第三章第一节微分中值定理教学教案
- 格式:ppt
- 大小:511.50 KB
- 文档页数:29
微分中值定理与导数的应用教案第一章:微分中值定理概述1.1 引言引入微分中值定理的概念和意义。
解释微分中值定理在数学分析和物理学中的应用。
1.2 罗尔定理介绍罗尔定理的定义和条件。
通过示例解释罗尔定理的应用。
1.3 拉格朗日中值定理阐述拉格朗日中值定理的表述和条件。
通过图形和示例解释拉格朗日中值定理的应用。
第二章:导数的应用2.1 函数的单调性引入函数的单调性的概念。
解释导数与函数单调性的关系。
通过示例说明如何利用导数判断函数的单调性。
2.2 函数的极值介绍极值的概念和分类。
解释导数与函数极值的关系。
通过示例说明如何利用导数找到函数的极值点。
2.3 函数的凹凸性引入函数凹凸性的概念。
解释导数与函数凹凸性的关系。
通过示例说明如何利用导数判断函数的凹凸性。
第三章:微分中值定理的应用3.1 洛必达法则介绍洛必达法则的定义和条件。
通过示例解释洛必达法则的应用。
3.2 泰勒公式阐述泰勒公式的定义和意义。
通过示例解释泰勒公式的应用。
3.3 微分中值定理在其他领域的应用举例说明微分中值定理在物理学、工程学等领域的应用。
第四章:导数在经济学的应用4.1 边际分析介绍边际分析的概念和意义。
解释如何利用导数进行边际分析。
通过示例说明导数在边际分析中的应用。
4.2 优化问题介绍优化问题的概念和分类。
解释如何利用导数解决优化问题。
通过示例说明导数在优化问题中的应用。
第五章:微分中值定理与导数的实际应用5.1 实际应用案例介绍介绍一个实际应用案例,如工程设计、经济决策等。
解释该案例中如何应用微分中值定理和导数。
5.2 学生实践项目分配一个实际应用项目给学生们。
指导学生如何利用微分中值定理和导数解决该项目。
5.3 项目成果展示与讨论让学生们展示他们的项目成果。
进行讨论和交流,分享各自的解题思路和经验。
第六章:导数与函数图像6.1 切线与导数解释导数在函数图像上的几何意义。
展示如何从函数的导数得到函数图像上的切线。
通过实例演示导数与切线的关系。
《微分中值定理》教学设计
王淑贵
【期刊名称】《兵团教育学院学报》
【年(卷),期】1999(009)004
【摘要】微分学中值定理包括费马定理、罗尔中值定理、拉格朗日中值定理和柯西中值定理。
用发现法讲授这组定理,可以使学生体验发现真理的乐趣,学习解决问题的策略。
提高发现问题、分析问题、解决问题的能力。
文给出了用发现法讲授微分中值定理的一种教学设计.本文给出用发现法讲授微分中值定理的另一种教学设计。
【总页数】5页(P76-80)
【作者】王淑贵
【作者单位】兵团教院副教授
【正文语种】中文
【中图分类】G633
【相关文献】
1.微分中值定理的教学设计与实践 [J], 杨冰;钱淑英
2.课堂教学设计初探--\"微分中值定理\"课例教学设计与实践 [J], 牛劲;段正敏;赵中时
3.有关微分中值定理的一个推广 [J], 叶专;温志红;倪健
4.基于微分中值定理中证明题目的逆推技巧讨论 [J], 刘红娟
5.微分中值定理的研究 [J], 白瑞霞
因版权原因,仅展示原文概要,查看原文内容请购买。
高等数学教学教案第3章微分中值定理与导数的应用授课序号01显然,这3个函数在相应的开区间内没有水平切线,即不存在内点ξ,使得()=0f ξ'. (2)即使罗尔定理的3个条件不满足,但定理的结论仍可能成立.例如函数3()f x x =,显然其在闭区间[11],-上连续,在开区间(11),-内可导,在区间[11],-的两端点处函数值不相等[(1)1f -=-,(1)1f =],但仍存在0(1,1)ξ=∈-,使得()=0f ξ'[见图3.1(d )].(a) (b)(c) (d)图3.1罗尔定理的几何意义:如果连续曲线除端点外处处都具有不垂直于x 轴的切线,且两端点处的纵坐标相等,那么其上至少有一条平行于x 轴的切线(见图3.2).罗尔定理的代数意义:当()f x 可导时,在方程()0f x =的两个实根之间至少存在方程()0f x '=的一个实根.3.1.2拉格朗日中值定理定理3.2(拉格朗日中值定理) 如果函数()y f x =满足条件 (1)在闭区间],[b a 上连续; (2)在开区间),(b a 内可导;授课序号02.可以使用等价无穷小替换等方法进行化简,但该方法在有些极限计算中不一定是最授课序号03授课序号04小值)为函数)(x f 在开区间),(b a 内的最大值(或最小值),如图3.14和3.15所示.3.5.2 最值在实际问题中的应用1.在实际问题中求最值,需要先根据实际问题建立一个目标函数,求得实际定义域,若函数()f x 的定义域是开区间,且在此开区间内只有一个驻点0x ,根据实际问题的实际意义知最大值(或最小值)必存在,则可以直接确定该驻点0x 就是最大值点(或最小值点),0()f x 即为相应的最大值(或最小值).2.在经济学中,总收入函数和总成本函数都可以表示为产量(销量)q 的函数,分别记为()R q 和()C q ,则总利润函数()L q 表示为()()()L q R q C q =-.为使总利润最大,需满足最大利润原则,即满足下面两个条件: ①()()()0L q R q C q '''=-=,解得驻点0q q =; ②000()()()0L q R q C q ''''''=-<. 例题讲解例3.28 求函数796)(23++-=x x x x f 在]5,1[-上的最大值和最小值例3.29 求函数123()(1)1f x x =-+的最值.例3.30 一块边长为24cm 的正方形铁皮,在其四角各截去一块面积相等的小正方形,以做成无盖的铁盒.问:截去的小正方形边长为多少时,做出的铁盒容积最大?例3.31 要做一个容积为V 的圆柱形罐头筒,问:怎样设计才能使所用材料最省?例3.32 某工厂每月生产某种商品的个数x 与需要的总费用的函数关系为21024x x ++(费用单位:万元).若将这些商品以每个9万元售出,问:每月生产多少个商品时利润最大?最大利润是多少?授课序号05授课序号06。
微分中值定理教案章节一:引言与预备知识【教学目标】1. 理解微分中值定理的概念和意义。
2. 掌握基本函数的求导法则。
【教学内容】1. 介绍微分中值定理的背景和应用。
2. 复习基本函数的求导法则,包括幂函数、指数函数、对数函数和三角函数的求导。
【教学活动】1. 教师讲解微分中值定理的概念和意义,引导学生理解其重要性。
2. 学生自主学习基本函数的求导法则,并进行练习。
教案章节二:罗尔定理【教学目标】1. 理解罗尔定理的表述和证明。
2. 掌握罗尔定理在实际问题中的应用。
【教学内容】1. 介绍罗尔定理的表述和证明方法。
2. 通过例题讲解罗尔定理在实际问题中的应用。
【教学活动】1. 教师讲解罗尔定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习罗尔定理的应用,并进行练习。
教案章节三:拉格朗日中值定理【教学目标】1. 理解拉格朗日中值定理的表述和证明。
2. 掌握拉格朗日中值定理在实际问题中的应用。
【教学内容】1. 介绍拉格朗日中值定理的表述和证明方法。
2. 通过例题讲解拉格朗日中值定理在实际问题中的应用。
【教学活动】1. 教师讲解拉格朗日中值定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习拉格朗日中值定理的应用,并进行练习。
教案章节四:柯西中值定理【教学目标】1. 理解柯西中值定理的表述和证明。
2. 掌握柯西中值定理在实际问题中的应用。
【教学内容】1. 介绍柯西中值定理的表述和证明方法。
2. 通过例题讲解柯西中值定理在实际问题中的应用。
【教学活动】1. 教师讲解柯西中值定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习柯西中值定理的应用,并进行练习。
教案章节五:微分中值定理的应用【教学目标】1. 理解微分中值定理在实际问题中的应用。
2. 掌握利用微分中值定理解决实际问题的方法。
【教学内容】1. 介绍微分中值定理在实际问题中的应用,如求函数的单调区间、极值和最值等。
2. 通过例题讲解如何利用微分中值定理解决实际问题。
微分中值定理【教学内容】 拉格朗日中值定理 【教学目的】1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义;2、能应用拉格朗日中值定理证明不等式。
3、了解拉格朗日中值定理的推论1和推论2 【教学重点与难点】1、拉格朗日中值定理,拉格朗日中值定理的应用2、拉格朗日中值定理证明中辅助函数的引入。
3、利用导数证明不等式的技巧。
【教学过程】一、背景及回顾在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。
这样一来,类似于求已知曲线上点的切线问题已获完美解决。
但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。
另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系――搭起一座桥,这个“桥”就是微分中值定理。
由此我们学习了极值点的概念、费马定理、特别是罗尔定理,我们简单回忆一下罗尔定理的内容:若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导③)()(b f a f =则在()b a ,内至少存在一点c ,使得0)('=c f二、新课讲解1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理,但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容:2.1拉格朗日定理若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导则在开区间()b a ,内至少存在一点c ,使 ()()ab a f b fc f --=)('注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。
b 、若加上)()(b f a f =,则()()00)('=-=--=ab a b a f b fc f 即:0)('=c f ,拉格朗日定理变为罗尔定理,换句话说罗尔定理是拉格朗日定理的特例。
微分中值定理教案章节一:预备知识1.1 函数的极限教学目标:理解函数极限的概念,掌握极限的计算方法。
教学内容:引入函数极限的概念,探讨极限的性质和计算方法,如夹逼定理、单调有界定理等。
教学方法:通过具体例子和问题引导学生理解极限的概念,利用图形和数学分析软件演示极限过程,让学生体会极限的意义。
1.2 连续函数教学目标:理解连续函数的概念,掌握连续函数的性质和判断方法。
教学内容:介绍连续函数的定义,探讨连续函数的性质,如保号性、保界性等,学习连续函数的判断方法。
教学方法:通过具体例子和问题引导学生理解连续函数的概念,利用图形和数学分析软件演示连续函数的性质,让学生掌握判断连续函数的方法。
教案章节二:微分中值定理2.1 罗尔定理教学目标:理解罗尔定理的内容和意义,学会运用罗尔定理解决问题。
教学内容:介绍罗尔定理的定义,探讨罗尔定理的条件和结论,学习如何应用罗尔定理解决问题。
教学方法:通过具体例子和问题引导学生理解罗尔定理的内容,利用图形和数学分析软件演示罗尔定理的应用,让学生学会运用罗尔定理解决问题。
2.2 拉格朗日中值定理教学目标:理解拉格朗日中值定理的内容和意义,学会运用拉格朗日中值定理解决问题。
教学内容:介绍拉格朗日中值定理的定义,探讨拉格朗日中值定理的条件和结论,学习如何应用拉格朗日中值定理解决问题。
教学方法:通过具体例子和问题引导学生理解拉格朗日中值定理的内容,利用图形和数学分析软件演示拉格朗日中值定理的应用,让学生学会运用拉格朗日中值定理解决问题。
教案章节三:微分中值定理的应用3.1 导数的应用教学目标:理解导数的概念,掌握导数的计算方法。
教学内容:引入导数的概念,探讨导数的性质和计算方法,如求导法则、高阶导数等。
教学方法:通过具体例子和问题引导学生理解导数的概念,利用图形和数学分析软件演示导数过程,让学生体会导数的意义。
3.2 函数的单调性教学目标:理解函数单调性的概念,掌握函数单调性的判断方法。
《微分中值定理》教学设计第9眷l999年第4期第4期兵团教育学院JOU'~ALOFBINGTUAN蹦玎DND糟Tm丌rEx~1.9N4Dee.1999《微分中值定理》教学设计王淑责微分学中值定理包括费马定理,罗尔中值定理,拉格朗日中值定理和柯西中值定理.用发现法讲授这组定理,可以使学生体验发现真理的乐趣,学习解决问题的策略.提高发现问题,分析同题,解决问题的能力.文…给出了用发现法讲授微分中值定理的一种教学设计.本文给出用发现法讲授微分中值定理的另一种教学设计.l费马定理1.1有关概念(1)设函数f在的某个邻域U()内有定义,若对U()内的一切x都有f(x)≤U(xo)(f(x)≥U())(1)则称函数f在取得极大(小)值,称xo为函数f的极大(小)值点.如图所示,连续函数y=f(x)的图象C是一条连续曲线,x1与是f的极大值点,是f的极小值点.对应地,点(x1,f())与(,f(x3))是曲线C上的局部最高点,(.f())是曲线C上的局部最低点.(2)设菌敬f在Xo可导,若f(x0)=0,则称为函数f的稳定点.1.2问题l:可导函数f的图象在其极值点处的切线有何特点?能否用f=()表示这一特点?(1)探索问题l的答案:囝1观察图1.容易得出l}(下结论:可导函数f的图象在其板值点处的切线平行于x轴. 这一特点可表示为f()=0(2)概括上述结论,提出猜想l:设函数f在可导,若为f的极值点,则f,()=O(2)(3)判断猜想l的正确性:设为f的极小值点.则存在的某个邻域U(xo.8).使得对一切xEU(,8),均有f(x)一f(xo)I>0于是.当<x<时,≤0.当<x<+由f在可导与极限的不等式性质得到一76—f((≤0,f()(/>o故有f(xo)=0同理可得.当xo为f的极大值点时.亦有r(xo)=0于是.我们得到下面的定理.定理l:设函数f在可导.若xo为f的极值点,则f()=02罗尔中值定理2.1问题2:两端点处等高的连续的光精曲线c'是否存在平行于x轴的切线?(1)探索问题2的答案:观察图2,窖易得出下结论:若函数f在【a,b]上连续,在(a.b)内可导,并且f(a)=f(b),则f在(a,b)内至少有一个极值点毛在该点处,曲线c的切线平行于x轴,即f(})=0(2)概括上述结论,提出猜想2:若函数f在【a.b]上连续,在(a.b)内可导,并且f(a)=f(b).则在(a,b)内至少存在一点e,使得f(e)=0(3)判断猜想2的正确性:由于函数f在【a.b]上连续.所以函数f在【a,b]上存在最大值M与最小值rno若M=m,则f(x)~-c.~(x)------o.任取一点E∈(a,b).均有f(e)=0圉2若M≠m.则由f()=f(b)可知:M与m至少有一个在(a,b)内的某一点e处取得,于是.} 是f的投值点.由定理l,f(e)=0于是,我们得到以下定理.定理2:若函数f满足条件:r在【a,b]上连续;2'在(a,b)内可导;3.f()=fib)剜在(a,b)内至少存在一点∈'使得f(})=02.2思考题:定理2中的三个条件各起什么作用?取消或减弱其中一条,结论会发生什么变化?3拉格朗日中值定理3.1问题3:以A,B为端点的光精曲线c.是否存在平行于弦AB的切线?(1)探索问题3的答案:图3作曲线c的割线1,使它平行于弦AB.移动剖线1.始终保持使I平行于AB.当相邻两个割点重合于点P时.就得到了曲线C 的平行于一77—弦AB的切线.这时切线的斜率f(e)等于弦AB的斜率鱼.(2)概括上述结论.提出猜想3:设函数f在【a'b]上连续.在(a,b)内可导,则在(a,b)内至少存在一点e.使得f(e):(3)(3)判断猜想3的正确性:将f(e)=亡变塑为f(e)一幽毫=0.由此可见,若能找到一个可导函数g(x),使得g(e)=})一{{.则对g(x)应用定理2即可.为使g(x)符合上述要求,根据一求导公式,只要取g(x)=f(x)一x+c(c为任意常数)即可.特别地,当c=0时.g (x):f()一令g(x)=f(x)一x,x∈[a'b】,则g(x)在[a'b]上连续,在(a,b)内可导.并且g(a):=g(b)由定理2,在(a.)内至少存在一点e'使得g)=})一幽三:0.目㈣一于是.我们得到下面的定理:定理3:设函数f在【a'b]上连续,在(alb)内可导,则在(a,b)内至少存在一点使得f(e) :f—(.—b.)——-——f.(—a—)b—a3.2定理3与定理2的关亲:定理2是定理3的特殊情况,定理3是定理2的推广.4柯西中值定理4.1问题4:设C是以A,B为端点的光滑曲线.其参量方程为x=f(t).y=g(t).a≤t≤b,该曲线是否存在平行于弦AB的切线?(1)探索问题4的答案:作曲线C的割线l,使l平行于弦AB,移动1.始终使l平行于弦AB.当相邻两割点莺合于P时.就得到曲线C的平行于弦AB的切线.这时,切线斜率为,割线斜率为撸{罄(2)归纳上述结论,提出猜想4:若函数f与g满足条件:1.,都在[a'b]上连续;2,都在(a.b)内可导;3',f与g在(a'b)内不同时为0;4'.g(a)≠g(b).则在(a.b)内至少存在一点e,使得:(4)g(e)g(b)一g(a)——78一田4(3)判断猜想4的正确性:将=变形为[g(b)一g(a)】f(e)一【f(b)一f(a)]g(∈):0(5)由此可见,若能找到一个函数F(x),它满足定理2的条件,并且(x)=【g(b)一g(a)]f(x)一【f(b)一f(a)]g(x)(6)则对函数F(x)应用定理2即可证得(5)式成立.易知,满足条件(6)的函数F(x)应具有以下形式F(x):[g(b)一g(a)】f(x)一[f(b)一f(a)】g(x)C(c为任意常数)这样的函数F(x)是否满足定理2的条件呢?验证可知.上述F(x)确实满足定理2的所有条件.故对上述F(x)(特别地.取c=0亦可)应用定理2即可.令F(x)=【g(b)一g(a)】f(x)一[f(b)一f(a)】g(x),xE【a,b】,则F(x)在【a.b]上连续.在(a.b)内可导.并且F(a)=f(a)g(b)一g(a)f(b)=F(b),故由定理2可知,至少存在一点e∈(a,b),使得F(∈)=0,即【g(b)一g(a)]f(e)一【f(b)一f(a)]g(∈)=0'(7)假如g(e)=0.则有[g(b)一g(a)】f(e):0,由于g(a)≠g(b),所以f(∈):0,这与"f,在(a.b)内不同时为0矛盾!所以g(e)≠0.故由(7)式即可证得(4)式成立.于是,我们得到下述定理.定理4:若函数f与g满足条件:1',在[a'b】上连续;2',在(a.b)内可导;3.,f与g在(a.b)不同时为0;4',g(a)≠g(b).则在(a.b)内至少存在一点e,使得£一l=ff)g(e)g(b)一g(a)4.2定理4与定理3的关系:在定理4中.取g(t):t.即得定理3.因此,定理4是定理3的推广.5拉格朔日中值定理的应用5.1问题5:设函数f在区间I上可导.并且f一O.是否必有f(x)一c(常数)?(1)探索问题5的答案:在区问I上取定一点,对于区间I上的任意点x(≠),由定理4可知,在与x之间至少存在一点e.使得f(x)一f(xo)=f(∈)?(x一)=0?(x—xo)=0即f(x)~l(xo)于是.我们得到以下推论.推论l:若函数f在区间I上可导,并且r(x)一0,则在I上f(x)一c(2)推论2:若函数f,g在区间I上可导,并且f一.则在I上f(x)一g(x)+C注:令h(x):f(x)一g(x).由推论1即此推论.5.2证明恒等式例1证明:对任何实数x'恒有一79—啡+号,分析:令f(x)=啡+ar.c啦.xE(一∞,+∞),由推论1,只要证明"f'(x)-~--O,并且存在xo使f(xo)号"即可.证明:令f(x)=arc啦+arcctgx,xE(一∞,+..).由于"x)=1+;o,x∈(一...+),并且f(1)删1+ea~tgl号+专号所以arclgx+a号5.3证明不等式例2:证明不等式丽h<a蛐<h,(h>0)分析:由于arctgharctgh—a如,(h>0)所以,要证的不等式等价于:<趔旨<?故应对函数f(x)=眦啦在[0,h]上应用拉格朗日中值定理,将塑}转化为.然后再比较,1,1的大小即可.证明:令f(x)arc啦,x∈[0.h]因为f(x)在[0,hi上连续,在(O,h)内可导故由拉格朗日中值定理.在(O,h)内至少存在一点∈.得因为o<e<h-所以<<于是,有<墅<1又因为h>O,所以,<aret~<:h参考文献l,周祖逵:发现法讲授中值定理的一种尝试,数学通报.1991,3(作者:副教授兵团载院/石大师院)一日O一。
《高等数学》微分中值定理的说课设计引言之前,我们引进了导数的概念,详细讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,还要以此为基础,发展更多的工具.另外,我们注意到:函数与其导数是两个不同的函数;导数只是反映函数在一点的局部特征;我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系,搭起一座桥,这座“桥”就是微分中值定理.1.教材分析我讲解的这门课程所使用的教材是由科学出版社出版的河南工业大学理学院数学系所编写的《高等数学》(轻工类)(第二版)的上册,这本教材的内容符合教学大纲的要求,体系结构清晰,例题丰富,语言通俗易懂,讲解透彻,难度适中.《微分中值定理》这一小节分“罗尔定理”,“拉格朗日中值定理”,“柯西中值定理”三个部分展开,详细讲解第一、第二中值定理,需要一个课时的时间.1.1教学重、难点教学重点:微分中值定理的证明;微分中值定理的应用.难点:辅助函数的构造;定理条件的验证.1.2学情分析学生已较好地掌握了函数极限和函数的导数相关知识,正迫切地想知道导数到底有什么用,这种求知欲正好是学习本节内容的前提.另外,本班学生数学基础较好(分层教学A班),思维比较活跃,对数学新内容的学习有相当大的兴趣和积极性,这为本课的学习奠定了基础.但是本节内容理论性强,抽象度高,内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.1.3教学目标根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:对罗尔微分中值定理的第三个条件去掉得到拉格朗日中值定理进行推广,启发学生得出拉格朗日中值定理的结论,归纳构造辅助函数的方法,发展学生对数学问题的转化能力,培养学生分析问题和解决问题的能力.2.教学策略2.1教法、学法教学中遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的“四主”原则.以恰当的问题为纽带,给学生创造自主探究、合作交流的空间,启发学生证明中值定理的思路.引导学生经历数学知识再发现的过程,让学生归纳总结得出微分中值定理构造辅助函数的方法.教学以板书为主,优点在于,学生注意力集中,能有效进行师生互动.2.2教学流程及时间安排2.2.1教学流程回顾罗尔中值定理→推广到f(a)和f(b)没有限制相等的一般情形→启发拉格朗日中值定理的结论→构造辅助函数,转化利用罗尔中值定理证明→归纳构造辅助函数的方法→体会拉格朗日中值定理的应用.2.2.2时间安排及具体授课步骤1.回顾和导入新课(3分钟);2.罗尔定理及其证明(10分钟);3.拉格朗日中值定理及其证明(10分钟);4.辅助函数的构造及其中值定理的应用(10分钟);5.典型例题分析和解答(10分钟);6.总结和作业(2分钟).我们先讲罗尔定理,然后根据它推出拉格朗日中值定理.罗尔定理:设函数f(x)满足:(1)在[a,b]上连续;(2)在(a,b)内可导;(3)f(a)=f(b),那么在(a,b)内至少存在一点ξ(a希望以上资料对你有所帮助,附励志名言3条:1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。