磁共振常用序列
- 格式:ppt
- 大小:47.00 KB
- 文档页数:19
磁共振基本序列及不同厂家磁共振常用序列磁共振基本序列T1序列T1序列(T1-weighted sequence)是一种常见的磁共振成像(MRI)序列,其信号强度与物质T1弛豫时间相关。
T1弛豫时间较长的物质会使T1序列的信号强度较高,而T1弛豫时间较短的物质则会使信号强度较低。
因此,T1序列对于显示结构、软组织的骨髓脂肪等组织有很好的区别度。
T2序列T2序列(T2-weighted sequence)也是MRI中常用的序列,其信号强度与物质的T2弛豫时间相关。
相对于T1序列,T2序列对流体信号和水分含量较高的组织(如脑脊液、肌肉等)有更好的显示效果。
而对于含有骨髓脂肪的组织,则其信号强度较低。
PD序列PD序列(Proton Density-weighted sequence)是利用物质自身的质子密度进行成像的MRI序列。
这种序列的灵敏度高,能够检测出物质的超微小结构,适合用于观察软组织和结构,特别是对肌腱、肌肉、脑部白质的成像比较明显。
FLAIR序列FLAIR序列(Fluid Attenuated Inversion Recovery sequence)是MRI序列中的一种特殊技术,适用于检查脑部及脊髓等组织液体的情况,如水肿等。
这种序列使用一个反转脉冲来消除脑脊液信号并加强白质病变的显示。
不同厂家磁共振常用序列GE医疗GE医疗推出的MRI机型中常用的磁共振序列有:•FIESTA序列:三维编码的动脉磁共振成像(MRA)序列,适用于检查颈部、脑部及腹部的血管结构。
•ASSET序列:采用并行成像技术,可以提高成像速度和精度。
•2D MERGE/FSPGR序列:适用于检查脑部病变及异常区域。
菲利普菲利普的MRI机型中常用的磁共振序列有:•Black Blood TSE序列:该序列适用于心血管领域,可以显示出较小的心脏病变。
•TSE/PDWI序列:适用于检查脑部血管和白质结构。
•3D TOF序列:该序列可以清晰地显示出颈动脉和大脑血管的狭窄和堵塞情况。
磁共振的常用序列特点及临床应用
磁共振的常用序列特点及临床应用主要包括:
1. SE(自旋回波)序列:临床使用最广泛的序列,安全、简单、无创,敏感性高,对钙化灶及脂肪显示好。
2. FSE(快速自旋回波)序列:T2加权像特别清晰,可作脂肪一水图
像反转,对颅骨、肌肉及关节显露较好。
该序列对含水量高、脂肪少
及钙质沉积少的病变显示效果优良。
3. STIR(短回声反转恢复序列):对于脂肪抑制效果良好的SE序列
来说,图像更为清晰。
4. 快速成像序列:如3D-TOF和VIBE(体积波影成像)等,对颅脑、
脊柱、脊髓、关节、肌肉及血管等的成像效果较好。
磁共振的临床应用非常广泛,包括诊断各种炎症性疾病、退行性疾病、外伤和出血等,还可以评估肿瘤的良恶性,以及进行肿瘤的介入治疗等。
此外,磁共振血管造影技术还可以用于脑血管造影。
以上信息仅供参考,如果需要了解更多信息,建议咨询专业医师。
磁共振序列缩写常考
磁共振序列的缩写经常出现在医学影像学的考试中,以下是其中一些常见的磁共振序列缩写:
1. SE(自旋回波):最常用的磁共振序列,用于产生T1和T2加权的图像。
2. GRE(梯度回波):用于显示血流和出血,常用于显示脑微出血和脑动脉瘤。
3. FSE(快速自旋回波):一种快速序列,用于产生T2加权的图像。
4. FFE(快速梯度回波):一种快速序列,用于产生T1加权的图像。
5. STIR(短时反转恢复):用于产生脂肪抑制的T2加权图像,常用于显示骨髓水肿和炎症。
6. DWI(扩散加权成像):用于显示组织中的水分子扩散情况,常用于诊断急性脑卒中和脑肿瘤。
7. MRA(磁共振血管造影):用于显示血管结构和血流情况。
8. MRS(磁共振波谱):用于分析组织代谢和生化变化。
以上是一些常见的磁共振序列缩写,不同医院和不同医生可能使用不同的缩写,建议根据具体情况判断。
磁共振基本序列及应用磁共振(Magnetic Resonance Imaging,MRI)是一种利用磁共振现象对人体进行成像的无创检查技术。
它在临床诊断中具有重要的应用价值,可以用于检测多种疾病,包括肿瘤、脑血管疾病、骨科疾病等。
磁共振成像技术的基本原理是利用人体内的原子核(大多是氢核)在强磁场和无线电波作用下的共振现象,生成图像。
磁共振成像的基本序列主要有横断面(T1加权和T2加权)、矢状面和冠状面。
不同的序列在成像原理、参数设置和图像显示方面有所区别,适用于不同部位和病变的检查。
T1加权序列是磁共振成像的基本序列之一,它通过特定的参数设置使得脂肪组织呈现高信号(白色),而水和其他组织呈现低信号(黑色)。
常用的脉冲序列有快速梯度回波(Fast Gradient Echo,FGE)和推迟梯度回波(Turbo Spin Echo,TSE)等。
T1加权序列适用于显示解剖结构,如脑灰质、白质和脑脊液。
T2加权序列是磁共振成像中另一个重要的基本序列,与T1加权序列相比,它在信号强度上相反。
T2加权成像使脑脊液和脑灰质呈现高信号,而脂肪和骨骼呈现低信号。
常用的脉冲序列有常规普通脉冲(T2WI)和涡旋涡旋回波(Fast Spin Echo,FSE)等。
T2加权序列适用于显示病变和水肿等病理改变。
此外,还有一些特殊的序列,如增强扫描序列和弥散加权序列。
增强扫描序列通过给患者注射对比剂,在血管和病变中增加信号强度,用于观察血管供应情况和病变的强化情况。
弥散加权序列通过测量水分子在磁场中的扩散情况,对组织的微观结构和组织改变进行观察。
磁共振成像技术在临床中有广泛应用。
首先,在神经科学领域,磁共振成像可以用于诊断脑梗死、脑出血、脑肿瘤等疾病,并能提供脑部结构和功能的信息。
其次,在骨科领域,磁共振成像可以用于检查关节、骨骼和软组织等,如关节退行性变、软组织肿瘤等。
再次,在心脏领域,磁共振成像可以用于观察心脏构造和心功能,并且对心肌炎、心肌梗死等疾病的检查有高度准确性。
MRI常用序列说明T1W Flair——信噪比高,灰白质对比强,对解剖结构的显示是其它序列无法代替的。
对病变,尤其是邻近皮层的小病变的检出率优于T1W SE。
对发育畸形、结构异常、脑白质病变以及脂肪瘤等的检出具有重要意义。
T2W FRFSE--常规T2像,用于一般病变的检出,如梗塞灶、肿瘤等。
T2W Flair--抑制自由水的T2图像,便于鉴别脑室内/周围高信号病灶(如多发性硬化、脑室旁梗塞灶)以及与脑脊液信号难于鉴别的蛛网膜下腔出血,肿瘤及肿瘤周围水肿等。
T2* GRE --梯度回波的准T2加权像,显示细微钙化和出血病变。
T1W FSE +fat sat:T1抑脂扫描主要用于鉴别脂肪与其他非脂肪高信号病变。
3D SPGR:可重建,用于颅内小病变的扫描,如面部神经解剖显示,或者是肿瘤的术前定位扫描。
DWI-EPI ——常规头部弥散,主要用于急性脑缺血性病变的研究,还可用于评价脑白质的发育及解剖,并能区分含顺磁性蛋白的良性肿瘤中实质部分与囊性部分。
PROPELLER--对于纠正运动伪影、金属伪影、显示病变细节方面有不可替代的优势。
PROPELLER T2以及PROPELLER DWI在临床中已逐渐取代常规T2和DWIFSE T1W fat sat+C--发现平扫未显示的病变,确定颅外/颅内肿瘤,进一步显示肿瘤内情况、鉴别肿瘤与非肿瘤性病变。
3D SPGR+C--层厚薄,分辨率高,同时可进行后处理重建,用于颅内多发细小病变的增强扫描,肿瘤病变的术前定位扫描,动脉瘤的鉴别诊断等。
头部高级功能应用灌注加权成像(PWI)--通过显示组织毛细血管水平的血流灌注情况,评价局部组织的活动及功能状况。
对于脑梗后的再灌注和侧枝循环的建立和开放很敏感,并用于鉴别肿瘤复发和放疗后组织坏死的早期改变,推断肿瘤的分化程度。
弥散张量成像(DTI)--一些组织(如神经纤维)存在特定方向密集排列的结构,水分子沿着该方向的弥散和其他方向的弥散难易程度不同,也即各向异性。
磁共振基础序列
磁共振基础序列包括自旋回波(SE)序列、快速自旋回波(FSE)序列、梯度回波(GRE)序列和反转恢复(IR)序列等。
这些序列在磁共振成像中扮演着重要角色,它们可以通过不同的参数调节来获取不同的图像信息,从而为临床诊断和治疗提供重要的影像学依据。
自旋回波(SE)序列是最常用的磁共振序列之一,它利用射频脉冲激发组织中的氢原子核,然后使用不同的回波时间(TE)和重复时间(TR)来获取不同的图像信息。
SE序列可以产生高分辨率和高对比度的图像,适用于多种疾病的诊断。
快速自旋回波(FSE)序列是一种改进的SE序列,它通过减少扫描时间提高了成像效率。
FSE序列适用于快速动态成像和实时成像,例如在心血管和腹部成像中广泛应用。
梯度回波(GRE)序列利用磁场梯度来产生图像对比,因此不需要等待自旋回波的形成。
GRE序列可以产生快速的图像,适用于血流成像和功能成像。
反转恢复(IR)序列是一种特殊类型的IR序列,它通过在射频脉冲之前和之后施加反向磁场来增加组织对比度。
IR 序列常用于脑部、脊柱和肝脏等器官的成像。
除了以上基础序列外,还有一些更复杂的磁共振序列,如弥散加权成像(DWI)、灌注加权成像(PWI)和波谱成像(MRS)等。
这些序列可以提供更多的组织生理信息和代谢信息,对于疾病的早期诊断和治疗具有重要意义。
磁共振扫描各部位基本序列解释【知识文章】标题:磁共振扫描各部位基本序列解释导语:磁共振扫描(Magnetic Resonance Imaging, MRI)是一种非侵入性的医学影像技术,通过利用强磁场和电磁波产生的共振信号,对人体内部进行成像。
在临床上,磁共振成像已广泛应用于各个部位的诊疗中。
本文将从头到尾逐个介绍磁共振扫描中各部位的基本序列,帮助读者深入理解并应用于实际诊疗中。
1. 大脑(Brain)1.1 T1加权像(T1-Weighted Image)T1加权像是一种用于显示解剖结构的基本序列。
在T1加权像中,脑脊液呈黑色,脑灰质呈深灰色,脑白质呈浅灰色,这使得我们能够清晰地观察到脑的解剖结构。
1.2 T2加权像(T2-Weighted Image)T2加权像则重点显示组织的水分含量,对于检测异常信号(例如水肿)非常敏感。
在T2加权像中,脑脊液呈白色,脑灰质呈中灰色,脑白质呈深灰色。
T2加权像能够更好地反映脑部异常情况。
2. 胸部(Chest)2.1 胸腔(Thorax)在胸腔的磁共振扫描中,常用的基本序列包括T1加权像、T2加权像和增强扫描。
通过这些序列,我们能够全面了解胸腔内部器官的解剖结构和异常情况。
2.2 心脏(Heart)对于评估心脏功能和心脏异常,我们采用特殊的心脏序列。
其中,心脏T1加权像能够提供心脏的解剖结构,而心脏功能扫描则可以评估心脏腔室的收缩和舒张功能。
3. 腹部(Abdomen)3.1 肝脏(Liver)肝脏磁共振扫描的基本序列主要有T1加权像、T2加权像和增强扫描。
借助这些序列,我们能够评估肝脏的解剖结构、肿瘤的位置、大小、性质等,并对肝脏功能进行全面评价。
3.2 胰腺(Pancreas)胰腺磁共振扫描通常采用T1加权像、T2加权像和增强扫描。
这些序列能够清晰显示胰腺的解剖结构,评估胰腺的血供情况以及检测胰腺疾病。
4. 骨骼(Skeletal)4.1 骨髓(Bone Marrow)骨髓的磁共振扫描常采用T1加权像和STIR序列。
自旋回波序列类1.SE (常规自旋回波序列)(Spin Echo)(西门子也称SE)根据TR的TE的不同组合,可得到T1加权像(T1WI ),质子加权像(PDWI ) , T2加权像(T2WI)。
T1WI现正在广泛使用于日常工作中,而PDWI和T2WI因扫描时间太长几乎完全被快速SE 取代。
2.FSE (快速自旋回波序列)(Fast Spin Echo)(欧洲厂家西门子和飞利浦以“turbo ”来表示快速,故称之为TSE(Turbo Spin Echo ))该序列的优点是(1)速度快,图像对比不降低,所以现在尤其在T2 加权成像方面几乎已经完全取代了常规SE 序列而成为临床标准序列。
(2)与常规SE 序列一样,对磁场的不均匀性不敏感;该序列的缺点有(1)如采集次数不变,S/N有所降低,一般多次采集;(2)T2加权像上脂肪信号比常规SE 像更亮,显得有些发白,易对图像产生干扰,解决的方法主要是用化学法或STIR 序列进行脂肪抑制;(3)当ETL>8 以后,图像高频部分缺失,导致一种滤波效应产生模糊,常在相位编码方向上出现图像的细节丢失;(4)RF 射频能量的蓄积;(5)磁化转移效应等。
3.SS-FSE (单次发射快速SE)(Single shot FSE RARE)(西门子称SS-TSE4.HASTE (半傅里叶单发射快速SE 序列)(half-fourier acquisition single-shot turbospin-echo)(西门子也称HASTE)该序列的有效回波时间可较短,例如80ms,提高了信噪比和组织对比。
HASTE 序列应用越来越广泛,除用于不能配合检查的患者外,还因速度快,在腹部成像中应用较多。
如用于不能均匀呼吸又不能屏气的病例, ,磁共振胰胆管成像(MRCP )、磁共振尿路成像(MRU)、肝脏扫描中增加囊性病变与实性病变的对比、显示肠壁增厚和梗阻性肿块、肿块表面和肠壁受侵犯情况、MR 结肠造影等。
磁共振常用序列解读磁共振成像(MRI)是一种常用的医学影像技术,通过磁场和射频脉冲来生成人体内部的详细图像。
在MRI中,不同的序列可以提供不同的信息,以便医生更好地诊断疾病。
以下是一些常见的磁共振序列及其解读:1.T1加权成像(T1WI):这种序列对组织的T1弛豫时间敏感。
在T1WI上,脂肪和骨髓质通常显示为高信号,而骨皮质和空气则显示为低信号。
2.T2加权成像(T2WI):这种序列对组织的T2弛豫时间敏感。
在T2WI上,骨髓质通常显示为高信号,而脂肪则显示为低信号。
3.质子密度加权成像(PDWI):这种序列对组织中氢质子的密度敏感。
在PDWI上,脂肪和骨髓质通常显示为高信号,而水和蛋白质则显示为低信号。
4.流体动力学成像(FHI):这种序列可以检测组织中流动的液体,例如血液或脑脊液。
在FHI上,流动的液体显示为高信号,而静止的液体则显示为低信号。
5.扩散加权成像(DWI):这种序列可以检测组织中水分子的扩散情况。
在DWI上,水分子的扩散情况可以反映组织的结构和功能状态。
6.灌注加权成像(PWI):这种序列可以检测组织中的血流灌注情况。
在PWI上,血流灌注的情况可以反映组织的代谢和功能状态。
7.增强成像(CEI):这种序列通常在注射造影剂后进行,以便更好地观察组织的结构和功能状态。
在CEI上,增强的组织通常显示为高信号。
以上是磁共振成像中常见的序列类型,每种序列都有其独特的成像特点和临床应用价值。
医生会根据患者的具体情况选择适当的序列来获取所需的信息。
MR常用序列成像基本原理MR(Magnetic Resonance,磁共振)成像是一种非侵入性的医学成像技术,通过利用磁共振现象对人体进行断层成像。
下面将介绍MR常用序列成像的基本原理,主要包括磁共振现象、脉冲序列和图像重建方法。
1.磁共振现象:MR成像利用了原子核的磁共振现象。
在磁场中,原子核具有自旋,一部分原子核的自旋朝向与磁场方向一致,另一部分原子核的自旋朝向与磁场方向相反。
当外加一个RF脉冲磁场时,自旋的朝向会发生偏离,并且当RF脉冲作用结束后,自旋会重新回到平衡状态。
在这个过程中,原子核会产生瞬态电流,这个电流会在接收线圈中被检测出来,从而生成信号。
2.脉冲序列:为了获取高质量的MR图像,需要设计一系列脉冲序列,这些序列分别用于激发、改变自旋状况和接收信号。
常用的脉冲序列包括激发序列、脉冲重复时间(TR)和回波时间(TE)。
激发序列:激发序列用于改变自旋的朝向,一般使用90°或180°的RF脉冲。
当自旋被激发后,它们会开始预处理并自发地发出信号。
TR时间:TR时间是指两次激发脉冲之间的时间间隔。
较长的TR时间可以增加信号强度,但同时会使成像时间延长。
TE时间:TE时间是指激发脉冲到回波信号的时间间隔。
不同的组织具有不同的T1和T2弛豫时间,通过调整TE时间可以使不同组织在图像中有不同的对比度。
3.图像重建方法:在脉冲序列激发后,接收到的信号会经过放大、滤波和数字化处理,然后进行图像重建。
K空间:在图像重建之前,信号会先经过傅里叶变换,转换到K空间。
K空间是频域中的一个空间,其中信号是由一系列频率组成。
傅里叶变换将信号由时间域转换到频域,从而可以将信号表示为K空间中的一系列频率成分。
图像重建:图像重建是将K空间转换为空间域的过程。
常见的图像重建方法有基于筛选技术的回波图像和基于逆傅里叶变换的图像重建。
基于筛选技术的回波图像是通过选择特定频率分量的信号并进行加权平均来构建图像。
磁共振各序列
磁共振成像是通过使用不同的序列来对人体进行扫描,从而提供不同类型的图像信息。
以下是几种常见的磁共振序列:
1. T1加权序列(T1-weighted sequence):这种序列对脂肪组
织显示较为明亮,对水分和其他组织显示较为暗淡。
适用于解剖学评估和结构分析。
2. T2加权序列(T2-weighted sequence):与T1加权序列相反,这种序列对水分和其他组织显示较为明亮,对脂肪组织显示较为暗淡。
适用于检测液体积聚、病变和肿瘤等。
3. 脂肪抑制序列(fat suppression sequence):通过特殊的脉冲序列对脂肪信号进行抑制,从而增强其他组织的显示效果。
适用于检测肿瘤、炎症和肌腱损伤等。
4. 弥散加权序列(diffusion-weighted sequence):通过测量水
分子在组织中的微小运动来获取图像信息,适用于检测脑部缺血和脑卒中等疾病。
5. 动脉旋转磁共振序列(time of flight sequence):通过脉冲
序列的选择性饱和来实现动脉血液和静脉血液之间的对比,适用于评估血管病变和动脉瘤等。
6. 对比增强序列(contrast-enhanced sequence):在扫描过程
中使用对比剂来增强血管和病变区域的显示效果,适用于肿瘤检测和评估血管病变。
这些磁共振序列各具特点,可以根据具体的病情或需要选择适合的序列进行扫描。