磁共振成像脉冲序列2
- 格式:ppt
- 大小:11.85 MB
- 文档页数:151
30T磁共振参数要求磁共振成像(MRI)是一种无创性、高分辨率、多功能的影像学检查技术,广泛应用于医学诊断领域。
影像质量的好坏直接影响到诊断的准确性,因此磁共振参数的设置对于获得高质量的影像至关重要。
以下是30T 磁共振参数的要求:1.磁场强度:30T磁场强度是指MRI设备的主磁场强度,30T的主磁场强度相对较高,可以提供更高的信噪比和更好的空间分辨率。
2.脉冲序列:T1加权和T2加权序列T1加权序列适用于结构清晰、组织对比度好的影像,T2加权序列适用于显示组织水肿、炎症和肿瘤等病变。
3. 空间分辨率:0.1mm × 0.1mm × 0.1mm空间分辨率是指MRI影像中最小可分辨的空间单位大小,30T磁共振要求的空间分辨率为0.1mm × 0.1mm × 0.1mm,可以显示出更加细致的解剖结构。
4.继发波:梯度回波序列梯度回波序列可以在保持高空间分辨率的同时缩短扫描时间,提高成像效率。
5. 脉冲重复时间(TR):短至10ms脉冲重复时间是指两个连续脉冲的间隔时间,30T磁共振要求的TR 要尽可能地短,以提高扫描速度和减少运动伪影。
6. 脉冲间隔时间(TI):短至50ms脉冲间隔时间是指选择性反转脉冲和激发脉冲之间的时间间隔,30T磁共振要求的TI也要尽可能地短,以获得更清晰的T1加权影像。
7. 磁场均匀性:小于10ppm磁场均匀性是指磁场在空间分布上的均匀性,30T磁共振要求磁场均匀性小于10ppm,以避免磁场偏移导致的影像伪影。
8.平均信噪比:大于100dB平均信噪比是指MRI影像中信号和噪声的比值,30T磁共振要求平均信噪比大于100dB,以获得清晰的影像和准确的诊断信息。
9.渐强技术:采用优化的渐强技术渐强技术可以在成像时通过调整梯度强度和方向来进一步优化影像质量,30T磁共振要求采用优化的渐强技术以获得更好的成像效果。
总之,30T磁共振的参数要求非常苛刻,需要设备具有高磁场强度、优化的脉冲序列、高空间分辨率、短TR和TI、良好的磁场均匀性和信噪比等特点,以实现高质量的成像效果。
第二章射频脉冲与脉冲序列(2)3.梯度回波脉冲序列3.1梯度回波脉冲序列的基础理论梯度回波(Gradient Echo,GRE)序列也成为场回波序列(Field Echo,FE),也是非常基本的成像序列。
GRE序列是目前MR快速扫描序列中最为成熟的方法,不仅可缩短扫描时间,而且图像的空间分辨力和SNR均无明显下降。
GRE序列与SE序列主要有两点区别,一是使用小于90°(常用α角度)的射频脉冲激发,并采用较短的TR 时间;另一个区别是使用反转梯度取代180°复相脉冲。
MRI成像中,XY平面上的横向磁距才能被MRI机测量到具体数值或强度。
90°脉冲对纵向磁距激发后,横向磁距按T2*快速衰减,SE序列采用再给予一个180°脉冲的方法使T2*快速衰减的横向磁距重新出现,以供测量。
但是,在GRE序列时就不用1800脉冲来重聚焦,而是用一个紧接的反方向梯度来重新使快速衰减的横向磁距再现,同样也可获得一个回波信号,进行成像。
这种序列就是梯度回波序列。
由于梯度回波序列使用反向梯度来获得回波,这个回波的强度是按T2*衰减的,与使用180°脉冲的SE序列是不同的。
所以,GRE序列要求磁场有更高的稳定性,梯度的切换要非常快。
GRE时,第一个脉冲不必用90°脉冲,常用小角度翻转角,使用小于90°的射频脉冲激励,在横向部分有相当大的磁化失量,而纵向磁化失量Mz的变动相对较小。
如30°脉冲可使50%的磁化失量倾倒到横向平面,而保留87%的纵向磁失量。
信号幅度分为纵、横向两部分,仅数十秒,Mz即可恢复到平衡状态。
因此,与传统的自旋回波序列相比,TR和TE都可以很短,在很短的TR时间内反复对组织的小角度激发,一般三次激发后,纵向上的磁距复原值就趋向一个定值。
所以,小角度翻转角成像时组织T1值对图像没有影响,获得的图像是T2*(实际横向弛豫时间)加权像。
磁共振不同序列的原理与应用磁共振成像(Magnetic Resonance Imaging,MRI)是一种基于核磁共振现象的医学成像技术,广泛用于医学领域。
磁共振成像利用磁场、梯度磁场和射频脉冲与人体内的水分子进行相互作用,通过检测信号来获取人体内部的结构和功能信息。
在磁共振成像过程中,各种序列的选择对于获得准确的图像是至关重要的。
下面将介绍几种常用的磁共振序列及其原理和临床应用。
1. T1加权图像T1加权图像是一种基本的磁共振成像序列,常用于显示组织的解剖结构。
T1加权图像主要利用不同组织中的原子核自旋松弛时间的差异来实现图像对比的调节。
在T1加权图像中,脂肪信号较高,水信号较低。
这种序列在显示解剖结构清晰、脑脊液与囊性病灶显示良好方面具有优势。
临床应用上,T1加权图像可以帮助医生评估肿瘤的位置、体积和浸润程度,对于诊断和治疗策略的制定具有重要价值。
2. T2加权图像T2加权图像是另一种常用的磁共振成像序列,可用于显示组织的水分含量和水分子热运动。
T2加权图像中,水信号较高,脂肪信号较低。
相比于T1加权图像,T2加权图像对于肿瘤、炎症和水肿等病变的显示更为敏感。
临床上,T2加权图像常用于检测和评估炎症损伤、水肿、水样囊肿等疾病。
此外,T2加权图像还对于评估心肌梗死的范围和程度、颅内结构及脊柱椎管疾病等有着重要的临床意义。
3. 弥散加权图像弥散加权图像是一种显示组织内部微小结构及水分子弥散状况的序列。
弥散加权图像通过测量水分子在组织中的扩散来提供不同的对比。
在该序列中,组织中的限制性扩散产生低信号,而自由扩散则产生高信号。
临床上,弥散加权图像常用于脑部和肝脏的评估。
特别是在脑卒中早期诊断、定位和判断卒中灶的大小、肝脏病变检测等方面具有重要的临床应用。
4. 动态对比增强序列动态对比增强序列是一种通过注射对比剂并连续扫描来观察组织对比剂的分布和动力学变化情况的序列。
动态对比增强序列可以帮助医生区分不同病变类型、评估血供和血管情况。
M R I脉冲序列学习目标1.掌握:自旋回波序列;反转恢复脉冲序列;梯度回波脉冲序列;平面回波成像序列及其各自衍生序列的结构及检测原理2.熟悉:脉冲序列的相关成像参数;常用脉冲序列及各自衍生序列的特点和临床应用3.了解:脉冲序列的组成;脉冲序列的分类4.学会:运用所学知识,根据患者病情选择合适的磁共振成像序列5.具有:合理调整常用成像序列扫描参数,满足图像质量控制要求的能力目录第一节概述第二节自由感应衰减序列第三节自旋回波脉冲序列第四节反转恢复脉冲序列CONTENT第五节梯度回波脉冲序列第一节概述MR信号需要通过一定的脉冲序列(pulse sequence)才能获取。
脉冲序列是MRI技术的重要组成部分,只有选择适当的脉冲序列才能使磁共振成像参数(射频脉冲、梯度磁场、信号采集时间)及影响图像对比的有关因素相结合,得到较高信号强度和良好的组织对比的MR图像MRI的脉冲序列是指射频脉冲、梯度磁场和信号采集时间等相关参数的设置及在时序上的排列,以突出显示组织磁共振信号的特征。
一般的脉冲序列由五部分组成,按照它们出现的先后顺序分别是:①射频脉冲②层面选择梯度场③相位编码梯度场④频率编码梯度场(也称为读出梯度)和MR信号。
射频脉冲是磁共振信号的激励源,在任何序列中,至少具有一个射频脉冲。
梯度磁场则实现成像过程中的层面选择、频率编码和相位编码,有了梯度磁场才能使回波信号最终转换为二维、三维图像。
MRI的脉冲序列按照检测信号类型分为:1.自由感应衰减信号(FID)类序列:指采集到的MR信号是FID信号,如部分饱和序列。
2.自旋回波信号(SE)类序列:指采集到的MR信号是利用180°聚相脉冲产生的SE信号,如常规的自旋回波序列、快速自旋回波序列及反转恢复序列等。
3.梯度回波信号(GRE)类序列:指采集到的MR信号是利用读出梯度场切换产生的梯度回波信号,如常规梯度回波序列、扰相梯度回波序列、稳态进动序列等。
磁共振序列解读磁共振序列是指在核磁共振成像(MRI)中使用的一组特定的脉冲序列和参数。
这些序列决定了MRI图像的对比度和空间分辨率。
以下是几种常见的磁共振序列及其解读:1. T1加权序列:T1加权序列使用长TR(重复时间)和短TE(回波时间),以强调组织的长T1弛豫时间,如脂肪和液体。
在T1加权图像中,脂肪呈现为亮信号,而水和其他组织则呈现为暗信号。
这种序列适用于解剖学结构的显示。
2. T2加权序列:T2加权序列使用短TR和长TE,以强调组织的长T2弛豫时间,如液体和炎症区域。
在T2加权图像中,水和炎症区域呈现为亮信号,而脂肪和其他组织则呈现为暗信号。
这种序列有助于检测病变、水肿和炎症。
3. T2星状序列:T2星状序列是一种特殊的T2加权序列,通过使用长TE和梯度回波(GRE)得到。
它可以显示磁敏感性伪影,如金属植入物周围的信号失真。
在T2星状图像中,金属植入物周围的区域呈现为黑色信号,而其他组织则呈现为亮信号。
4. 脂肪抑制序列:脂肪抑制序列通常用于抑制脂肪信号,以提高对其他组织的对比度。
常见的脂肪抑制序列包括脂肪饱和和化学抑制。
这些序列对于检测病变中的液体或增强剂非常有用。
5. 弥散加权序列:弥散加权序列用于评估水分子在组织中的自由扩散程度。
通过使用多个不同的梯度方向和强度,可以获得弥散加权图像。
这些图像可用于评估脑卒中、肿瘤和白质疾病。
总之,磁共振序列是通过使用不同的脉冲序列和参数,以及特定的图像处理技术,来产生MRI图像的方法。
每种序列都有其特定的应用领域和解释方式,可以帮助医生准确诊断和评估疾病。
磁共振常用序列解读磁共振成像(MRI)是一种常用的医学影像技术,通过磁场和射频脉冲来生成人体内部的详细图像。
在MRI中,不同的序列可以提供不同的信息,以便医生更好地诊断疾病。
以下是一些常见的磁共振序列及其解读:1.T1加权成像(T1WI):这种序列对组织的T1弛豫时间敏感。
在T1WI上,脂肪和骨髓质通常显示为高信号,而骨皮质和空气则显示为低信号。
2.T2加权成像(T2WI):这种序列对组织的T2弛豫时间敏感。
在T2WI上,骨髓质通常显示为高信号,而脂肪则显示为低信号。
3.质子密度加权成像(PDWI):这种序列对组织中氢质子的密度敏感。
在PDWI上,脂肪和骨髓质通常显示为高信号,而水和蛋白质则显示为低信号。
4.流体动力学成像(FHI):这种序列可以检测组织中流动的液体,例如血液或脑脊液。
在FHI上,流动的液体显示为高信号,而静止的液体则显示为低信号。
5.扩散加权成像(DWI):这种序列可以检测组织中水分子的扩散情况。
在DWI上,水分子的扩散情况可以反映组织的结构和功能状态。
6.灌注加权成像(PWI):这种序列可以检测组织中的血流灌注情况。
在PWI上,血流灌注的情况可以反映组织的代谢和功能状态。
7.增强成像(CEI):这种序列通常在注射造影剂后进行,以便更好地观察组织的结构和功能状态。
在CEI上,增强的组织通常显示为高信号。
以上是磁共振成像中常见的序列类型,每种序列都有其独特的成像特点和临床应用价值。
医生会根据患者的具体情况选择适当的序列来获取所需的信息。
磁共振各序列的时间。
磁共振成像(MRI)是一种利用强磁场和射频脉冲产生身体内部图像的技术。
在MRI扫描过程中,不同的成像序列(protocols)被用于捕捉不同类型的组织和病理信息。
每种序列都有其特定的时间参数,这些参数包括重复时间(TR)、回波时间(TE)、和反转时间(TI),它们对成像质量和所需时间有直接影响。
以下是一些常见MRI序列及其大致时间范围:1. T1加权序列(T1WI)TR:短,约几百毫秒(ms)TE:短,通常小于20msT1加权成像对解剖细节的显示非常好,常用于评估大脑、脊髓和关节等的结构。
2. T2加权序列(T2WI)TR:长,通常超过2000msTE:长,通常在80-100ms左右T2加权成像能够很好地显示水分和其他液体,对于检测炎症、水肿和某些肿瘤非常有用。
3. FLAIR(流体衰减反转恢复)TR:非常长,通常超过5000msTE:中等至长,通常在100-150ms之间TI:中等,通常在1500-2500ms之间FLAIR序列特别适用于检测大脑的水肿和病变,如多发性硬化斑块。
4. DWI(扩散加权成像)TR:中等至长,通常在3000-5000ms之间TE:短至中等,通常在60-100ms之间DWI能够检测早期脑梗死和其他类型的组织扩散异常。
5. GRE(梯度回波)TR:短至中等,通常在400-800ms之间TE:非常短,可以小于10msGRE序列常用于检测出血和微小血管异常。
6. EPI(回波计划成像)TR:非常短,通常在2000-3000ms之间TE:非常短,通常小于50msEPI是功能MRI(fMRI)和DWI的基础,能够快速获取图像。
注意事项实际扫描时间还受到扫描区域大小、所需的空间分辨率、序列的具体参数设置以及机器的性能等因素的影响。
不同厂家的MRI设备以及不同的软件版本可能会有不同的最优参数设置,因此上述时间仅供参考。
在实际临床应用中,医生或技师会根据患者的具体情况和诊断需求选择合适的序列和参数设置。
比较3D各向同性FSE脉冲序列CubeT2与传统2D FSE序列成像质量的差异引言在医学影像学中,磁共振成像(MRI)是一种重要的影像学检查手段,广泛应用于临床诊断和研究。
MRI可以提供高分辨率的解剖学信息,对于病理变化的检测和诊断有着重要的意义。
而在MRI成像的实现过程中,脉冲序列是非常关键的一环,不同的脉冲序列可以提供不同的成像信息,因此对于脉冲序列的选择对于成像质量有着重要的影响。
1. 3D各向同性FSE脉冲序列CubeT23D各向同性FSE脉冲序列CubeT2是一种高分辨率的MRI成像序列,它通过使用3D技术将特定的扫描平面划分为立方体,然后在这些立方体内进行成像,从而获得高质量的三维成像数据。
CubeT2脉冲序列具有以下优点:(1)高分辨率:CubeT2脉冲序列可以提供高分辨率的MRI成像,对于微小的解剖结构和病变有更好的显示效果。
(2)快速成像:CubeT2脉冲序列在进行三维成像时可以快速获得大量的数据,减少了成像时间,提高了患者的舒适度。
(3)多平面成像:CubeT2脉冲序列可以进行多平面的成像,不仅可以获得传统的横断面图像,还可以获得冠状面和矢状面的图像,为临床诊断提供更多的信息。
2. 传统2D FSE序列(2)成像速度快:由于是在二维平面上进行成像,传统2D FSE序列可以较快地获得成像数据,适用于一些需要快速成像的临床情况。
(3)单一平面成像:传统2D FSE序列只能在特定的平面上进行成像,无法获得其他平面的成像数据,对于某些复杂解剖结构的显示可能存在局限性。
在实际使用中,CubeT2脉冲序列和传统2D FSE序列的成像质量存在着一些差异,主要体现在以下方面:(1)分辨率及清晰度:CubeT2脉冲序列在成像分辨率和图像清晰度上明显优于传统2D FSE序列。
CubeT2脉冲序列可以更清晰地显示微小的解剖结构和病变,有利于医生对患者病情的判断和诊断。
(2)显示范围:CubeT2脉冲序列可以进行多平面的成像,显示范围更广,呈现更多的解剖结构信息。
磁共振各序列
磁共振成像是通过使用不同的序列来对人体进行扫描,从而提供不同类型的图像信息。
以下是几种常见的磁共振序列:
1. T1加权序列(T1-weighted sequence):这种序列对脂肪组
织显示较为明亮,对水分和其他组织显示较为暗淡。
适用于解剖学评估和结构分析。
2. T2加权序列(T2-weighted sequence):与T1加权序列相反,这种序列对水分和其他组织显示较为明亮,对脂肪组织显示较为暗淡。
适用于检测液体积聚、病变和肿瘤等。
3. 脂肪抑制序列(fat suppression sequence):通过特殊的脉冲序列对脂肪信号进行抑制,从而增强其他组织的显示效果。
适用于检测肿瘤、炎症和肌腱损伤等。
4. 弥散加权序列(diffusion-weighted sequence):通过测量水
分子在组织中的微小运动来获取图像信息,适用于检测脑部缺血和脑卒中等疾病。
5. 动脉旋转磁共振序列(time of flight sequence):通过脉冲
序列的选择性饱和来实现动脉血液和静脉血液之间的对比,适用于评估血管病变和动脉瘤等。
6. 对比增强序列(contrast-enhanced sequence):在扫描过程
中使用对比剂来增强血管和病变区域的显示效果,适用于肿瘤检测和评估血管病变。
这些磁共振序列各具特点,可以根据具体的病情或需要选择适合的序列进行扫描。
磁共振脉冲序列名词解释
磁共振脉冲序列是医学影像学中常用的一种技术,它可以帮助医生观察人体内部的结构和功能情况。
以下是一些磁共振脉冲序列中常用的名词解释:
1. T1加权图像:显示组织的长T1弛豫时间,用于显示各种组织的解剖形态和病变。
2. T2加权图像:显示组织的短T2弛豫时间,用于显示病变的水肿和炎症。
3. 弥散加权图像:显示组织的水分分布情况,可用于检测水肿和脑胶质瘤等。
4. 连续层面磁共振成像:是一种快速成像技术,可在短时间内对整个器官进行成像。
5. 骨抑制技术:可以去除骨头对图像的干扰,用于检测软组织病变。
6. 动态增强成像:注射造影剂后进行成像,可用于检测血管和肿瘤等。
7. 磁共振波谱成像:可以分析不同组织中的代谢物,用于检测肝脏和脑部疾病。
以上是一些磁共振脉冲序列中常见的名词解释,了解这些名词有助于理解医学影像学中的磁共振成像技术。
- 1 -。