核磁共振实验中三种基本脉冲序列的特点和应用
- 格式:ppt
- 大小:1.31 MB
- 文档页数:18
磁共振序列名称
磁共振成像是一种非侵入性的影像技术,可以提供高分辨率和高对比度的图像。
在进行磁共振成像时,需要通过不同的磁共振序列来获取不同类型的图像。
磁共振序列是指在磁共振成像中使用的一种特定的脉冲序列,包括激发脉冲、相位编码、读出梯度以及回波信号等。
磁共振序列的选择可以根据病人的病情、所需的解剖学信息和研究目的等因素来确定。
在磁共振成像中,常见的磁共振序列包括:
1. T1加权序列:T1加权序列是一种以长TR(重复时间)和短TE(回波时间)为特征的序列。
在这种序列中,脂肪和水的信号强度相对较低,而肌肉和脑脊液的信号强度相对较高。
因此,T1加权序
列在检测解剖学结构和病变方面具有重要作用。
2. T2加权序列:T2加权序列是一种以长TR和长TE为特征的序列。
在这种序列中,水的信号强度相对较高,而脂肪的信号强度相对较低。
T2加权序列可以检测到水肿、炎症和肿瘤等病变。
3. 弥散加权序列:弥散加权序列是一种以梯度脉冲和长TE为特征的序列,可以检测水分子的弥散。
在这种序列中,弥散的水分子信号强度较高,而受限制的水分子信号强度较低。
弥散加权序列可以检测脑梗死、白质疾病和神经纤维损伤等。
4. 脂肪饱和序列:脂肪饱和序列可以抑制脂肪信号,使得其他
组织的信号更加明显。
这种序列对于检测肝脏、胸部和盆腔等部位的病变具有重要作用。
总之,选择合适的磁共振序列对于正确诊断疾病和评估治疗效果非常重要。
同时,随着磁共振成像技术的不断发展,还会出现更多的磁共振序列,帮助医生更好地了解病情和进行治疗。
磁共振的常用序列特点及临床应用
磁共振的常用序列特点及临床应用主要包括:
1. SE(自旋回波)序列:临床使用最广泛的序列,安全、简单、无创,敏感性高,对钙化灶及脂肪显示好。
2. FSE(快速自旋回波)序列:T2加权像特别清晰,可作脂肪一水图
像反转,对颅骨、肌肉及关节显露较好。
该序列对含水量高、脂肪少
及钙质沉积少的病变显示效果优良。
3. STIR(短回声反转恢复序列):对于脂肪抑制效果良好的SE序列
来说,图像更为清晰。
4. 快速成像序列:如3D-TOF和VIBE(体积波影成像)等,对颅脑、
脊柱、脊髓、关节、肌肉及血管等的成像效果较好。
磁共振的临床应用非常广泛,包括诊断各种炎症性疾病、退行性疾病、外伤和出血等,还可以评估肿瘤的良恶性,以及进行肿瘤的介入治疗等。
此外,磁共振血管造影技术还可以用于脑血管造影。
以上信息仅供参考,如果需要了解更多信息,建议咨询专业医师。
拉姆齐脉冲序列拉姆齐脉冲序列(Ramsey Pulse Sequence)是一种在核磁共振(NMR)和电子顺磁共振(EPR)等实验中使用的脉冲序列。
它主要用于激发和操纵原子核或电子的自旋状态,以特定的物理信息。
拉姆齐脉冲序列的特点是,通过一系列精心设计的脉冲,可以实现对自旋系统的精确控制。
这种序列通常包括一个或多个180度冲,用于翻转自旋方向,以及一些90度脉冲,用于混合不同的自旋状态。
拉姆齐脉冲序列的重要性和应用范围,使其成为核磁共振和电子顺磁共振领域的一个重要研究课题。
在实验中,通过优化拉姆齐脉冲序列的参数,可以获得高质量的实验数据,从而提高物理研究的准确性和可靠性。
拉姆齐脉冲序列的名称来源于英国物理学家弗雷德里克·拉姆齐(Frederick S. Ramsey),他在1948年提出了一种用于核磁共振实验的脉冲序列,用以研究核自旋系统的动力学特性。
这种脉冲序列能够有效地将核自旋系统从初始状态转移到一个特定的目标状态,并且能够在不需要知道系统详细动力学的情况下,通过观察系统随时间的演化,推断出系统的性质。
拉姆齐脉冲序列的基本思想是通过一系列脉冲来操纵核自旋,从而在不同的时间点上观察到核自旋的演化。
这种序列通常包括一个初始的90度脉冲,用以初始化核自旋系统,随后是一系列中间的90度脉冲和180度脉冲,以及最终的测量脉冲。
通过这种方式,拉姆齐脉冲序列能够创建一个被称为“自由进动”的状态,在这种状态下,核自旋不再受到外部场的控制,而是自由地进动。
在实际应用中,拉姆齐脉冲序列被用于各种核磁共振实验,包括核磁共振成像(MRI)、核磁共振波谱(NMR Spectroscopy)和电子顺磁共振(EPR)等。
它可以用于研究核自旋的耦合常数、旋进频率、relaxation 时间等物理参数。
此外,拉姆齐脉冲序列还被扩展应用于量子计算和量子信息领域,用于实现量子逻辑操作和量子算法。
总之,拉姆齐脉冲序列是一种在核磁共振和电子顺磁共振领域非常重要的脉冲序列,它通过精确的脉冲控制,使得研究者能够操纵和观测核自旋系统的演化,从而获得有关系统性质的重要信息。
常用脉冲系列及其运用本节学习中应重点掌握SH,IR,常规GRE,和绕相GRE系列熟悉平行稳态自由进动系列和回波平面成像(EPI)技术,了解其他系列。
所有MR信号都需要通过一定的脉冲系列才能获取。
因此,脉冲系列是MRI技术的重要组成部分,它控制着系统施加RF脉冲、梯度长和数据采集的方式,并由此决定图像信号的加权、图像质量以及显示病变的敏感性。
目前已研发出很多不同类型的脉冲系列,目的是获得不同信号对比的加权图像,但其中仅有三种类型的脉冲系列是最基本的:自旋回波(SE)、反转恢复(IR)和梯度回波(GRE)。
所有其他系列的脉冲系列,实际上都是这三种类型的异性。
一、SE脉冲系列(一)常规SE脉冲系列1、常规SE脉冲系列过程:90°RF激励脉冲-180°重聚相位脉冲-获取回波;90°RF激励脉冲……从90°脉冲至下一次90°脉冲的时间间隔为TR,从90°脉冲至获取回波时间的间隔为TE。
TR和TE是脉冲系列中最重要两个扫描定时参数。
2、在SE脉冲系列中,90°脉冲后仅使用一次180°的重聚相位脉冲,则仅取得一次回波(单回波),在实际工作中常用于获取T1WI;如90°脉冲后使用两次180°重聚相位脉冲,则能取得双回波,其中使用长TR 、短TE取得的第一次回波产生PDWI,使用长TR、长TE取得的第二次回波用于产生T2WI。
3、常规SE脉冲序列是最基本的成像序列,适用于大多数MRI检查。
T1WI具有较高的SNR,适于显示解剖结构,也是增强检查的常规序列,因为磁顺性对比剂具有缩短质子T1弛豫时间的效应。
常规SE脉冲的主要优点是SNR高,图像质量好,用途广,可获得对显示病变敏感的真正T2WI。
主要缺点是扫描时间相对较长。
(二)FSE脉冲系列1、常规SE脉冲系列在90°激励脉冲后仅施加一次180°重聚相位脉冲,取得一次回波并进行一次相位编码。
磁共振常用序列及其特点MRI的基本脉冲序列主要有自旋回波序列和梯度回波序列两大类。
本期简要介绍临床常用序列及其特点。
名称GE飞利浦西门子自旋回波SE SE SESE序列具有信噪比高、组织间对比度好、对磁场的均匀性不敏感等特点。
以前常用于颅脑,四肢关节的扫描,但由于SE序列在一次90度脉冲激发后,只采集一个回波信号,其扫描时间太长,现几乎不用SE序列扫描了,只有在低场强中很少的T1WI还在用SE序列。
缺点:扫描时间太长。
快速自旋回波FSE TSE TSE为了提高扫描速度,在SE序列基础上引入了回波链,衍生了FSE序列。
缺点:脂肪信号较SE序列高;SAR升高;图像较SE序列组织对比下降,易产生模糊效应。
加强快速自旋回波FSE-XL//为了缩短回波间隙和增加组织间对比,在FSE基础上开发出了FSE-XL序列。
主要用于T2WI成像。
快速翻转(恢复)快FR-FSE TSE-DRIVE TSE-Restore速自旋回波FSE序列的扫描速度还不够快,,且TR时间还存在冗余,则人为的使用了一个180度复相脉冲,加快了组织的纵向驰豫,使得TR极大的缩短,从而加快扫描速度。
缺点:不能用于T1WI成像。
单次激发快速自旋回SS-FSE SSH-TSE SSTSE/HATSE波一次90度激发脉冲后,利用连续的180度脉冲填充完整个K 空间数据,该序列一幅图像的采集速度可到达亚秒级。
主要用于胸腹部的屏气序列;水成像,如MRCP、MRU等;配合欠佳患者的颅脑扫描等。
缺点:原则上只能进行T2WI成像(T2权重很重);脂肪信号较高;SAR高;图像组织对比欠佳,易产生模糊伪影。
半傅里叶单次激发快SS-FSE half-SS-TSE SS-TSE速自旋回波原理同单次激发快速自旋回波序列,与其相比K空间只需填充一半多点数据。
扫描速度更快。
主要用于一些超快速扫描,如胸腹部的屏气序列;水成像(如MRCP、MRU等);配合欠佳患者的颅脑扫描等。
核磁共振实验中三种基本脉冲序列的特点和应用0730******* 武帅材料物理摘要核磁共振实验中,不同射频脉冲会对样品产生不同的激励,这将导致得到的核磁共振信号的差异。
因此,射频脉冲序列的恰当选择对实验的结果有着很重要的影响。
在本实验中,我们主要使用了三种基本的核磁共振脉冲序列来激励大豆油样品,对其纵向和横向弛豫时间进行测量。
本文主要就这三种基本脉冲序列的特点、应用以及演变进行讨论和总结,以达到正确选择脉冲序列来合理测量样品性质的目的。
关键词核磁共振射频脉冲引言核磁共振原理:对置于外磁场中的自旋核系统,沿着垂直于外场的方向施加一个频率与拉莫尔频率相同的射频电磁场B1,在该作用下,磁化矢量以B1为轴做章动,即圆周运动。
施加的射频脉冲使得磁化矢量Mo偏离Z方向一个角度θ,θ=βB1τ,θ=90°的是90°射频脉冲,同样若θ=180°则为180°射频脉冲。
图1 核磁共振原理图1施加的射频脉冲使得宏观磁化矢量既以外磁场为轴进动,同时也要在该射频场的作用下章动,这使得宏观磁化矢量M的运动为一条球面螺旋线。
这种使得宏观磁化矢量发生偏转的现象即为核磁共振现象。
实验中我们使用的是NMI20Analyst 台式核磁共振成像仪,采用脉冲傅里叶变换法(FT-NMR),这种方法中的射频脉冲有一定的时间宽度,射频有一定带宽,相当于多个单频连续波核磁共振波谱仪在同时进行激励,因此在较大的范围内就可以观察到核磁共振现象(NMR)。
弛豫过程:系统从激励状态恢复到原始状态的过程就叫弛豫过程。
纵向弛豫时间T1,指的是自旋核释放激励过程中吸收的射频能量返回到基态的过程所用的时间,其快慢主要取决于自旋的原子核与周围分子之间的相互作用情况。
横向弛豫时间T2,指的是激励过程使质子进动相位的一致性逐渐散相(即失去相位一致性)的过程,其散相的有效程度与质子所处的周围分子结构的均匀性有关。
结构越均匀,散相效果越差。