液体T2弛豫时间测量CPMG磁共振脉冲序列实现与应用
- 格式:pdf
- 大小:682.77 KB
- 文档页数:6
弛豫与弛豫时间在磁共振现象中,终止射频脉冲后,质子将恢复到原来的平衡状态,这个恢复过程叫弛豫。
弛豫分为纵向弛豫和横向弛豫两种。
(1)纵向弛豫和纵向弛豫时间:人体在MR机磁体内可产生一个沿外磁场纵轴(Z轴)方向的总磁矩,成为纵向磁化。
发射射频脉冲后,纵向磁化消失为零。
停止射频脉冲,纵向磁化逐渐恢复至原磁化量的63%,所需时间成为纵向弛豫时间,简称T1.
(2)横向弛豫和横向弛豫时间:发射的射频脉冲还使振动的质子做同步同速运动,处于
同相位,这样,质子在同一时间指向同一方向,形成横向磁化。
停止射频脉冲,振动的质子处于不同相位,横向磁化逐渐消失至原磁化量37%,所需时间成为横向弛
豫时间,简称T2.在磁场强度一样的条件下,同一种质子的T1和T2从理论上是一样
的。
(3)MRI 成像:每个体素中氢质子的含量不同,氢质子受周围环境影响也会改变弛豫时间,这样
虽然均称为氢质子成像,但含有不同的组织的体素之间会产生弛豫时间的差别。
即同为氢质子,静磁场强度也一致,但因组织结构的差别,造成氢质子之间弛豫时间的差别,把这些弛豫时间的差别用电信号记录下来并且数字化,就成为磁共振成像的基础。
实际过程是在人为旁边安装接受线圈,在质子弛豫过程中接受线圈受到感应产生电信号,弛豫的快慢决定了信号的强弱。
记录每个像素信号的强弱变化并将其定位,经过计算机的处理就形成黑白差别的磁共振图像。
低场核磁弛豫时间低场核磁弛豫时间是核磁共振(NMR)技术中的一个重要参数,它可以用来研究物质的结构和动力学性质。
本文将从低场核磁弛豫时间的定义、测量方法、应用领域等方面进行介绍,以便读者对其有更深入的理解。
一、低场核磁弛豫时间的定义低场核磁弛豫时间是指核磁共振信号从激发到恢复原始强度所需的时间。
它反映了核自旋间的相互作用和动力学过程。
低场核磁弛豫时间可以分为纵向弛豫时间(T1)和横向弛豫时间(T2)。
纵向弛豫时间描述的是核自旋从激发状态返回到平衡状态的过程,而横向弛豫时间则描述的是核自旋在平衡状态下的相互作用和失去相干性的过程。
测量低场核磁弛豫时间的方法有很多种,常见的有脉冲序列法和连续波法。
脉冲序列法是通过给样品施加一系列的磁场脉冲,观察核磁共振信号的衰减过程来测量弛豫时间。
连续波法则是通过改变激发脉冲的频率和幅度来测量核磁共振信号的强度变化,从而得到弛豫时间。
三、低场核磁弛豫时间的应用领域低场核磁弛豫时间在许多领域都有广泛的应用。
在生物医学领域,低场核磁弛豫时间可以用来研究生物分子的结构和动力学性质,如蛋白质的折叠过程、核酸的双螺旋结构等。
在材料科学领域,低场核磁弛豫时间可以用来研究材料的磁性和电子结构,如磁性材料的磁矩、半导体材料的载流子动力学等。
在化学领域,低场核磁弛豫时间可以用来研究化学反应的动力学过程,如化学平衡的转变、化学反应速率的变化等。
四、低场核磁弛豫时间的意义和前景低场核磁弛豫时间作为核磁共振技术中的一个重要参数,对于研究物质的结构和动力学性质具有重要意义。
它不仅可以提供物质的微观信息,还可以揭示物质的宏观性质和功能。
随着核磁共振技术的发展和应用的广泛,低场核磁弛豫时间的研究将在各个领域取得更多的突破和应用。
低场核磁弛豫时间作为核磁共振技术中的一个重要参数,对于研究物质的结构和动力学性质具有重要意义。
它的测量方法多样,应用领域广泛,并且具有重要的意义和前景。
通过深入了解低场核磁弛豫时间,我们可以更好地理解物质的性质和行为,为科学研究和应用开发提供重要的支持和指导。
核磁共振弛豫时间的测量与比较罗骋韬07材料物理摘要学习讨论了核磁共振弛豫时间的分类,纵向弛豫时间两种测量方法的优劣,横向弛豫时间的多组分分析。
关键词近代物理实验、核磁共振、纵向弛豫时间、横向弛豫时间引言在实验过程中我们可以发现核磁共振可以同时辨别产生核磁共振的核子的种类和该核子的空间信息。
依据核磁共振的原理制作出的核磁共振成像仪已经大范围应用于医学,生物,矿物分析等各个领域。
本人在这里着重讨论的是核磁共振现象中,弛豫时间的三种测量方法的比较和结果分析。
理论核磁共振现象可由一些基本参数来表征它的特性,而且通过这些参数还能了解核子与其周围环境间的相互作用关系。
这些基本参数是:1.化学频移σ:在对实际物质的分子的核磁共振中,其电化学结构对非隔离的原子核必然形成干扰,反映在核磁共振的结果上就是谱线的偏移,称之为化学频移。
在实验中,我们小组测量的样本是氢化植物油,所以测量的主要对象是H原子核(质子)的磁共振现象。
在测量样本的拉莫尔频率时,我们发现在使用软件自动调节谱线位置时,有±0.05KHz左右的偏移无法消除,这就是因为样本中不同质子的化学环境不同造成的。
2. 质子浓度ρ:质子浓度可以决定磁化感应空间的磁化强度M和辐射信号的总强度。
3.弛豫时间:由于对系统激励而使总磁化强度矢量M偏过一个角度后,若关断旋转磁场,则系统就要在辐射信号的同时期渐回复到原来的状态。
这样的辐射信号称为“自由感应衰减”信号,即FID信号。
弛豫时间主要体现在FID信号上,我们把总磁化强度矢量M在Z轴上的投影的弛豫称为纵向驰豫,在X-Y轴上的投影的弛豫称为横向弛豫。
由布洛赫公式积分后可知,两项投影都以e指数形式改变,而指数上的系数的倒数即分别为纵向弛豫时间T1和横向弛豫时间T2。
布洛赫公式:122MtMtMtZZX XY YM M dd Td Md Td Md T-=-=-=-从物理意义上来看,纵向弛豫时间体现了受激核释放能量而回到基态的快慢,所以纵向弛豫称为自旋—晶格弛豫过程。
Hans Journal of Biomedicine 生物医学, 2017, 7(4), 73-78Published Online October 2017 in Hans. /journal/hjbmhttps:///10.12677/hjbm.2017.74012The Implementation and Application ofCPMG NMR Pulse Sequence for Measuring T2 Relaxation Time with Clinical MRI ScannerZijian Zhao1, Jinxi Wang1*, Bin Nie2, Changzheng Shan1, Yang Pan1, Jin Liu11Department of Radiology, Taishan Medical College, Tai’an Shandong2Department of Medical Information Engineering, Taishan Medical College, Tai’an ShandongReceived: Sep. 18th, 2017; accepted: Oct. 2nd, 2017; published: Oct. 9th, 2017AbstractObjective: To implement Carr-Purcell-Meiboom-Gill pulse sequence for T2 relaxation measuring in i_Open 0.36T clinical MRI scanner. Methods: Pascal language is engaged to edit source code.Waveform, phase, amplitude and maintaining time of the excited RF pulse, spacing time of echoes, number of times of data sampling, sampling points, sampling time, and so on are all controlled by sequence parameters. Data logging form was arranged to meet the need of T2 inversion. Source code of sequence was compiled to executable file and is loaded to RINMR software. Comparison was taken between measuring time of sample of CuSO4 solution with our pulse sequence and the given standard value. Results: Source code of CPMG sequence was done as well as the exe file can run with commercial MRI instrumentation. The measuring T2relaxation time of sample was 197.479 ms. Conclusion: The T2 value computed with our data acquired by our CPMG sequence is consistent with the given nominal value. The CPMG sequence adequately satisfies the practical ap-plication and the method can be used to implement the pulse sequence.KeywordsNuclear Magnetic Resonance, Pulse Sequence, CPMG, Implementation and Application液体T2弛豫时间测量CPMG磁共振脉冲序列实现与应用赵子剑1,王进喜1*,聂斌2,单常征1,潘洋1,刘锦11泰山医学院放射学院,山东泰安*通讯作者。
赵子剑 等2泰山医学院医学信息工程学院,山东 泰安收稿日期:2017年9月18日;录用日期:2017年10月2日;发布日期:2017年10月9日摘 要目的:探讨在i_Open 0.36T 医用磁共振成像(MRI)系统上开发测试液体T 2横向弛豫时间Carr-Purcell-Meiboom-Gill (CPMG)序列的可行性与实现方法。
方法:pascal 语言编辑源程序,可调参数控制激发脉冲波形,相位,幅度,持续时间等属性,回波间隔,数据采集次数,采样点数,采样时间等,编排数据记录方式,满足反演求T 2的需要。
编译源程序,上机调试实验,测试样品T 2,与标准值比较。
结果:完成了CPMG 序列源代码,编译的可行性文件能够在商业磁共振成像仪上运行,测得的CuSO 4溶液样品的T 2值为197.479 ms 。
结论:利用该方法实现的CPMG 序列所测样品T 2值与标称值一致,满足实际应用需要,利用该方法实现CPMG 序列是可行的。
关键词核磁共振,脉冲序列,CPMG ,实现应用Copyright © 2017 by authors and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/1. 引言核磁共振(nuclear magnetic resonance, NMR)现象自被发现以来,应用领域不断扩大,应用层次不断深化,已发展成为许多领域举足轻重的技术[1] [2] [3]。
物质的弛豫时间是与NMR 技术应用相关的两个重要属性,CPMG 序列是测量样品本征横向弛豫时间的主要方式。
NMR 技术的核心是脉冲序列[4] [5],近十几年来,我国科研工作者开始关注序列开发实现技术[6] [7] [8],但技术核心仍然掌握在发达国家手中。
出于利益考虑,各大厂商的脉冲序列实现方法一直是商业机密。
因此,研究脉冲序列的实现方法对于磁共振商业机器软硬件核心的国产化具有很重要的商业价值和实际意义。
本文探讨基于RI 谱仪的CPMG (Carr-Purcel1-Meiboom-Gill, CPMG)脉冲序列实现方法,并给出对样品的测试结果。
2. 方法2.1. 序列时序CPMG 脉冲序列的时序示意图如图1所示。
X 方向90˚射频脉冲后间隔TE/2时间施加Y 方向180˚翻转脉冲,适时开启采样命令,对信号进行采样,TE 时刻出现回波峰值,−Y 方向施加180˚脉冲,采集回波,±Y 方向依次连续施加多个180˚脉冲,在相应时间窗口依次对相应回波采样,每隔TR 时间重复上述过程,循环NS 次(NS 为叠加次数,即单一的序列执行次数),原始数据(RAW data)依次存入序列预先开辟的内存空间(k 空间),完成回波数据的采集。
数据可以用命令行方式以约定格式存储到硬盘,方便后续的调用和处理[9] [10]。
赵子剑等Figure 1. Timing diagram of CPMG pulse sequence图1. CPMG序列时序示意图2.2. 编码实现我们所用设备为万东医疗公司生产的i_Open 0.36T永磁磁共振,谱仪组件来自于英国的RI公司,支持pascal语言编码脉冲序列,pascal语言虽然不够直观,但是能够控制序列中的几乎所有元素,可以实现复杂精微的功能。
利用RI提供的底层接口协议层,编程语言用pascal,按照编程规范[9]实现各事件元素。
序列首先开辟大小为SI × C25 (SI为每个回波的采样点数,C25为序列运行一次的回波数)个32字节(每个数据点是一个复数,实部虚部都是占16个字节的实数)的内存空间用于存放采集到的原始数据。
如果采集次数NS大于1,则第二次以后采集的数据与原有数据进行累加,由于噪声的随机性,可使信号的SNR提高到NS1/2倍。
序列中的各变量因素,主要包括90˚激发脉冲持续时间、幅度、相位;180˚激发脉冲持续时间、幅度、相位;90˚和180˚脉冲时间间隔;主频率控制;偏移量控制,采样间隔,采样点数等均能通过可调参数实时修改得到反馈结果。
2.3. 序列编译与测试将序列源代码与RI提供的库文件一同编译连接,得到可执行文件,加载到磁共振调试软件,通过互动界面调试,通过后再测试样品T2。
根据实际需要初步确定实验参数,然后根据实验信号调整各个参数,T2反演是用我们开发的软件实现,对于测试用的某浓度CuSO4水溶液样品(标称值T2 = 200 ms)最后确定一组比较理想的参数如下:激发脉冲为的高斯脉冲,脉冲宽度3 ms,TR = 3000 ms,TE = 32 ms,DW = 28 μs,SI = 512,NS = 2,C25 = 16。
利用反演软件对采集数据根据反演算法求样品T2,与标准值对照验证。
3. 结果3.1. 序列源文件序列源文件是本系统最重要的部分,也是系统最重要的体现,在该模块中,使用者可以进行底层控制和参数内容调整,同时也可以对一些问题进行逻辑分析。
3.2. 可执行文件设计的脉冲序列编译后,形成一个可执行文件,然后由谱仪软件RINMR调用,加载到系统,采用图形界面的命令行方式,实时向谱仪控制软件发送指令,改变脉冲序列的参数,实现激发和数据采集功能。
3.3. 公式利用选定参数的理论分析结果和实验采集的数据及其反演结果如图2~4所示。
图2中横坐标的数字1,2,3,……处为回波峰值的所在时间点。
赵子剑 等Figure 2. Theoretic result: The amplitude of the decaying spin echoes yield an exponentially decaying curve with time constant T 2图2. 理论结果:各回波峰值按T 2参数成指数衰减的曲线Figure 3. Experimental result: The amplitude of the decaying spin echoes yield an exponentially decaying curve with time constant T 2图3. 实验结果:各回波峰值按T 2参数成指数衰减的曲线Figure 4. Computed T 2 result: 197.479 ms 图4. T 2反演结果:197.479 ms赵子剑等4. 讨论尽管FID实验对于设定磁共振仪器的基本参数非常有用,但也有许多缺点。