燃气轮机与联合循环(第11课联合循环的汽轮机)
- 格式:ppt
- 大小:2.94 MB
- 文档页数:24
联合循环系统简介联合循环发电厂主要由燃气循环系统、汽水循环系统和介于两者之间的余热锅炉这三部分组成,以下分别简要介绍这三部分中的主要设备。
1、燃气循环系统(1)燃气轮机燃气轮机是将燃料燃烧后的热能转化为动能的设备。
典型燃气轮机的主要性能参数如表1所示。
通常意义上的发电用燃气轮机主要包括燃气轮机本体、空气压缩机、燃烧器、启动装置、润滑油系统等相关设备组成。
注:上表中的数据是在如下条件下取得的:(a) 大气温度为15oC,大气压力为1.033ata ;(b) 燃料是气化了的液化天然气;(c) 热效率是按照低位发热量计算而得;(d) 排气流量和排气温度是燃气轮机在基本负荷时的数据。
(2) 燃烧器燃烧器是燃气轮机的一个非常重要的设备,它是实现燃料燃烧、降低燃气轮机排气中氮氧化物含量的设备。
目前世界上各大燃机生产厂都十分重视开发研究新型的燃烧器, 以便满足日益受到人们关注的环境保护要求。
目前常见的有干式燃烧器和湿式燃烧器。
(3) 空气压缩机空气压缩机是向燃烧器提供足够的燃烧空气的设备。
为了进一步提高燃机容量和效率,就应开发具有高效、大压缩比的空气压缩机。
(4) 启动装置因安装条件和使用条件的不同,燃气轮机的启动装置有时也会不同, 通常情况下为柴油机或电动机, 但也有用汽轮机的情况。
该装置提供动力, 将燃气轮机加速到自持转速(60%。
70%额定转速) 。
(5) 燃气增压机燃气轮机燃烧器对入口燃料的压力有一个要求范围(如:21atg左右), 燃料供应系统应能满足这一压力要求。
当燃烧气体燃料(如天然气) 时,如果燃料供应系统的气压较低,则需利用燃气增压机来提高燃气轮机燃烧器人口的压力至要求范围内。
如果燃气供应压力高于燃机燃烧器入口的燃气要求压力,则需要设置减压装置降低压力。
(6) 燃气加热装置燃气轮机燃烧器不仅对入口燃料的压力有要求,而且对燃烧器入口温度也有要求,一般为露点温度加28-30 度左右。
在寒冷地区,如我国新疆有的地区冬季最低气温达零下39度左右,在这种地区,燃气供应系统应配备燃料加热装置(如蒸汽加热器等) ,来提高燃料器入口的燃气温度。
燃⽓轮机及其联合循环运⾏简介燃⽓轮机及其联合循环运⾏简介燃⽓轮机及其联合循环的特点是启动速度快,具有快速加减负荷的能⼒。
它对电⽹的调峰起到了⾮常⼤的作⽤。
我⼚有⼆台9E的燃⽓轮机,⼆台余热锅炉及⼆台汽轮机。
其运⾏⽅式是⼆台燃⽓轮机配⼆台余热锅炉带动⼀台汽机(简称⼆拖⼀⽅式)全⼚总负荷300MW。
作为⼀名电⼚运⾏员⼯在运⾏调度操作上会遇到各种各样的问题。
对于⼀名运⾏员⼯来讲,只有熟练的掌握各种运⾏调度操作以及正确分析各类故障才能保证机组更好的运⾏。
下⾯我简单介绍⼀下燃⽓轮机及其联合循环的运⾏⽅式和⼀些常见的故障。
⼀.燃⽓轮机及其联合循环的运⾏⽅式电⽹的⽇负荷⼀般有两个尖峰,⼀个出现在上午,称为“早峰”;⼀个在下午出现,称为“晚峰”。
通常,晚峰时达到最⾼负荷值。
电⽹的低⾕负荷则出现在凌晨。
峰⾕差甚⾄可以超过总负荷的30%。
可以把它分为三个部分。
⼀个是位于低⾕负荷以下的部分,通称为“基本负荷”;另⼀个是早峰和晚峰部分,称为“尖峰负荷”;位于两者之间的则称为“中间负荷”。
燃⽓轮机及其联合循环的运⾏⽅式可以分为应急型、尖峰负荷型、中间负荷型和基本负荷型四⼤类。
他们的年运⾏时间数、年启动次数、每次的连续运⾏时间以及启动加载时间彼此有很⼤差异,由于联合循环启动时间较长,供电效率⼜很⾼,因⽽,在电⽹中通常⽤来携带基本符合或中间负荷。
应急负荷和尖峰负荷则宜⽤简单循环的燃⽓轮机来承担(简单循环的燃⽓轮机效率低,成本过⼤,应尽量避免)。
⼆.启动过程中点⽕和升速遇到的问题燃⽓轮机及其联合循环的启动成功率在很⼤程度上取决于燃⽓轮机能否正常地启动点⽕和升速。
1.点⽕失败的原因是多⽅⾯的,⼤体上说,有以下⼏个⽅⾯:1)燃油压⼒过低⽽引起的点⽕失败。
对于9E机组来说,造成燃油压⼒不⾜的原因可能是:a.电磁离合器的线圈的绝缘降低或匝数短路⽽⽆法传动主燃油泵;b.燃油流量分配器内因残存粘度较⾼的原油等原因,致使启动时燃油流量分配器的转速增升达不到点⽕要求的额定值;c.燃油调压阀故障,致使燃油压⼒过低。
燃气—蒸汽联合循环机组汽轮机冷端优化摘要燃气—蒸汽联合循环机组近年来发展迅速,在电网调峰、环保发电、中扮演了不可或缺的角色。
在整个联合循环机组中,=燃气轮机效率+(1-燃气轮机效率)余热锅炉效率*汽轮机效率,在此计算式中,汽轮机效率成为影响、可调因素中重要的一环,而对于汽轮机而言,排汽损失举足轻重。
如何降低汽轮机排汽损失,提升汽轮机效率优化汽轮机排汽端(冷端)运行,是本文研究重点。
关键词:联合循环机组汽轮机冷端优化效率厂用电率概况汽轮机冷端是指汽轮机排汽低压侧,通常涵盖汽轮机真空系统、循环水系统及凝结水系统。
根据汽轮机效率公式:=,在热端汽轮机进汽参数受燃气轮机排气及余热锅炉受热面影响,调整范围有限;在冷端降低汽轮机排汽焓能提升汽轮机整体效率,如何在保障机组安全的情况下降低排汽焓及辅机厂用电量、提升机组整机效率和降低机组厂用电率是本文燃气-蒸汽联合循环机组汽轮机冷端优化的方向。
正文汽轮机排汽焓由排汽压力、排汽温度及湿度三个因素决定的。
因汽轮机排汽为湿饱和蒸汽,排气温度可根据排气压力查表得知;汽轮机排汽压力因排汽汽阻会略高于凝汽器真空,但两者变化趋势一致,本文从凝汽器真空入手,探究燃气-蒸汽联合循环机组汽轮机冷端优化方式方法,提升汽轮机效率及降低机组厂用电率。
1、凝汽器真空值得选择凝汽器真空并不是越高越好,当凝汽器真空超过极限真空,汽轮机循环效率不升反降,同时汽轮机排汽湿度增加,导致汽轮机末几级叶片受“水蚀”的情况也越严重,不仅降低机组运行的经济性,也提升了主设备运行风险,以某燃气-蒸汽联合循环机组汽轮机数据为例,展示排汽压力变化对循环效率的影响:主蒸汽参数P0=8.83MPa,t0=535℃排汽压力/kPa 7.45.64.7 4.2 3.1 2.35循环效率增量(%)+1.1+0.40-0.3-1.0-1.7以上为例,排汽压力为4.7kPa 时,循环效率达最高值,此时对应的真空为极限真空。
通常选取汽轮机设备说明书中包含设计真空为调整目标值,或者根据汽轮机运行导则相关规定选取目标真空值,此两者均能在满足机组安全运行的情况下经济效率最大化。
联合循环电站燃气轮机调试运行问题和建议摘要:保证高效率燃烧的前提下对燃气轮机进行结构优化设计,追求高效率低排放是现代燃气轮机发展的关键。
燃气轮机是一个非线性、参数时变、复杂多变量系统,而精确的模型和准确的参数是燃气轮机控制器设计、运行控制及优化调度的基础。
本文主要对联合循环电站燃气轮机调试运行问题和建议进行论述,详情如下。
关键词:联合循环电站;燃气轮机;调试引言可再生能源出力具有间歇性和波动性,随着其并网比例的提升,要保持电力系统的安全运行,对调频资源提出了更高的要求。
储能系统,尤其是电池储能,具有快速、精确的功率响应能力,是优质的调频资源,但其成本也较高。
燃气轮机(简称燃机)虽然在爬坡速率和响应时间上不及储能电池,但与传统火电机组相比仍具有较好的调频能力,并且由于其燃料相对低碳,近年来也得到了快速发展。
因此,可以考虑将燃气轮机与储能系统相结合,让原本带基本负荷运行的燃气轮机为储能分担调频需求,使得整个系统在具有和单独储能系统相近调频能力的同时,减少对储能设备功率的要求,从而达到较低的成本。
1燃气轮机调试过程中可能出现的问题在燃气轮机调试工作中,进气系统调试是为整个机组工作质量管控的重要系统,进气系统为机组燃料燃烧提供充足的氧气,并且能够让机组内部的环境清洁化,为机组整体的机械性能和发电性能提供保障。
在进气系统中较为常见的问题就是在经一段时间运行后,燃机的进气系统压差较高的问题。
它不仅关系到这机组能否安全运行,也对机组的经济性指标产生很大影响,甚至导致机组停机。
2联合循环电站燃气轮机调试运行优化2.1储能电池与燃气轮机联合调频策略为了充分发挥储能电池调频速度快的优点,规避其建设成本高的缺点,在储能电池与燃气轮机的联合系统中,采用了以燃气机组为主、储能系统为辅的调频策略。
对于系统收到的调频功率信号P AGC,其主要分配给燃气机组,储能系统则对燃气机组的出力进行补偿。
由于燃机负荷的频繁变动会给其部件带来快速变化的应力,使寿命大大缩短,而这部分损耗和其对应成本难以准确计算,因此对原始调频信号P AGC进行预处理,通过滑动平均法筛去调频信号中的高频分量,使燃机只负责调频需求中的低频波动,从而避免其寿命受到较大影响。