数的顶点B 的坐标设解析式为y =a (x −4)2+3,把(0,2)代入得出2=a (0−4)2+3,求出a ,得出函数的解析式是21(4)316y x =--+,把y =0代入解析式,求出方程的解即可. 【详解】∵函数的图象的最高点是B ,B 的坐标是(4,3),∴设函数的解析式是y =a (x −4)2+3,∵图象过(0,2)点,∴代入得:2=a (0−4)2+3, 解得:116a =-, ∴函数的解析式是21(4)316y x =--+, 把y =0代入解析式得:210(4)316x =--+,解得:1244x x =+=-∴(4A +,故答案为(4+【点睛】考查二次函数在实际问题中的应用,掌握待定系数法求二次函数解析式是解题的关键.. 13.10【解析】【分析】令y=0时求出x 的值,保留正值,即为该男生将铅球推出的距离.【详解】解:当y=0时,2125=01233x x -++, 解方程得,x 1=10,x 2=-2(负值舍去),∴该男生把铅球推出的水平距离是10 m .故答案为:10.【点睛】本题考查了二次函数在实际问题中的应用,可以用配方法写成顶点式求得;同时本题还考查了二次函数与一元二次方程的关系及解一元二次方程,本题属于中档题.14.10米【解析】【分析】根据题意,将y=0代入解析式中,求出x 的值即可.【详解】解:将y=0代入21251233y x x =-++中,得 212501233x x -++= 解得:1210,2x x ==-(不符合实际,舍去)∴小明这次试掷的成绩是10米故答案为:10米.【点睛】此题考查的是二次函数的应用,掌握x 和y 的实际意义和一元二次方程的解法是解决此题的关键.15.50【解析】【分析】根据题目中的函数解析式可以求得h 的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h =30t−5t 2=−5(t−3)2+45(0≤t≤6),∴当t =3时,h 取得最大值,此时h =45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=50(米), 故答案为:50.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.16.2.25m .【解析】【分析】设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x ≤3),将(3,0)代入求得a 值,则x=0时得y 值即为水管的长.【详解】解:由于在距池中心的水平距离为1m 时达到最高,高度为3m ,则设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x ≤3),代入(3,0)求得:a =34-, 将a 值代入得到抛物线的解析式为:y =34-(x ﹣1)2+3(0≤x ≤3), 令x =0,则y =94=2.25. 则水管长为2.25m .故答案为:2.25m .【点睛】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.17.10【解析】【分析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【详解】 解:()()222555104210222y x x x x x =-+=--=--+,当x=2时,y 有最大值10, 故答案为:10.【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.18.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】当y=0时,212501233x x -++= 解得,x=-2(舍去),x=10.故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.19.1s 或3s【解析】【分析】根据题意可以得到15=﹣5x 2+20x ,然后求出x 的值,即可解答本题.【详解】∵y=﹣5x 2+20x ,∴当y=15时,15=﹣5x 2+20x ,得x 1=1,x 2=3,故答案为1s 或3s .【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.20.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】 解:在21251233y x x =-++中,当y=0时, 212501233x x -++= 整理得:x 2-8x-20=0,(x-10)(x+2)=0,解得x 1=10,x 2=-2(舍去),即该运动员此次掷铅球的成绩是10m .故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.21.(1)h =﹣x 2+10x+2;(2)斜抛物体的最大高度为27,达到最大高度时的水平距离为5.【解析】【分析】(1)将当x =0时,h =2;当x =10时,h =2,代入解析式,可求解;(2)由h =−x 2+10x +2=−(x−5)2+27,即可求解.【详解】(1)∵当x =0时,h =2;当x =10时,h =2.∴222100102a a b a =-⎧⎨=+-⎩解得:110a b =-⎧⎨=⎩ ∴h 关于x 的函数表达式为:h =﹣x 2+10x+2;(2)∵h =﹣x 2+10x+2=﹣(x ﹣5)2+27,∴斜抛物体的最大高度为27,达到最大高度时的水平距离为5.【点睛】本题考查了二次函数的应用,求出二次函数的解析式是本题的关键.22.(1)215(4)243y x =--+;(2)此球能过网,见解析;(3)2m 【解析】【分析】(1)依题意,函数图象的顶点坐标为(4,53),则可设函数的解析式为:25(4)3y a x =-+,再由点(0,1)在抛物线上,代入求得a 即可(2)将x =5代入所求的函数解析式,求得y 即可判断;(3)将y =3124代入函数解析式求得x ,即可求出乙与球网的水平距离. 【详解】解(1)依题意,函数图象的顶点坐标为54,3⎛⎫ ⎪⎝⎭, 故设函数的解析式为:25(4)3y a x =-+,∵点(0,1)在抛物线上,∴代入得251(04)3a =-+, 解得124a =-, 则羽毛球经过的路线对应的函数关系式为:215(4)243y x =--+; (2)由(1)知羽毛球经过的路线对应的函数关系式为215(4)243y x =--+, 则当5x =时,21513(54) 1.6252438y =-⨯-+==, ∵1.625 1.55>,∴此球能过网;(3)由(1)知羽毛球经过的路线对应的函数关系式为215(4)243y x =--+, 当3124y =时,有23115(4)24243x =--+, 解得11x =(舍去),27x =,∴此时乙与球网的水平距离为:752m -=.【点睛】本题考查了二次函数在实际生活中的应用,利用待定系数法求出羽毛球经过的路线对应的函数关系式是解题的关键.23.(1) 194;(2)能成功;理由见解析. 【解析】【分析】(1)将抛物线解析式整理成顶点式,可得最大值,即为最大高度;(2)将x=4代入抛物线解析式,计算函数值是否等于3.4进行判断.【详解】 (1)y=-35x 2+3x+1=-35252x ⎛⎫- ⎪⎝⎭+194 ∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.【点睛】此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.24.(1)y=;(2)不能正中篮筐中心;3米.【解析】试题分析:(1)根据顶点坐标(4,4),设抛物线的解析式为:y=,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心.试题解析:(1)设抛物线为y=,将(0,)代入,得=,解得a=,∴所求的解析式为y=;(2)令x=8,得y==≠3,∴抛物线不过点(8,3),故不能正中篮筐中心;∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移个单位长度,故小明需向上多跳m再投篮(即球出手时距离地面3米)方可使球正中篮筐中心.考点:二次函数的应用.25.(1)能准确投中(2)能获得成功【解析】【分析】(1)根据条件先确定抛物线的解析式,然后令x=7,求出y的值,与3m比较即可作出判断;(2)将x=1代入抛物线的解析式,求出y的值与3.1比较大小即可.【详解】解:(1)由题意可得抛物线的顶点为(4,4),出手点为(0,209),设2()y a x h k=-+,则h=4,k=4,然后把点(0,209)代入解析式得19a=-,所以()21449y x=--+,当x=7时,y=3,所以此球能准确投中.(2)当x=1时,y=3<3.1,他能获得成功.考点:二次函数的应用26.(1)①见解析;②t=0.4(秒),乒乓球达到最大高度;(2)52 m.【解析】【分析】(1)①根据描出了上表中y与t各对对应值为坐标的点,画出该函数的图象即可;②利用网格中数据直接得出乒乓球达到最大高度时的时间;(2)首先求出函数解析式,进而求出乒乓球落在桌面时,与端点A的水平距离.【详解】解:(1)①如图所示,②由表格中数据可得,t=0.4(秒),乒乓球达到最大高度;(2)由表格中数据,可设y=a(x﹣1)2+0.45,将(0,0.25)代入,可得:a=﹣15,则y=﹣15(x﹣1)2+0.45,当y=0时,0=﹣15(x﹣1)2+0.45,解得:x1=52,x2=﹣12(舍去),即乒乓球与端点A 的水平距离是52m .【点睛】考点:二次函数的应用.27.(1)21(4)48y x =-+;(2)不能投中 【解析】【分析】(1)根据题意可得抛物线的顶点,设函数的顶点式,再将(0,2)代入,求得二次项系数,从而可得抛物线的解析式;(2)判断当x =7时,函数值是否等于3.19即可.【详解】(1)依题意得抛物线顶点为(4,4),则设抛物线的解析式为y =a (x ﹣4)2+4依题意得抛物线经过点(0,2)∴a (0﹣4)2+4=2解得18a =- ∴抛物线的解析式为21(4)48y x =-+ (2)当x =7时,21(4)48y x =-+=23 3.198≠ ∴这个球员不能投中.【点睛】本题考查了二次函数解析式的求法以及实际应用,关键是求得函数的解析式,借助二次函数解决实际问题.28.(1)能射中球门;(2)他至少后退0.4m,才能阻止球员甲的射门.【解析】【分析】(1)、根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;(2)、求出当x=2时,抛物线的函数值,与2.52米进行比较即可判断,再利用y=2.52求出x的值即可得出答案.【详解】(1)、抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x-4)2+3,把(10,0)代入得36a+3=0,解得a=-112,则抛物线是y=-112(x-4)2+3,当x=0时,y=-112×16+3=3-43=53<2.44米,故能射中球门;(2)当x=2时,y=-112(2-4)2+3=83>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=-112(x-4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2-1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.【点睛】本题主要考查了待定系数法求二次函数的解析式,以及二次函数的应用,属于中等难度的题型.根据题意得出函数的顶点坐标,求得函数解析式是解题的关键.29.(1)y=−19(x−4)2+4;能够投中;(2)能够盖帽拦截成功.【解析】【分析】(1)根据题意可知:抛物线经过(0,209),顶点坐标是(4,4),然后设出抛物线的顶点式,将(0,209)代入,即可求出抛物线的解析式,然后判断篮圈的坐标是否满足解析式即可;(2)当1x 时,求出此时的函数值,再与3.1m比较大小即可判断. 【详解】解:由题意可知,抛物线经过(0,209),顶点坐标是(4,4).设抛物线的解析式是()244y a x =-+, 将(0,209)代入,得()2200449a =-+ 解得19a =-, 所以抛物线的解析式是()21449y x =--+; 篮圈的坐标是(7,3),代入解析式得()2174439y =--+=, ∴这个点在抛物线上,∴能够投中 答:能够投中.(2)当1x =时,()2114439y =--+=<3.1, 所以能够盖帽拦截成功.答:能够盖帽拦截成功.【点睛】此题考查的是二次函数的应用,掌握二次函数的顶点式和利用二次函数解析式解决实际问题是解决此题的关键.30.(1)2516-,12;(2)当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ;(3)能.【解析】【分析】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a ,c 的值;(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;(3)把x =28代入x =10t 得t =2.8,把t =2.8代入解析式求出y 的值和2.44m 比较大小即可得到结论.【详解】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴20.53.50.850.8c a c =⎧⎨=+⨯+⎩, 解得:251612a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:y =﹣2516t 2+5t +12, 故答案为:﹣2516,12; (2)∵y =﹣2516t 2+5t +12, ∴y =﹣2516(t ﹣85)2+92, ∴当t =85时,y 最大=4.5, ∴当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ; (3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =﹣2516×2.82+5×2.8+12=2.25<2.44, ∴他能将球直接射入球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.。
二次函数的应用题-------网球类1、(2012安徽省14分)如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。
(1)当h=2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h 的取值范围。
【答案】解:(1)把x=0,y=,及h=2.6代入到y=a(x-6)2+h ,即2=a(0-6)2+2.6,∴1a 60=-∴当h=2.6时, y 与x 的关系式为y= 160-(x -6)2+2.6 (2)当h=2.6时,y= 160- (x -6)2+2.6 ∵当x=9时,y=160- (9-6)2+2.6=2.45>2.43,∴球能越过网。
∵当y=0时,即160- (18-x)2+2.6=0,解得x=6+156>18,∴球会过界。
(3)把x=0,y=2,代入到y=a(x-6)2+h 得2h a 36-=。
x=9时,y=2h 36- (9-6)2+h 23h 4+=>2.43 ① x=18时,y=2h 36- (18-6)2+h=h 38-≤0 ② 由① ②解得h≥83。
∴若球一定能越过球网,又不出边界, h 的取值范围为h≥83。
2、(山西)甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球飞行的水平距离s (米)与其距地面高度h (米)之间的关系式为h= 21231232s s -++如图,已知球网AB 距原点5米,乙(用线段CD 表示)扣球的最大高度为94米,设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球7的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是5<m<4+3、如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内。
专题17 二次函数与实际问题:图形运动问题1.如图,在平面直角坐标系xOy 中,将抛物线2y x bx c =-++与直线1y x =-+相交于点()0,1A 和点()3,2B -,交x 轴于点C ,顶点为点F ,点D 是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D 在直线AB 上方的抛物线上,求DAB ∆的面积的最大值以及此时点D 的坐标; (3)如图2,若点D 在对称轴左侧的抛物线上,点()1,E t 是射线CF 上一点,当以C 、B 、D 为顶点的三角形与CAE ∆相似时,直接写出所有满足条件的t 的值.2.如图,在平面直角坐标系中,抛物线y =ax 2+bx +4经过点A (4,0),B (-1,0),交y 轴于点C . (1)求抛物线的解析式;(2)点D 是直线AC 上一动点,过点D 作DE 垂直于y 轴于点E ,过点D 作DF ⊥x 轴,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点D 的坐标;(3)在AC 上方的抛物线上是否存在点P ,使得△ACP 是直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.3.如图,直线y =﹣x +n 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线的解析式;(2)E (m ,0)为x 轴上一动点,过点E 作ED ⊥x 轴,交直线AB 于点D ,交抛物线于点P ,连接BP . ①点E 在线段OA 上运动,若△BPD 直角三角形,求点E 的坐标;②点E 在x 轴的正半轴上运动,若∠PBD +∠CBO =45°.请直接写出m 的值.4.在平面直角坐标系中,抛物线22y x kx k =--(k 为常数)的顶点为N .(1)如图,若此抛物线过点()3,1A -,求抛物线的函数表达式;(2)在(1)的条件下,抛物线与y 轴交于点B ,①求ABO ∠的度数;①连接AB ,点P 为线段AB 上不与点A ,B 重合的一个动点,过点P 作//CD x 轴交抛物线在第四象限部分于点C ,交y 轴于点D ,连接PN ,当BPN BNA △△时,线段CD 的长为___.(3)无论k 取何值,抛物线都过定点H ,点M 的坐标为()2,0,当90MHN ∠=︒时,请直接写出k 的值.5.如图,已知二次函数图象的顶点坐标为C (1,0),直线y =x+m 的图象与该二次函数的图象交于A 、B 两点,其中A 点坐标为(3,4),B 点在y 轴上.(1)求m 的值及这个二次函数的解析式;(2)若P是线段AB下方抛物线上一动点,当△ABP面积最大时,求P点坐标以及△ABP面积最大值;(3)若D为直线AB与这个二次函数图象对称轴的交点,Q为线段AB之间的一个动点,过Q作x轴的垂线,与这个二次函数图象交于点E,问是否存在这样的点Q,使得四边形DCEQ为平行四边形,若存在,请求出Q点的坐标;若不存在,请说明理由.6.在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC.(1)试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自变量t的取值范围.(2)试求出当t为何值时四边形DFCE的面积为20cm2?(3)四边形DFCE的面积能为40吗?如果能,求出D到A的距离;如果不能,请说明理由.(4)四边形DFCE的面积S(cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值.7.如图,平面直角坐标系中,矩形ABCO的边OA,OC分别在坐标轴上,OA=2,OC=1,以点A为顶点的抛物线经过点C.(1)求抛物线的函数表达式;(2)将矩形ABCO绕点A旋转,得到矩形AB'C'O',使点C'落在x轴上,抛物线是否经过点C'?请说明理由.8.如图,抛物线243y ax ax a =-+(0a >),与y 轴交于点A ,在x 轴的正半轴上取一点B ,使2OB OA =,抛物线的对称轴与抛物线交于点C ,与x 轴交于点D ,与直线AB 交于点E ,连接BC .(1)求点B ,C 的坐标(用含a 的代数式表示);(2)若BCD △与BDE 相似,求a 的值;(3)连接OE ,记OBE △的外心为M ,点M 到直线AB 的距离记为h ,请探究h 的值是否会随着a 的值变化而变化?如果变化,请写出h 的取值范围:如果不变,请求出h 的值.9.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B .(1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.10.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA =OB,B(8,6),过点B作y轴的垂线,垂足为D,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求AB的长;(2)求点C的坐标;(3)点P从点C出发,以每秒1个单位的速度沿折线CB﹣BA运动;同时点Q从A出发,以每秒1个单位的速度沿AO向终点O运动,当一点停止运动时,另一点也随之停止运动.设△BPQ的面积为S,运动时间为t,求S与t的函数关系式.11.如图,抛物线y=﹣12x2+32x+2,与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求直线BC的解析式;(2)点E①线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;12.如图,正方形ABCD 的边长为4,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),连接AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x ,CQ 的长为y .(1) y 与x 之间的函数关系式,并写出自变量x 的取值范围,(2) 当x 取何值时,y 的值最大?最大值是多少?13.如图,已知二次函数23y ax ax =--的图象交x 轴于点A ,B ,交y 轴于点C ,且5AB =,直线y kx b =+(0k >)与二次函数的图象交于点M ,N (点M 在点N 的右边),交y 轴于点P ,交x 轴于点Q .(1)求二次函数的解析式;(2)若5b =-,254OPQ S =△,求CMN △的面积; (3)若3b k =-,直线AN 与y 轴相交于点H ,求CP CH 的取值范围. 14.已知抛物线26(0)y ax bx a =++≠交x 轴于点()6,0A 和点()1,0B -.(1)求抛物线的解析式和顶点C 的坐标;(2)抛物线对称轴右侧两点M ,N (点M 在点N 的左侧)到对称轴的距离分别为1.5个单位长度和4.5个单位长度,点Q 为抛物线上点M ,N 之间(含点M ,N )的一个动点,求点Q 的纵坐标Q y 的取值范围. 15.如图,已知边长为10的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,H 是BC 延长线上的一点,过点E 作AE 的垂线交DCH ∠的角平分线于点F .(1)求证:BAE CEF ∠=;(2)若2EC =时,求CEF △的面积;(3)EC 为何值时,CEF △的面积最大,最大值是多少?16.如图,在Rt ABC 中,90ACB ∠=︒,8AC =,4BC =,动点D 从点B 出发,以每秒1个单位长度的速度沿BA 向点A 运动,到达点A 停止运动,过点D 作ED AB ⊥交射线BC 于点E ,以BD 、BE 为邻边作平行四边形BDFE .设点D 运动时间为t 秒,平行四边形BDFE 与Rt ABC 的重叠部分面积为S .(1)当点F 落在AC 边上时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.17.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =+-≠与x 轴交于(1,0)A 、(3,0)B 两点,与y 轴交于点C ,其顶点为点D ,点E 的坐标为(0,1)-,该抛物线与BE 交于另一点F ,连接BC . (1)求该抛物线的解析式;(2)若点(1,)H y 在BC 上,连接FH ,求FHB △的面积;(3)一动点M 从点D 出发,以每秒1个单位的速度沿平行于y 轴方向向上运动,连接OM ,BM ,设运动时间为t 秒(0)t >,在点M 的运动过程中,当t 为何值时,90OMB ∠=︒?18.如图在平面直角坐标系中,已知抛物线y =x 2﹣2x +c 与两坐标轴分别交于A ,B ,C 三点,且OC =OB ,点G 是抛物线的顶点.(1)求抛物线的解析式.(2)若点M 为第四象限内抛物线上一动点,点M 的横坐标为m ,四边形OCMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是x 轴上的动点,判断有几个位置能够使得点P 、Q 、A 、G 为顶点的四边形为平行四边形,直接写出相应的点P 的坐标.19.在平面直角坐标系xOy中,点A(0,4)、B(3,0),抛物线y=x2﹣4x+3a+2(a为实数).(1)写出抛物线的对称轴;(2)若点(m,y1)(m+2,y2)在抛物线上,且y1>y2,求m的取值范围.(3)若该抛物线图象在﹣1≤x≤3的部分与△AOB两直角边的交点个数为2,求a的取值范围.专题17 二次函数与实际问题:图形运动问题1.如图,在平面直角坐标系xOy 中,将抛物线2y x bx c =-++与直线1y x =-+相交于点()0,1A 和点()3,2B -,交x 轴于点C ,顶点为点F ,点D 是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D 在直线AB 上方的抛物线上,求DAB ∆的面积的最大值以及此时点D 的坐标; (3)如图2,若点D 在对称轴左侧的抛物线上,点()1,E t 是射线CF 上一点,当以C 、B 、D 为顶点的三角形与CAE ∆相似时,直接写出所有满足条件的t 的值.【答案】(1)221y x x =-++;(2)面积最大为278,此时37,24D ⎛⎫ ⎪⎝⎭;(3)1t =或2t =或1t =+或1t =.【分析】(1)将A 、B 两点坐标代入即可求解函数解析式;(2)过D 作DM//y 轴交AB 于点M ,设D 点坐标为()2,21a a a -++,则M (),1a a -+,用a 表示出DM ,然后根据割补法表示出DAB ∆的面积,利用二次函数的性质得出最大值和D 点坐标; (3)根据题意,45ACE ACO ∠=∠=︒,则BCD ∆中必有一个内角为45°,有两种情况:①若45CBD ∠=︒,得出BCD ∆是等腰直角三角形,因此ACE ∆也是等腰直角三角形,在对ACE ∆进行分类讨论;②若45CDB ∠=︒,根据圆的性质确定D 1的位置,求出D 1的坐标,在对ACE ∆与1CD B ∆相似分类讨论.【详解】(1)由题意得,将将A 、B 两点坐标代入函数解析式有:100293c b c =++⎧⎨-=-++⎩,解得21b c =⎧⎨=⎩ ∴抛物线解析式为221y x x =-++;(2)如图1,过D 作DM//y 轴交AB 于点M ,设D 点坐标为()2,21a a a -++,则M (),1a a -+, ∴()222113DM a a a a a =-++--+=-+ ()()()221133322ADB ADM BDM S S S a a a a a a ∆∆∆=+=-++-+- =23993244a a ⎛⎫--+- ⎪⎝⎭ =3327228a ⎛⎫--+ ⎪⎝⎭ ∴当32a =时,DAB ∆的面积的最大值278ADB S ∆=,此时D 点坐标为37,24⎛⎫ ⎪⎝⎭; (3)∵OA//OC ,如图2,CF//y 轴∴45ACE ACO ∠=∠=︒∴BCD ∆中必有一个内角为45°,由题意得BCD ∠不能为45°①若45CBD ∠=︒,则BD//x 轴。
二次函数动点问题压轴题专题汇编(含答案)二次函数的动态问题(动点)正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限。
点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动。
当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒。
1) 求正方形ABCD的边长。
解:作BF⊥y轴于F。
则FB=8,FA=6,AB=10.2) 当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分。
求P,Q两点的运动速度。
解:由图可知,点P从点A运动到点B用了10秒。
又AB=10,故P,Q两点的运动速度均为每秒1个单位。
3) 求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标。
解:方法一:作PG⊥y轴于G,则PG∥BF。
由相似三角形可得:GA/AP=FA/AB,即6/10=t/AP,故GA=3/5t。
又OG=10-3/5t,OQ=4+t。
则S=1/2×OQ×OG=1/2×(t+4)×(10-3/5t)=-3/10t²+19/5t+20.对XXX求导得:S'=(-6/5)t+19/5,令其为0,解得t=19/3.此时S有最大值。
此时GP=76/15,OG=31/5,P的坐标为(76/15,31/5)。
方法二:当t=5时,OG=7,OQ=9,S=63/2.设所求函数关系式为S=at²+bt+20.抛物线过点(5,63/2),则a=-3/10,b=19/2.代入可得S=-3/10t²+19/2t+20.同样可得最大值时t=19/3,P的坐标为(76/15,31/5)。
4) 若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠XXX的大小随着时间t的增大而增大;沿着BC边运动时,∠XXX的大小随着时间t的增大而减小。
一.解答题(共6小题)1.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.2.如图1,P(m,n)是抛物线y=﹣1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.【探究】(1)填空:当m=0时,OP=_________,PH=_________;当m=4时,OP=_________,PH= _________;【证明】(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.【应用】(3)如图2,已知线段AB=6,端点A,B在抛物线y=﹣1上滑动,求A,B两点到直线l的距离之和的最小值.3.已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0),与直线y=2x交于点C、D.(1)求抛物线的解析式和点C的坐标;(2)将直线y=2x沿y轴向上平移,平移后的直线与抛物线交于点E、F(点E在点F的左侧),若EF=,试求点E的坐标;(3)G、H为线段CD上关于点O对称的两点,且GH=,设直线y=2x沿y轴向上平移的距离为k,在平移的过程中,若线段GH与抛物线有两个公共点,求k的范围.4.如图所示,某学校要建一个中间有两道篱笆隔断的长方形花圃,花圃的一边靠墙(墙的最大可利用长度为10m),现有篱笆长24m.设花圃的宽AB为xm,面积为Sm2.(1)求S与x之间的函数关系式;(2)如果要围成面积为32m2的花圃,AB的长是多少米?(3)能围成面积比32m2更大的花圃吗?如果能,请求出最大面积,并给出设计方案;如果不能,请说明理由.5.有一根直尺短边长2厘米,长边长10厘米,还有一块锐角为45°的直角三角形纸板,它的斜边长为12厘米.如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x≤10,直尺和三角形纸板重叠部分的面积(即图中阴影部分)为Scm2.(1)当x=0cm时,S=_________;当x=4cm时,S=_________;当x=10cm时,S=_________.(2)当4<x<6时(如图丙),请用含x的代数式表示S.(3)是否存在一个位置,使阴影部分面积为11cm2?若存在,请求出此时x的值.6.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.参考答案与试题解析一.解答题(共6小题)1.(2014•遵义)如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,坐标.(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t表示D点坐标,又D在E函数上,所以代入即可求t,进而D可表示.解答:解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)存在.如图1,过点∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ 中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x 轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,1.当E在A 点左边时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).2.当E在A 点右边时,∵OA+AE=3+ 4=7,∴E(7,0).综上所述,存在满足条件的点E,点E 的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).形,D点坐标为(﹣,﹣).理由如下:如图2,D点关于PQ与A 点对称,过点Q作,FQ⊥AP 于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD =DP,∴四边形AQDP为菱形,∵FQ∥OC,∴,∴,∴AF=,FQ=,∴Q(3﹣,﹣),∵DQ=AP=t,∴D(3﹣﹣数y=x2﹣x﹣4上,∴﹣=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴D(﹣,﹣).点评:本题考查了二次函数性质、利用勾股定理解直角三角形及菱形等知识,总体来说题意复杂但解答内容都很基础,是一道值得练习的题目.2.(2014•咸宁)如图1,P(m,n)是抛物线y=﹣1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.【探究】(1)填空:当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5;【证明】(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.【应用】(3)如图2,已知线段AB=6,端点A,B在抛物线y=﹣1上滑动,求A,B两点到直线l的距离之和的最小值.考点:二次函数综合题;两点间的距离;点到直线的距离;勾股定理.专题:代数几何综合题;探究型.分析:(1)m记为P点的横坐标.m=0时,直接代入x=0,得P(0,﹣1),则OP,PH长易知.当m=4时,直接代入x=4,得P(4,3),OP可有勾股定理求得,PH=y P﹣(﹣2).(2)猜想OP=PH.证明时因为P为所有满足二次函数y=﹣1的点,一般可设(m,﹣1).类似(1)利用勾股定理和PH=y P﹣(﹣2)可求出OP即得结论.(3)考虑(2)结论,即函数y=﹣1的点到原点的距离等于其到l的距离.要求A、B两点到l距离的和,即A、B两点到原点的和,若AB不过点O,则OA+OB>AB=6,若AB过点O,则OA+OB=AB=6,所以OA+OB≥6,即A、B两点到l距离的和≥6,进而最小值即为6.解答:(1)解:OP=1,PH=1;OP=5,PH=5.如图1,记PH与x轴交点为Q,当m=0时,P(0,﹣1).此时OP=1,PH=1.当m=4时,P(4,3).此OQ=4,∴OP==5,PH=y P﹣(﹣2)=3﹣(﹣2)=5.(2)猜想:OP=PH.证明:过点P 作PQ⊥x轴于Q,∵P在二次函数y=﹣1上,∴设P(m,﹣1),则PQ=|﹣1|,OQ=|m|,∵△OPQ为直角三角形,∴OP=====,PH=y P﹣(﹣2)=(﹣1)﹣(﹣2)(3)解:如图2,连接OA,OB,过点A作AC⊥l于C,过点B作BD⊥l于D,此时AC即为A点到l的距离,BD即为B点到l的距离.①当AB不过O点时,连接OA,OB,在△OAB中,OA+OB>AB=6,由上述结论得:AC=OA,BD=OB,∴AC+BD>6;②当AB过O点时,AC+BD=OA+OB=AB=6,所以AC+BD的最小值为6,即A,B两点到直线l的距离之和的最小值为6.点评:本题考查了学生对函数直线距离,利用勾股定理就坐标系中两点间的距离及最短距离等知识点,总体来说难度不高,但知识新颖易引发学生对数学知识的兴趣,非常值得学生练习.3.(2014•海陵区一模)已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0),与直线y=2x交于点C、D.(1)求抛物线的解析式和点C的坐标;(2)将直线y=2x沿y轴向上平移,平移后的直线与抛物线交于点E、F(点E在点F的左侧),若EF=,试求点E的坐标;(3)G、H为线段CD上关于点O对称的两点,且GH=,设直线y=2x沿y轴向上平移的距离为k,在平移的过程中,若线段GH与抛物线有两个公共点,求k的范围.考点:二次函数综合题.分析:(1)用等定系数法求得抛物线的解析式,再求出点C的坐标.(2)先求出交点的坐标,利用两点间的距离公式求出b.(3)先求出时G,H正好与抛物线相交,再求出直线与抛物线只有一个交点时的k值,再求出k的范围.解答:解:(1)把A(﹣1,0)、B(3,0),代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为:y=﹣x2+2x+3,∵与直线y=2x交于点C、D.∴2x=﹣x2+2x+3,解得x=±,∴点C(,2),点D(﹣,﹣2).(2)设平移后的直线解析式为:y=2x+b,,解得,,=2,∵EF=,∴2=,∴b=,∵点E在点F 的左侧,∴E点的坐标为(﹣,).(3)如图,∵G、H为线段CD上关于点O对称的两点,GH=,∴OH=,∵H在y=2x 上,设H的坐标为(a,2a),∴a2+(2a)2=5,解得,a=±1,∴H(1,2),G(﹣1,﹣2),当抛物线y=﹣x2+2x+3,横坐标为﹣1时,y=0,横坐标为1时,y=4,G,H正好与抛物线相交,∴此时k=2,设平移后的直线解析式为:y=2x+k,∵抛物线的解析式为:y=﹣x2+2x+3,∴2x+k=﹣x2+2x+3,化简x2=3﹣k∴只有3﹣k>0,即k<3时直线y=2x+k与抛物线有两个交点,综上所述只有当2≤k<3时,GH与抛物线有两个公共点.点评:本题主要考查了二次函数的综合题,解题的关键是能得出在y=2x+k向上平移的过程中点G,H同时在抛物线上,此时k的值为2.4.(2007•丰台区一模)如图所示,某学校要建一个中间有两道篱笆隔断的长方形花圃,花圃的一边靠墙(墙的最大可利用长度为10m),现有篱笆长24m.设花圃的宽AB为xm,面积为Sm2.(1)求S与x之间的函数关系式;(2)如果要围成面积为32m2的花圃,AB的长是多少米?(3)能围成面积比32m2更大的花圃吗?如果能,请求出最大面积,并给出设计方案;如果不能,请说明理由.考点:二次函数的应用;一元二的最值.专题:计算题.分析:(1)求出S=AB×BC代入即可;(2)求出方程﹣4x2+24x=32的解即可;(3)把解析式化成顶点式,求出顶点的坐标即可得到答案.解答:(1)解:BC=24﹣4x,∴S=x(24﹣4x)=﹣4x2+24x,答:S与x之间的函数关系式是S=﹣4x2+24x.(2)解:当S=32时,﹣4x2+24x=32,解得x1=2,x2=4,∵墙的最大可利用长度为10m,∴,∴x1=2舍去,x=4,即花圃的宽AB为4m,答:如果要围成面积为32m2的花圃,AB的长是4米.(3)解:∵S=2+36,∴当x>3时,S随x的增大而减小,∵,∴∴能围成面积比32m2更大的花圃,最大面积为35m2,方案:∵,∴花圃的长为10米,宽为3.5米,答:能围成面积比32m2更大的花圃,最大面积是35m2,方案是花圃的长为10米,宽为3.5米.点评:本题主要考查对二次函数的最值,二次函数的解析式,解一元二次方程等知识点的理解和掌握,能把实际问题转化成数学问题是解此题的关键.5.有一根直尺短边长2厘米,长边长10厘米,还有一块锐角为45°的直角三角形纸板,它的斜边长为12厘米.如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x≤10,直尺和三角形纸板重叠部分的面积(即图中阴影部分)为Scm2.(1)当x=0cm时,S=2cm2;当x=4cm时,S=10cm2;当x=10cm时,S=2cm2.(2)当4<x<6时(如图丙),请用含x的代数式表示S.(3)是否存在一个位置,使阴影部分面积为11cm2?若存在,请求出此时x的值.考点:相似形综合题.分析:(1)当x=0cm时,直尺和三角形纸板重叠部分的面积是两直角边都为2厘米的三角形面积;当x=4cm时,直尺和三角形纸板重叠部分的面积=两直角边都为6厘米的三角形面积﹣两直角边都为4厘米的三角形面积;当x=10cm时,直尺和三角形纸板重叠部分的面积是两直角边都为2厘米的三角形面积;(2)过点C做CM⊥AB于点M.当4<x<6时,根据S=梯形GDMC的面积+梯形CMEF的面积,列式计算影部分面积为11cm2,列出方程﹣x2+10x﹣14=11,解方程即可求解.解答:解:(1)当x=0cm时,S=2×2÷2=2cm2;当x=4cm时,S=6×6÷2﹣4×4÷2=10cm2;当x=10cm时,S=2×2÷2=2cm2.故答案为:2cm2;10cm2;2cm2.(2)如图所示:过点C做CM⊥AB于点M.当4<x<6时,梯形GDMC的面积=(GD+CM)×DM=(x+6)(6﹣x)=﹣x2+18,梯形CMEF的面积=(EF+CM)×ME==﹣x2+10x﹣32,S=梯形GDMC的面积+梯形CMEF的面积==﹣x2+10x﹣14;(3)当x=4时,S=10cm2,所以当S=11cm2时,x必然大于4,即﹣x2+10x﹣14=11,解得x1=x2=5,所以当x=5cm时,阴影部分面积为11cm2.点评:考查了相似形综合题,涉及的知识点有:直角三角形的面积,矩形的性质,梯形的面积,分类思想的应用,方程思想的应用,综合性较强,难度6.(2012•陕西)如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.考点:位似变换;等边三角形的性质;勾股定理;正方形的性质.专题:几何综合题;压轴题.分析:(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.解答:解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(没有分母有理化也对,x≈2.20也正确)(3)如图②,连接NE、EP、PN,则DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+P E2=2m2+2n2= 2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN 中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF +BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S=[32+(m ﹣n)2]=+(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.=3﹣3.最大∴S最大=[9+(m最大﹣n最)2]小=[9+(3﹣3﹣6+3)2]=99﹣54….(S最大≈5.47也正确)综上所述,S=99﹣最大54,S最小=.点评:本题以位似变换为基础,综合考查了正三角形、正方形、勾股定理、直角三角形边角性质等重要知识点,有一定的难度.本题关联,逐级推进,注意发现并利用好其中的联系.第(3)问的要点是求出面积和S的表达式,然后针对此表达式进行讨论,在求S最大值的过程中,利用了第(1)(2)问的结论.。
初三数学——二次函数实践与探索(5)
例1、关于x 的二次函数y =-x 2
+(k 2
-4)x +2k-2以y 轴为对称轴,且与y 轴的交点在x 轴上方. (1)求此抛物线的解析式,并在直角坐标系中画出函数的草图;
(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过D 点作DC 垂直x 轴于点C, 得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式; (3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若
例2、如图所示, 在平面直角坐标系xoy 中, 矩形OABC 的边长OA 、OC 分别为12cm 、6cm ,点A 、C 分别在y 轴的负
半轴和x 轴的正半轴上,抛物线y=ax 2
+bx+c 经过点A 、B ,且18a+c=0.
(1)求抛物线的解析式. (2)如果点P 由点A 开始沿AB 边以1cm/s 的速度向终点B 移动,同时点Q 由点B 开始沿BC 边以2cm/s 的速度向终点C 移动.
①移动开始后第t 秒时,设△PBQ 的面积为S ,试写出S 与t 之间的函数关系式,并写出t 的取值范围.
②当S 取得最大值时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形? 如果存在,求出R 点的坐标,如果不存在,请说明理由。
例3、如图1
,把一个边长为22的正方形ABCD 放在平面直角坐标系中,点A 在坐标原点,点C 在y 轴的正半轴上,
经过B 、C 、D 三点的抛物线c /
交x 轴于点M 、N(M 在N 的左边).
(1)求抛物线c /
的解析式及点M 、N 的坐标; (2)如图2,另一个边长为22的正方形////D C B A 的中心G 在点M 上,/B 、/
D
在x 轴的负半轴上(/D 在/
B 的左边),点/A 在第三象限,当点G 沿着抛物线c 1从点M 移到点N ,正方形随之移动,移动中//D B 始终与x 轴平行. ①直接写出点/A 、/B 移动路线形成的抛物线/)(c A 、/)(c B 的函数关系式;②如图3,当正方形//
//D C B A 第一次移动到与正方形ABCD 有一边在同一直线上时,求点G 的坐标.
课堂练习:
班级 姓名 班级 姓名
1、抛物线 y =-x 2+1 的开口向 ;抛物线 y =2x 2
的对称轴是 .
2、函数 y =2(x -1)2 图象的顶点坐标为 ;函数 y =x 2
+bx +3 的图象经过点(-1, 0),则 b = .
个单位,所得的抛物线的解析式为 .
x = 时,y 有最小值;当 x 时,函数值 y 随
x 的增大而增大.
-h)2
+k 的形式,则 y = .
-1的图像上,则A 点的坐标是 . 轴的交点坐标是 .
x 轴,则c 的值是 . c 的图像如图所示:则这个二次函数的解析式是 y s 与r 的关系是( )
C 、反比例函数关系
D 是二次函数,则m 等于( )A 、±2 B 、2 C 、-2 D 、±2
)
y 轴 C 、与 y 轴不相交 D 、最高点是原点 (1,0),直线 y=x+m 与该二次函数交于A ,B 两点,其中A 点(3,4),B 点在y 轴
A ,
B 重合),过P 做x 轴垂线与二次函数交于点E ,设线段PE 长为h ,点P 横坐标x 取值范围;
AB 上是否存在一点P ,使四边形DCEP 为平行四边形?若存在,请求出
25. 如图1,在平面直角坐标系中,拋物线y=ax 2
+c 与x 轴正半轴交于点F (16,0)、与y 轴正半轴交于点E (0,16),边长为16的正方形ABCD 的顶点D 与原点O 重合,顶点A 与点E 重合,顶点C 与点F 重合; (1) 求拋物线的函数表达式;
(2) 如图2,若正方形ABCD 在平面内运动,并且边BC 所在的直线始终与x 轴垂直,抛物线始终与边AB 交于点P 且同时与边CD 交于点Q (运动时,点P 不与A 、B 两点重合,点Q 不与C 、D 两点重合)。
设点A 的坐标为(m ,n ) (m>0)。
① 当PO=PF 时,分别求出点P 和点Q 的坐标;
②在①的基础上,当正方形ABCD 左右平移时,请直接写出m 的取值范围;
③ 当n=7时,是否存在m 的值使点P 为AB 边中点。
若存在,请求出m 的值;若不存在,请说明理由。
初三数学家作讲义 1、将抛物线2(0)y ax bx c a =++≠向下平移3个单位,再向左平移4个单位得到抛物线2y O B E 圖1 圖2 備用圖 班级 姓名
物线的顶点坐标是 。
2、已知二次函数c bx ax y ++=21(0≠a )与一次函数
)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2)
(如图所示),则能使21y y >成立的x 的取值范围是 . 3、如图,记抛物线21y x =-+的图象与x 正半轴的交点为A , 将线段OA 分成n 等份.设分点分别为1P ,2
P ,…,1n P -, 过每个分点作x 轴的垂线,分别与抛物线交于点1Q ,2Q ,…,1n Q -,再记直角三角形11OPQ ,122
PPQ ,…的面积分别为1S ,2S ,…,这样就有2
13
12n S n
-=,22342n S n -=,…;记
121n W S S S -=+++…,当n 越来越大时,你猜想W 最接近的常数是( ) A .23
4、二次函数
2(0)y ax bx c a =++≠(1)写出方程20ax bx c ++=(2)写出不等式20ax bx c ++>(3)写出y 随x 5、函数)0(2≠++=a c bx ax y ②若0=+-c b a 6(1)求抛物线的解析式.(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关
于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.
7、抛物线y=x²+4x+3交x 轴于A 、B 两点,交y 轴于点C ,抛物线的对称轴交x 轴于点E. (1)求抛物线的对称轴及点A 的坐标;
(2)在平面直角坐标系xoy 中是否存在点P ,与A 、B 、C 三点构成一个平行四边形?若存在,请写出点P 的坐标;若不存在,请说明理由;
(3)连结CA 与抛物线的对称轴交于点D ,在抛物线上是否存在点M ,使得直线CM 把四边形DEOC 分成面积相等的两部分?若存在,请求出直线CM 的解析式;若不存在,请说明理由.。