2019_2020学年高中数学1.1.2导数的概念课时作业(含解析)新人教A版选修2_2
- 格式:doc
- 大小:134.00 KB
- 文档页数:5
高中数学第三章导数及其应用习题课(2)课时作业(含解析)新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章导数及其应用习题课(2)课时作业(含解析)新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章导数及其应用习题课(2)课时作业(含解析)新人教A版选修1-1的全部内容。
习题课(2)一、选择题1.[2013·福建高考]设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A. ∀x∈R,f(x)≤f(x0)B. -x0是f(-x)的极小值点C。
-x0是-f(x)的极小值点D. -x0是-f(-x)的极小值点解析:极大值点不一定为最大值点,故A错;y=f(-x)与y=f(x)关于y轴对称,故-x为f(-x)的极大值点,B错;y=f(x)与y=-f(x)关于x轴对称,故x为-f(x)的极小值点,-x0不一定为-f(x)的极小值点,C错;y=-f(-x)与y=f(x)关于原点对称,∴-x0是-f(-x)的极小值点,故D对.答案:D2.函数y=f(x)的定义域为R,导函数y=f′(x)的图象如图所示,则函数f(x)( )A. 无极大值点,有四个极小值点B. 无极小值点,有四个极大值点C。
有两个极大值点,两个极小值点D. 有三个极大值点,一个极小值点解析:f′(x)=0的根分别如题图a、c、e、g。
x<a时,f′(x)〉0,a<x<c时f′(x)〈0,∴a为极大值点.又c〈x<e时,f′(x)〉0知c为极小值点,e<x〈g时,f′(x)<0知e为极大值点,g〈x时,f′(x)>0知g为极小值点.故选C.答案:C3.若x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点,则有()A.a=-2,b=4 B.a=-3,b=-24C.a=1,b=3 D.a=2,b=-4解析:f′(x)=3x2+2ax+b,依题意有x=-2和x=4是方程3x2+2ax+b=0的两个根,所以有-2a3=-2+4,错误!=-2×4,解得a=-3,b=-24。
1.1.2导数的概念1.函数f(x)在x0处可导,则li mh→0f(x0+h)-f(x0)h()A.与x0、h都有关B.仅与x0有关,而与h无关C.仅与h有关,而与x0无关D.与x0、h均无关2.设函数f(x)在点x0处附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则()A.f′(x)=a B.f′(x)=bC.f′(x0)=a D.f′(x0)=b3.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数()A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的导数D.在区间[x0,x1]上的导数4.设f(x)在点x=x0处可导,且f′(x0)=-2,则li mΔx→0f(x0)-f(x0-Δx)Δx等于________.5.如果某物体做运动方程为s=2(1-t2)的直线运动(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.设函数f(x)=ax+3,则f′(1)=3,则a等于() A.2 B.-2C.3 D.-38.函数f(x)在x=a处有导数,则limh→a f(h)-f(a)h-a为()A.f(a) B.f′(a) C.f′(h) D.f(h)9.设函数f(x)=ax3+2,若f′(-1)=3,则a=________.10.曲线f(x)=x在点(4,2)处的瞬时变化率是________.11.如果一个质点从固定点A开始运动,时间t的位移函数为y=f(t)=t3+3,求t=4时,limΔt→0ΔyΔt的值.12.(创新拓展)服药后,人体血液中药物的质量浓度y(单位:μg/mL)是时间t(单位:min)的函数y=f(t).假设函数y=f(t)在t=10和t=100处的导数分别为f′(10)=1.5和f′(100)=-0.6,试解释它们的实际意义.答案1.答案 B2.解析 ∵Δy Δx =f (x 0+Δx )-f (x 0)Δx=a +b Δx . ∴f ′(x 0)=li m Δx →0f (x 0+Δx )-f (x 0)Δx=a . 答案 C3.解析 根据平均变化率的定义可知,当自变量从x 0变到x 1时,函数值的增量与相应自变量的增量之比就是函数在区间[x 0,x 1]上的平均变化率. 答案 A4.解析 li m Δx →0 f (x 0)-f (x 0-Δx )Δx=li m Δx →0 f [x 0+(-Δx )]-f (x 0)-Δx =f ′(x 0)=-2. 答案 -25.解析 物体运动在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得.答案 -4.8 m/s6.解 ∵Δy =⎣⎢⎡⎦⎥⎤1(x +Δx )2+2-⎝⎛⎭⎪⎫1x 2+2 =-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx (x +Δx )2·x 2, ∴y ′=lim Δx →0 Δy Δx =lim Δx →0 -2x -Δx (x +Δx )2·x 2=-2x 3,∴y ′|x =1=-2.7.解析 ∵f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0 a (x +Δx )+3-(ax +3)Δx=a , ∴f ′(1)=a =3.答案 C8.解析 令h -a =Δh ,则有h =a +Δh .h→a等价于Δh→0,原式可化为limΔh→0f(a+Δh)-f(a)Δh,由导数的定义易得B.答案B9.解析f′(-1)=limΔx→0f(-1+Δx)-f(-1)Δx=limΔx→0a(-1+Δx)3-a(-1)3Δx=limΔx→0[a(Δx)2-3aΔx+3a]=3a=3.∴a=1.答案110.解析ΔfΔx=f(4+Δx)-f(4)Δx=4+Δx-2Δx=14+Δx+2,∴limΔx→0ΔfΔx=14.答案1 411.解∵Δy=(Δt+4)3+3-(43+3)=(Δt)3+12(Δt)2+48Δt,∴ΔyΔt=(Δt)3+12(Δt)2+48ΔtΔt=(Δt)2+12Δt+48.∴limΔt→0ΔyΔt=limΔt→0[(Δt)2+12Δt+48]=48.12.解f′(10)=1.5表示服药后10 min时,血液中药物的质量浓度上升的速度为1.5 μg/(mL·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将上升1.5 μg/mL.f′(100)=-0.6表示服药后100 min 时,血液中药物的质量浓度下降的速度为0.6 μg/(mL·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将下降0.6 μg/mL.。
课时作业23 导数的几何意义知识点一导数的几何意义1.下面说法正确的是( )A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处没有切线B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线的斜率不存在D.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在答案 C解析曲线在点(x0,y0)处有导数,则切线一定存在;但有切线,切线的斜率不一定存在,即导数不一定存在.2.曲线y=x2在x=0处的( )A.切线斜率为1B.切线方程为y=2xC.没有切线D.切线方程为y=0答案 D解析k=y′=limΔx→00+Δx2-02Δx=limΔx→0Δx=0,所以k=0,又y=x2在x=0处的切线过点(0,0),所以切线方程为y=0.知识点二导函数的概念3.函数在某一点的导数是( )A.在该点的函数的改变量与自变量的改变量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率答案 C解析根据函数在一某点处的导数的定义,可知选C.4.设f(x)在定义域内的每一点处都存在导数,且满足lim Δx→0f1-f1-ΔxΔx=-1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为__________.答案-1解析由题意得limΔx→0f[1+-Δx]-f1-Δx=f′(1)=-1,则曲线y=f(x)在(1,f(1))处的切线的斜率为f′(1)=-1.5.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解 (1)由⎩⎪⎨⎪⎧y =x 2+4,y =x +10,得x 2+4=x +10,即x 2-x -6=0,∴x =-2或x =3.代入直线的方程得y =8或y =13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y =x 2+4, ∴y ′=lim Δx →0x +Δx2+4-x 2+4Δx=lim Δx →0(2x +Δx )=2x .∴y ′|x =-2=-4,y ′|x =3=6.即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6. ∴在点(-2,8)处的切线方程为4x +y =0; 在点(3,13)处的切线方程为6x -y -5=0. 易错点 求切线方程时忽略导数的几何意义6.已知曲线f (x )=x 上的一点P (0,0),求曲线在点P 处的切线方程.易错分析 本题易认为曲线在点P 处的导数不存在,则曲线在该点处的切线不存在. 解f 0+Δx -f 0Δx =Δx Δx =1Δx,根据切线的定义,当Δx →0时,割线的倾斜角无限逼近于π2,斜率不存在,故曲线在点P 处的切线为y 轴,即切线方程为x =0.一、选择题1.已知函数y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( )A.f ′(x A )>f ′(x B ) B .f ′(x A )<f ′(x B ) C.f ′(x A )=f ′(x B ) D .不能确定 答案 B解析 由图象易知,点A ,B 处的切线斜率k A ,k B 满足k A <k B <0.由导数的几何意义,得f ′(x A )<f ′(x B ).2.已知曲线y =-12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-52,则在点P 的切线的倾斜角为( ) A.30° B.45° C.135° D.165°答案 C解析 ∵点P ⎝ ⎛⎭⎪⎫1,-52在曲线y =f (x )=-12x 2-2上,则在点P 的切线斜率为f ′(1)=k=-1.∴在点P 的切线的倾斜角为135°.3.若曲线y =2x 2-4x +a 与直线y =1相切,则a =( ) A.1 B.2 C.3 D.4答案 C解析 设切点坐标为(x 0,1),则f ′(x 0)= lim Δx →0[2x 0+Δx2-4x 0+Δx +a ]-2x 20-4x 0+aΔx=lim Δx →0(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1.即切点坐标为(1,1). ∴2-4+a =1,即a =3.4.如果曲线y =x 3+x -10的一条切线与直线y =4x +3平行,那么曲线与切线相切的切点坐标为( )A.(1,-8)B.(-1,-12)C.(1,-8)或(-1,-12)D.(1,-12)或(-1,-8)答案 C解析 设切点坐标为P (x 0,y 0), 则y 0=x 30+x 0-10的切线斜率为k =lim Δx →0x 0+Δx3+x 0+Δx -10-x 30+x 0-10Δx=lim Δx →03x 20Δx +3x 0Δx 2+Δx 3+ΔxΔx=lim Δx →0[(3x 20+1)+3x 0Δx +(Δx )2]=3x 20+1=4, 所以x 0=±1,当x 0=1时,y 0=-8, 当x 0=-1时,y 0=-12,所以切点坐标为(1,-8)或(-1,-12). 二、填空题5.在曲线y =x 2上切线倾斜角为π4的点是________.答案 ⎝ ⎛⎭⎪⎫12,14 解析 ∵y =x 2, ∴k =y ′=lim Δx →0 ΔyΔx =lim Δx →0x +Δx 2-x 2Δx=lim Δx →0(2x +Δx )=2x ,∴2x =tan π4=1,∴x =12,则y =14.6. 如图是函数f (x )及f (x )在点P 处切线的图象,则f (2)+f ′(2)=________.答案 98解析 由题图可知切线方程为y =-98x +92,所以f (2)=94,f ′(2)=-98,所以f (2)+f ′(2)=98.7.曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =__________. 答案 ±1解析 因为f ′(a )=lim Δx →0a +Δx 3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝ ⎛⎭⎪⎫23a ,0,由题设知三角形面积为12⎪⎪⎪⎪⎪⎪a -23a |a 3|=16,解得a =±1.三、解答题8.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线. 解 曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →031+Δx2-41+Δx +2-3+4-2Δx=limΔx→0(3Δx+2)=2.∴过点P(-1,2)的直线的斜率为2,由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.9.已知曲线y =1t-x上点P(2,-1).求:(1)曲线在点P处的切线的斜率;(2)曲线在点P处的切线方程.解将P(2,-1)代入y=1t-x,得t=1,∴y=11-x.∴y′=limΔx→0f x+Δx-f xΔx=limΔx→011-x+Δx-11-xΔx=limΔx→0Δx[1-x+Δx]1-xΔx=limΔx→011-x-Δx1-x=11-x2.(1)曲线在点P处的切线斜率为y′|x=2=11-22=1;(2)曲线在点P处的切线方程为y-(-1)=x-2,即x-y-3=0.。
3.1.2 导数的概念1.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则().A.f′(x)=a B.f′(x)=b C.f′(x0)=a D.f′(x0)=b3.已知f(x)=x2-3x,则f′(0)=().A.Δx-3 B.(Δx)2-3Δx C.-3 D.04.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.5.已知函数f(x)在x=1处可导,且f′(1)=1,则f(1+x)-f(1)x=________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.已知点P(x0,y0)是抛物线y=3x2+6x+1上一点,且f′(x0)=0,则点P的坐标为().A.(1,10) B.(-1,-2)C.(1,-2) D.(-1,10)8.设函数f(x)可导,则f(1+Δx)-f(1)3Δx等于().A.f′(1) B.3f′(1) C.13f′(1) D.f′(3)9.某物体作匀速运动,其运动方程是s=vt,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________(填“相等”或“不相等”).10.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则函数f(x)在x=1处的导数f′(1)=________.11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.12.已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.答案解析:1.解析 物体运动在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得.答案 A2.解析 ∵Δy Δx =f (x 0+Δx )-f (x 0)Δx=a +Δx .∴f (x 0)= (a +Δx )=a . 答案 C3.解析 f ′(0)= f (0+Δx )-f (0)Δx = (Δx )2-3ΔxΔx= (Δx -3)=-3.答案 C 4.解析 v 初=s ′|t =0= s (0+Δt )-s (0)Δt= (3-Δt )=3.答案 35.解析 根据导数的定义,f (1+x )-f (1)x =f ′(1)=1.答案 16.解 ∵Δy =⎣⎡⎦⎤1(x +Δx )2+2-⎝⎛⎭⎫1x 2+2 =-2x Δx -(Δx )2(x +Δx )2·x 2,∴Δy Δx =-2x -Δx (x +Δx )2·x 2,∴y ′= Δy Δx = -2x -Δx (x +Δx )2·x 2=-2x 3,∴y ′|x =1=-2. 7.解析Δy Δx =f (x 0+Δx )-f (x 0)Δx= 3(x0+Δx )2+6(x 0+Δx )+1-3x 20-6x 0-1Δx =3Δx +6x 0+6,∴f ′(x 0)= Δy Δx =(3Δx +6x 0+6)=6x 0+6=0,∴x 0=-1.把x 0=-1代入y =3x 2+6x +1,得y =-2.∴P 点坐标为(-1,-2). 答案 B8.解析 根据导数的定义:f (1+Δx )-f (1)Δx=f ′(1),f (1+Δx )-f (1)3Δx =13f ′(1).答案 C9.解析 v 0=ΔsΔt = s (t 0+Δt )-s (t 0)Δt=v (t 0+Δt )-vt 0Δt = v ·ΔtΔt=v .答案 相等10.解析 由图及已知可得函数解析式为f (x )=⎩⎪⎨⎪⎧-2(x -2),0≤x ≤2,x -2,2<x ≤6.利用导数的定义,所以f ′(1)= Δx →0 f (1+Δx )-f (1)Δx=Δx →0-2(1+Δx -2)+2(1-2)Δx=-2.答案 -211.解 设运动方程为s =12at 2.∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2, ∴Δs Δt =at 0+12a Δt ,∴瞬时速度v = ΔsΔt=at 0. 由题意知a =5×105,t 0=1.6×10-3,故v =at 0=8×102=800(m/s). 即子弹射出枪口时的瞬时速度为800 m/s. 12.解 由导数的定义知,f ′(x )= Δf (x )Δx = (x +Δx )2-x 2Δx =2x ,g ′(x )= Δg (x )Δx = (x +Δx )3-x 3Δx =3x 2.∵f ′(x )+2=g ′(x ),∴2x +2=3x 2. 即3x 2-2x -2=0,解得x =1-73或x =1+73.。
选修2-2 1.1 第2课时 导数的概念一、选择题1.函数在某一点的导数是( )A .在该点的函数值的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f ′(x 0)是当Δx 无限趋近于0时,Δy Δx无限趋近的常数,故应选C. 2.如果质点A 按照规律s =3t 2运动,则在t 0=3时的瞬时速度为( )A .6B .18C .54D .81 [答案] B[解析] ∵s (t )=3t 2,t 0=3,∴Δs =s (t 0+Δt )-s (t 0)=3(3+Δt )2-3·32=18Δt +3(Δt )2∴Δs Δt=18+3Δt . 当Δt →0时,Δs Δt→18,故应选B. 3.y =x 2在x =1处的导数为( )A .2xB .2C .2+ΔxD .1[答案] B[解析] ∵f (x )=x 2,x =1,∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2∴Δy Δx =2+Δx 当Δx →0时,Δy Δx→2 ∴f ′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s (t )=4t 2-3(s (t )的单位:m ,t 的单位:s),则t =5时的瞬时速度为( )A .37B .38C .39D .40[答案] D[解析] ∵Δs Δt =4(5+Δt )2-3-4×52+3Δt =40+4Δt ,∴s ′(5)=li m Δt →0 Δs Δt =li m Δt →0 (40+4Δt )=40.故应选D.5.已知函数y =f (x ),那么下列说法错误的是( )A .Δy =f (x 0+Δx )-f (x 0)叫做函数值的增量B.Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数在x 0到x 0+Δx 之间的平均变化率C .f (x )在x 0处的导数记为y ′D .f (x )在x 0处的导数记为f ′(x 0)[答案] C[解析] 由导数的定义可知C 错误.故应选C.6.函数f (x )在x =x 0处的导数可表示为y ′|x =x 0,即( )A .f ′(x 0)=f (x 0+Δx )-f (x 0)B .f ′(x 0)=li m Δx →0[f (x 0+Δx )-f (x 0)]C .f ′(x 0)=f (x 0+Δx )-f (x 0)ΔxD .f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx[答案] D[解析] 由导数的定义知D 正确.故应选D.7.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于() A .4a B .2a +bC .bD .4a +b[答案] D[解析] ∵Δy Δx =a (2+Δx )2+b (2+Δx )+c -4a -2b -cΔx=4a +b +a Δx ,∴y ′|x =2=li m Δx →0 ΔyΔx =li m Δx →0 (4a +b +a ·Δx )=4a +b .故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )A .圆B .抛物线C .椭圆D .直线[答案] D[解析] 当f (x )=b 时,f ′(x )=0,所以f (x )的图象为一条直线,故应选D.9.一物体作直线运动,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度为( )A .0B .3C .-2D .3-2t [答案] B[解析] ∵Δs Δt =3(0+Δt )-(0+Δt )2Δt=3-Δt , ∴s ′(0)=li m Δt →0 Δs Δt=3.故应选B. 10.设f (x )=1x ,则li m x →a f (x )-f (a )x -a等于( ) A .-1aB.2a C .-1a 2D.1a 2[答案] C [解析] li m x →af (x )-f (a )x -a =li m x →a 1x -1a x -a =li m x →a a -x (x -a )·xa =-li m x →a 1ax =-1a 2. 二、填空题11.已知函数y =f (x )在x =x 0处的导数为11,则li m Δx →0f (x 0-Δx )-f (x 0)Δx=________; li m x →x 0f (x )-f (x 0)2(x 0-x )=________. [答案] -11,-112[解析] li m Δx →0f (x 0-Δx )-f (x 0)Δx =-li m Δx →0f (x 0-Δx )-f (x 0)-Δx =-f ′(x 0)=-11; li m x →x 0 f (x )-f (x 0)2(x 0-x )=-12li m Δx →0 f (x 0+Δx )-f (x 0)Δx=-12f ′(x 0)=-112. 12.函数y =x +1x在x =1处的导数是________.[答案] 0[解析] ∵Δy =⎝⎛⎭⎪⎫1+Δx +11+Δx -⎝ ⎛⎭⎪⎫1+11=Δx -1+1Δx +1=(Δx )2Δx +1, ∴Δy Δx =Δx Δx +1.∴y ′|x =1=li m Δx →0 Δx Δx +1=0. 13.已知函数f (x )=ax +4,若f ′(2)=2,则a 等于______.[答案] 2[解析] ∵Δy Δx =a (2+Δx )+4-2a -4Δx=a , ∴f ′(1)=li m Δx →0 Δy Δx=a .∴a =2. 14.已知f ′(x 0)=li m x →x 0f (x )-f (x 0)x -x 0,f (3)=2,f ′(3)=-2,则li m x →3 2x -3f (x )x -3的值是________.[答案] 8[解析] li m x →3 2x -3f (x )x -3=li m x →3 2x -3f (x )+3f (3)-3f (3)x -3=lim x →3 2x -3f (3)x -3+li m x →3 3(f (3)-f (x ))x -3. 由于f (3)=2,上式可化为li m x →3 2(x -3)x -3-3li m x →3 f (x )-f (3)x -3=2-3×(-2)=8. 三、解答题15.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2).[解析] 由导数定义有f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )2-x 20Δx =li m Δx →0 Δx (2x 0+Δx )Δx=2x 0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s 2,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s =12at 2∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2 ∴Δs Δt =at 0+12a Δt , ∴li m Δt →0 Δs Δt =li m Δt →0 ⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0, 已知a =5.0×105m/s 2,t 0=1.6×10-3s ,∴at 0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y =f (x )=x 2+3的图象上取一点P (1,4)及附近一点(1+Δx,4+Δy ),求(1)Δy Δx(2)f ′(1). [解析] (1)Δy Δx =f (1+Δx )-f (1)Δx=(1+Δx )2+3-12-3Δx=2+Δx . (2)f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0(2+Δx )=2. 18.函数f (x )=|x |(1+x )在点x 0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f (x )=⎩⎪⎨⎪⎧ x +x 2 (x ≥0)-x -x 2 (x <0)Δy =f (0+Δx )-f (0)=f (Δx )=⎩⎪⎨⎪⎧ Δx +(Δx )2 (Δx >0)-Δx -(Δx )2 (Δx <0)∴lim x →0+ Δy Δx =lim Δx →0+(1+Δx )=1, lim Δx →0- Δy Δx =lim Δx →0-(-1-Δx )=-1, ∵lim Δx →0- Δy Δx ≠lim Δx →0+ Δy Δx ,∴Δx →0时,Δy Δx无极限. ∴函数f (x )=|x |(1+x )在点x 0=0处没有导数,即不可导.(x →0+表示x 从大于0的一边无限趋近于0,即x >0且x 趋近于0)。
1 / 6课时作业(六) 函数的概念[学业水平层次]一、选择题1.对于函数y =f (x ),以下说法中正确的个数为( )①y 是x 的函数;②对于不同的x ,y 值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量.A .0B .1C .2D .3【解析】 ①③正确;②不正确;如f (x )=x 2,f (-1)=f (1).【答案】C2.下列各组函数中,表示同一函数的是( ) A .y =x 2-9x -3与y =x +3 B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z【解析】A 项中两函数的定义域不同;B 项,D 项中两函数的对应关系不同,故选C.【答案】C3.下列图形中不是函数图象的是( )2 / 6A B C D【解析】 由函数的定义,即对于任一自变量,都有唯一确定的函数值与之对应来验证图象是否为函数图象.选项B 、C 、D 都符合函数定义的要求,而选项A ,自变量都有两个值与之对应,不符合函数定义,故选A.【答案】A4.(2014·某某某某中学段考)已知函数f (x )=12-x 的定义域为M ,g (x )=x +2的定义域为N ,则M ∩N =( ) A.{}x |x ≥-2 B.{}x |x <2C.{}x |-2<x <2D.{}x |-2≤x <2【解析】 ∵M ={}x |x <2,N {}x |x ≥-2,∴M ∩N ={}x |-2≤x <2,故选D.【答案】D二、填空题5.(2013·渐江高考)已知函数f (x )=x -1.若f (a )=3,则实数a =________.【解析】f (a )=3,得a -1=3,解得a =10.【答案】 106.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为________.【解析】 由函数的定义可知,当x =0时,y =0;3 / 6当x =1时,y =1-2=-1;当x =2时,y =4-4=0;当x =3时,y =9-6=3,∴值域为{-1,0,3}.【答案】 {-1,0,3}7.若A ={x |y =x +1},B ={}y |y =x 2+1,则A ∩B =________. 【解析】 由A ={x |y =x +1},B ={}y |y =x 2+1,得A =[-1,+∞),B =[1,+∞),∴A ∩B =[1,+∞). 【答案】 [1,+∞)三、解答题8.求下列函数的定义域:(1)y =2x +1+3-4x ;(2)y =1|x +2|-1. 【解】 (1)由已知得⎩⎪⎨⎪⎧2x +1≥0,3-4x ≥0,∴⎩⎪⎨⎪⎧x ≥-12,x ≤34,∴-12≤x ≤34,∴函数的定义域为⎣⎢⎡⎦⎥⎤-12,34. (2)由已知得:∵|x +2|-1≠0,∴|x +2|≠1,∴函数的定义域(-∞,-3)∪(-3,-1)∪(-1,+∞).4 / 6 9.已知函数f (x )=x +1x. (1)求f (x )的定义域;(2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.【解】 (1)要使函数f (x )有意义,必须使x ≠0,∴f (x )的定义域是(-∞,0)∪(0,+∞).(2)f (-1)=-1+1-1=-2, f (2)=2+12=52.(3)当a ≠-1时,a +1≠0,∴f (a +1)=a +1+1a +1. [能力提升层次]1.若函数f (x )=ax 2-1,a 为一个正实数,且f (f (-1))=-1,那么a 的值是( )A .1B .0C .-1D .2【解析】f (-1)=a ·(-1)2-1=a -1,f [f (-1)]=a ·(a -1)2-1=a 3-2a 2+a -1=-1.∴a 3-2a 2+a =0,∴a =1或a =0(舍去).【答案】A5 /6 2.(2014·某某襄阳四中、龙泉中学、荆州中学联考)已知函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-2,12,则f (x )的定义域为( ) A.⎝ ⎛⎭⎪⎫-32,14 B.⎝⎛⎭⎪⎫-1,32 C .(-3,2)D .(-3,3) 【解析】 由于函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-2,12,即-2<x <12,所以-3<2x +1<2,故函数f (x )的定义域为(-3,2),选C.【答案】C3.已知集合A ={x |x ≥4},g (x )=11-x +a 的定义域为B ,若A ∩B =∅,则实数a 的取值X 围是________. 【解析】g (x )的定义域B ={x |x <a +1},由于A ∩B =∅,画数轴:易得a +1≤4,即a ≤3.【答案】 (-∞,3]4.已知函数f (x )=x 2+1,x ∈R.(1)分别计算f (1)-f (-1),f (2)-f (-2),f (3)-f (-3)的值;(2)由(1)你发现了什么结论?并加以证明.【解】(1)f(1)-f(-1)=(12+1)-[(-1)2+1]=2-2=0;f(2)-f(-2)=(22+1)-[(-2)2+1]=5-5=0;f(3)-f(-3)=(32+1)-[(-3)2+1]=10-10=0.(2)由(1)可发现结论:对任意x∈R,有f(x)-f(-x)=0.证明如下:∵f(-x)=(-x)2+1=x2+1=f(x),∴对任意x∈R,总有f(x)-f(-x)=0.6 / 6。
1.1.2 导数的概念1.当自变量x由x0变到x1时,函数值的增量与相应自变量的增量的比是函数() A.在区间[x0,x1]上的平均变化率B.在x1处的导数C.在区间[x0,x1]上的导数D.在x处的平均变化率2.对于函数f(x)=c(c为常数),则f′(x)为()A.0B.1C.c D.不存在3.y=x2在x=1处的导数为()A.2x B.2C.2+Δx D.14.在导数的定义中,自变量的增量Δx满足()A.Δx<0 B.Δx>0C.Δx=0 D.Δx≠05.一物体运动满足曲线方程s=4t2+2t-3,且s′(5)=42(m/s),其实际意义是() A.物体5秒内共走过42米B.物体每5秒钟运动42米C.物体从开始运动到第5秒运动的平均速度是42米/秒D.物体以t=5秒时的瞬时速度运动的话,每经过一秒,物体运动的路程为42米6.如果质点A按规律s=3t2运动,那么在t=3时的瞬时速度为________.7.设函数f(x)满足limx→0f(1)-f(1-x)x=-1,则f′(1)=________.8.函数f(x)=x2+1在x=1处可导,在求f′(1)的过程中,设自变量的增量为Δx,则函数的增量Δy=________.9.已知f(x)=ax2+2,若f′(1)=4,求a的值.10.在自行车比赛中,运动员的位移与比赛时间t存在关系s(t)=10t+5t2(s的单位是m,t的单位是s).(1)求t =20,Δt =0.1时的Δs 与Δs Δt; (2)求t =20时的速度.参考答案1.【解析】由平均变化率的定义知选A.【答案】A2.【解析】f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0c -c Δx =0. 【答案】A3.【解析】Δy =(1+Δx )2-12=2Δx +(Δx )2,∴Δy Δx=2+Δx . ∴f ′(1)=lim Δx →0(2+Δx )=2.【答案】B4.【解析】Δx 可正、可负,就是不能为0,因此选D.【答案】D5.【解析】由导数的物理意义知,s ′(5)=42(m/s)表示物体在t =5秒时的瞬时速度.故选D.【答案】D6.【解析】Δy =3(3+Δt )2-3×32=18Δt +3(Δt )2,∴s ′(3)=lim Δt →0Δs Δt =lim Δt →0(18+3Δt )=18. 【答案】187.【解析】∵lim x →0f (1)-f (1-x )x =lim x →0f (1-x )-f (1)-x =f ′(1)=-1. 【答案】-18.【解析】Δy =f (1+Δx )-f (1)=[(1+Δx )2+1]-(12+1)=2Δx +(Δx )2.【答案】2Δx +(Δx )29.解 Δy =f (1+Δx )-f (1)=a (1+Δx )2+2-(a ×12+2)=2a ·Δx +a (Δx )2,∴f ′(1)=lim Δx →0Δy Δx =lim Δx →0(2a +a ·Δx )=2a =4. ∴a =2.10.解 (1)当t =20,Δt =0.1时,Δs =s (20+Δt )-s (20)=10(20+0.1)+5(20+0.1)2-(10×20+5×202)=1+20+5×0.01=21.05.∴Δs Δt =21.050.1=210.5. (2)由导数的定义知,t =20时的速度即为v=limΔt→0Δs Δt=limΔt→010(t+Δt)+5(t+Δt)2-10t-5t2Δt=limΔt→05(Δt)2+10Δt+10tΔtΔt=limΔt→0(5Δt+10+10t)=10+10t=10+10×20=210(m/s).。
1.1.1 变化率问题 1.1.2 导数的概念课时目标 1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.3.会利用导数的定义求函数在某点处的导数.1.函数的变化率定义实例平均变化率函数y =f (x )从x 1到x 2的平均变化率为________,简记作:Δy Δx. ①平均速度;②曲线割线的斜率.瞬时 变化率函数y =f (x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率在Δx →0时的极限,即__________=lim Δx →0 Δy Δx . ①瞬时速度:物体在某一时刻的速度 ②切线斜率.2.导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 ΔyΔx=____________,我们称它为函数y =f (x )在x =x 0处的________,记为____________,即f ′(x 0)=li m Δx →0 ΔyΔx ______.一、选择题1.当自变量从x 0变到x 1时,函数值的增量与相应自变量的增量之比是函数( ) A .在[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化率 D .以上都不对2.已知函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,f (1+Δx )),则Δy Δx等于( )A .4B .4+2ΔxC .4+2(Δx )2D .4x3.如图,函数y =f (x )在A ,B 两点间的平均变化率是( )A .1B .-1C .2D .-24.设f (x )在x =x 0处可导,则li m Δx →0f (x 0-Δx )-f (x 0)Δx等于( )A .-f ′(x 0)B .f ′(-x 0)C .f ′(x 0)D .2f ′(x 0)5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( )A .3B .-3C .2D .-26.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是( )A .at 0B .-at 0 C.12at 0 D .2at 0 题 号 1 2 3 4 5 6 答 案 二、填空题7.已知函数y =f (x )=x 2+1,在x =2,Δx =0.1时,Δy 的值为________.8.过曲线y =2x上两点(0,1),(1,2)的割线的斜率为______.9.已知物体运动的速度与时间之间的关系是:v (t )=t 2+2t +2,则在时间间隔[1,1+Δt ]内的平均加速度是________,在t =1时的瞬时加速度是________. 三、解答题10.已知函数f (x )=x 2-2x ,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.11.用导数的定义,求函数y =f (x )=1x在x =1处的导数.能力提升12.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 13.枪弹在枪筒中可以看作匀加速直线运动,如果它的加速度是a =5×105 m/s 2,枪弹从枪口射出时所用的时间为1.6×10-3s .求枪弹射出枪口时的瞬时速度.1.做直线运动的物体,它的运动规律可以用函数s =s (t )描述,设Δt 为时间改变量,在t 0+Δt 这段时间内,物体的位移(即位置)改变量是Δs =s (t 0+Δt )-s (t 0),那么位移改变量Δs 与时间改变量Δt 的比就是这段时间内物体的平均速度v ,即v =ΔsΔt=s (t 0+Δt )-s (t 0)Δt.2.由导数的定义可得求导数的一般步骤(三步法): (1)求函数的增量Δy =f (x 0+Δx )-f (x 0);(2)求平均变化率ΔyΔx;(3)取极限,得导数f ′(x 0)=lim Δx →0 ΔyΔx. 答案知识梳理 1.定义 实例平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1,简记作:Δy Δx .①平均速度; ②曲线割线的斜率.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率在Δx →0时的极限, 即lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 Δy Δx . ①瞬时速度:物体在某一时刻的速度;②切线斜率.2.lim Δx →0 f (x 0+Δx )-f (x 0)Δx 导数 f ′(x 0)或y ′|x =x 0 lim Δx →0 f (x 0+Δx )-f (x 0)Δx 作业设计 1.A2.B [∵Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-2×12+1=4Δx +2(Δx )2,∴Δy Δx =4Δx +2(Δx )2Δx=4+2Δx .] 3.B [Δy Δx =f (3)-f (1)3-1=1-32=-1.]4.A [li m Δx →0 f (x 0-Δx )-f (x 0)Δx=li m Δx →0-f (x 0)-f (x 0-Δx )Δx=-li m Δx →0 f (x 0)-f (x 0-Δx )Δx=-f ′(x 0).] 5.B [∵Δy Δx =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32Δx =-Δx -3,∴li m Δx →0 ΔyΔx=-3.] 6.A [∵Δs Δt =s (t 0+Δt )-s (t 0)Δt =12a Δt +at 0,∴li m Δt →0 ΔsΔt =at 0.] 7.0.41 8.1解析 由平均变化率的几何意义知k =2-11-0=1.9.4+Δt 4解析 在[1,1+Δt ]内的平均加速度为Δv Δt =v (1+Δt )-v (1)Δt=Δt +4,t =1时的瞬时加速度是li m Δt →0 ΔvΔt =li m Δt →0(Δt +4)=4. 10.解 函数f (x )在[-3,-1]上的平均变化率为: f (-1)-f (-3)(-1)-(-3)=[(-1)2-2×(-1)]-[(-3)2-2×(-3)]2=-6.函数f (x )在[2,4]上的平均变化率为: f (4)-f (2)4-2=(42-2×4)-(22-2×2)2=4.11.解 ∵Δy =f (1+Δx )-f (1)=11+Δx -11=1-1+Δx 1+Δx =-Δx1+Δx ·(1+1+Δx )∴Δy Δx =-11+Δx ·(1+1+Δx ), ∴li m Δx →0 Δy Δx =li m Δx →0-11+Δx ·(1+1+Δx )=-11+0·(1+1+0)=-12,∴y ′|x =1=f ′(1)=-12.12.2解析 由导数的定义,得f ′(0)=lim Δx →0 f (Δx )-f (0)Δx=lim Δx →0 a (Δx )2+b (Δx )+c -c Δx =lim Δx →0[a ·(Δx )+b ]=b . 又⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0a >0,∴ac ≥b 24,∴c >0.∴f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2bb=2. 13.解 运动方程为s =12at 2.因为Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2,所以Δs Δt =at 0+12a Δt .所以li m Δt →0 Δs Δt =at 0. 由题意知,a =5×105 m/s 2,t 0=1.6×10-3s ,所以at 0=8×102=800 (m/s).即枪弹射出枪口时的瞬时速度为800 m/s.。
1.1.1 变化率问题 1.1.2 导数的概念明目标、知重点1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. 3.会利用导数的定义求函数在某点处的导数.1.函数的变化率0函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx.[情境导学]某市2013年5月30日最高气温是33.4℃,而此前的两天5月29日和5月28日最高气温分别是24.4℃和18.6℃,短短两天时间,气温“陡增”14.8℃,闷热中的人们无不感叹:“天气热得太快了!”但是,如果我们将该市2013年4月28日最高气温3.5℃和5月28日最高气温18.6℃进行比较,可以发现二者温差为15.1℃,甚至超过了14.8℃,而人们却不会发出上述感慨,这是什么原因呢?显然原因是前者变化得“太快”,而后者变化得“缓慢”,那么在数学中怎样来刻画变量变化得快与慢呢? 探究点一 平均变化率的概念 思考1 气球膨胀率很多人都吹过气球.回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )= 33V4π,(1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62 (dm),气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16 (dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 结论 当空气容量从V 1增加到V 2时,气球的平均膨胀率是r (V 2)-r (V 1)V 2-V 1.思考2 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答 ①在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);②在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢.思考3 什么是平均变化率,平均变化率有何作用?思考1和思考2中的平均变化率分别表示什么?答 如果上述两个思考中的函数关系用y =f (x )表示,那么思考中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.思考1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.思考2中的平均变化率表示在时间从t 1增加到t 2时,高度h的平均增长率.思考4 平均变化率也可以用式子Δy Δx 表示,其中Δy 、Δx 的意义是什么?ΔyΔx 有什么几何意义?答 Δx 表示x2-x 1是相对于x 1的一个“增量”;Δy 表示f (x 2)-f (x 1).Δx 、Δy 的值可正可负,Δy 也可以为零,但Δx 不能为零.观察图象可看出,ΔyΔx 表示曲线y =f (x )上两点(x 1,f (x 1))、(x 2,f (x 2))连线的斜率.小结 平均变化率为Δy Δx =f (x 2)-f (x 1)x 2-x 1,其几何意义是:函数y =f (x )的图象上两点(x 1,f (x 1))、(x 2,f (x 2))连线的斜率.例1 已知函数f (x )=2x 2+3x -5.(1)求当x 1=4,x 2=5时,函数增量Δy 和平均变化率ΔyΔx ;(2)求当x 1=4,x 2=4.1时,函数增量Δy 和平均变化率ΔyΔx ;(3)若设x 2=x 1+Δx .分析(1)(2)题中的平均变化率的几何意义. 解 f (x )=2x 2+3x -5, ∴Δy =f (x 1+Δx )-f (x 1)=2(x 1+Δx )2+3(x 1+Δx )-5-(2x 21+3x 1-5) =2[(Δx )2+2x 1Δx ]+3Δx =2(Δx )2+(4x 1+3)Δx =2(Δx )2+19Δx .Δy Δx =2(Δx )2+19Δx Δx =2Δx +19. (1)当x 1=4,x 2=5时,Δx =1,Δy =2(Δx )2+19Δx =2+19=21,Δy Δx =21.(2)当x 1=4,x 2=4.1时Δx =0.1, Δy =2(Δx )2+19Δx =0.02+1.9=1.92. ΔyΔx=2Δx +19=19.2. (3)在(1)题中Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (5)-f (4)5-4,它表示抛物线上点P 0(4,39)与点P 1(5,60)连线的斜率. 在(2)题中,Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (4.1)-f (4)4.1-4,它表示抛物线上点P 0(4,39)与点P 2(4.1,40.92)连线的斜率. 反思与感悟 求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.跟踪训练1 (1)计算函数h (x )=-4.9x 2+6.5x +10从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2;②1;③0.1;④0.01.(2)思考:当|Δx |越来越小时,函数h (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势?解 (1)∵Δy =h (1+Δx )-h (1) =-4.9(Δx )2-3.3Δx , ∴ΔyΔx=-4.9Δx -3.3. ①当Δx =2时,ΔyΔx =-4.9Δx -3.3=-13.1;②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2;③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79;④当Δx =0.01时,ΔyΔx=-4.9Δx -3.3=-3.349.(2)当|Δx |越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3.探究点二 函数在某点处的导数思考1 物体的平均速度能否精确反映它的运动状态?答 不能,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6549-0=0,而运动员依然是运动状态.思考2 观察跟踪训练1,当Δx =0.000 01时,ΔyΔx =?这个平均速度能描述物体的运动状态吗?答ΔyΔx=-4.9Δx -3.3=-3.300 049,说明当时间间隔非常小的时候平均速度约等于一个常数,这个常数就是x =1这一时刻的速度.思考 3 什么叫做瞬时速度?它与平均速度的区别与联系是什么?平均变化率与瞬时变化率的关系如何?答 可以使用瞬时速度精确描述物体在某一时刻的运动状态.如求t =2时的瞬时速度,可考察在t =2附近的一个间隔Δt ,当Δt 趋近于0时,平均速度v 趋近于lim Δt →0h (2+Δt )-h (2)Δt,这就是物体在t =2时的瞬时速度.类似可以得出平均变化率与瞬时变化率的关系,我们把函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 叫做函数y =f (x )在x =x 0处的导数. 思考4 导数或瞬时变化率反映函数变化的什么特征?答 导数或瞬时变化率可以反映函数在一点处变化的快慢程度. 小结 1.函数的瞬时变化率:函数y =f (x )在x =x 0处的瞬时变化率是 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 Δy Δx . 2.函数在某点处的导数:我们称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx . 例2 利用导数的定义求函数f (x )=-x 2+3x 在x =2处的导数. 解 由导数的定义知,函数在x =2处的导数f ′(2)= lim Δx →0f (2+Δx )-f (2)Δx,而f (2+Δx )-f (2)=-(2+Δx )2+3(2+Δx )-(-22+3×2)=-(Δx )2-Δx ,于是f ′(2)=lim Δx →0 -(Δx )2-ΔxΔx =lim Δx →0 (-Δx -1)=-1. 反思与感悟 求一个函数y =f (x )在x =x 0处的导数的步骤如下: (1)求函数值的变化量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限,得导数f ′(x 0)=lim Δx →0ΔyΔx. 跟踪训练2 求函数f (x )=3x 2-2x 在x =1处的导数. 解 Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1)=3(Δx )2+4Δx ,∵Δy Δx =3(Δx )2+4Δx Δx =3Δx +4, ∴y ′|x =1=lim Δx →0 Δy Δx =lim Δx →0(3Δx +4)=4. 例3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:℃)为y =f (x )=x 2-7x +15(0≤x ≤8).计算第2 h 和第6 h 时,原油温度的瞬时变化率,并说明它们的意义.解 在第2 h 和第6 h 时,原油温度的瞬时变化率就是f ′(2)和f ′(6). 根据导数的定义,Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-7(2+Δx )+15-(22-7×2+15)Δx=4Δx +(Δx )2-7Δx Δx=Δx -3,所以,f ′(2)=lim Δx →0 ΔyΔx =lim Δx →0 (Δx -3)=-3. 同理可得,f ′(6)=5.在第2 h 和第6 h 时,原油温度的瞬时变化率分别为-3与5.它说明在第2 h 附近,原油温度大约以3 ℃/h 的速率下降;在第6 h 附近,原油温度大约以5 ℃/h 的速率上升. 反思与感悟 (1)本题中,f ′(x 0)反映了原油温度在时刻x 0附近的变化情况. (2)函数的平均变化率和瞬时变化率的关系:平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ,当Δx 趋于0时,它所趋于的一个常数就是函数在x 0处的瞬时变化率,即求函数的瞬时变化率是利用平均变化率“逐渐逼近”的方法求解.另外,它们都是用来刻画函数变化快慢的,它们的绝对值越大,函数变化得越快.跟踪训练3 高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598 s 时的瞬时速度,并解释此时的运动状况.解 令t 0=6598,Δt 为增量.则h (t 0+Δt )-h (t 0)Δt=-4.9×⎝ ⎛⎭⎪⎫6598+Δt 2+6.5×⎝ ⎛⎭⎪⎫6598+Δt +10+4.9×⎝ ⎛⎭⎪⎫65982-6.5×6598-10Δt=-4.9Δt ⎝ ⎛⎭⎪⎫6549+Δt +6.5ΔtΔt=-4.9⎝⎛⎭⎪⎫6549+Δt +6.5,∴lim Δt →0h (t 0+Δt )-h (t 0)Δt =lim Δt →0[-4.9⎝ ⎛⎭⎪⎫6549+Δt +6.5]=0,即运动员在t 0=6598 s 时的瞬时速度为0 m/s.说明此时运动员处于跳水运动中离水面最高的点处.1.如果质点M 按规律s =3+t 2运动,则在一小段时间[2,2.1]中相应的平均速度是( ). A .4 B .4.1 C .0.41 D .3 答案 B解析 v =(3+2.12)-(3+22)0.1=4.1.2.函数f (x )在x 0处可导,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0、h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .与x 0、h 均无关 答案 B3.已知函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2答案 C解析 Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-1 =2(Δx )2+4Δx ,∴Δy Δx =2Δx +4.4.已知函数f (x )=1x,则f ′(1)=________.答案 -12解析 f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →0 11+Δx-1Δx =lim Δx →0-11+Δx (1+1+Δx )=-12.[呈重点、现规律]利用导数定义求导数三步曲:(1)求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限,得导数f ′(x 0)=lim Δx →0 Δy Δx. 简记为一差,二比,三趋近.特别提醒 ①取极限前,要注意化简ΔyΔx ,保证使Δx →0时分母不为0.②函数在x 0处的导数f ′(x 0)只与x 0有关,与Δx 无关. ③导数可以描述任何事物的瞬时变化率,应用非常广泛.一、基础过关1.函数y =x 2-2x +1在x =-2附近的平均变化率为( ) A .-6 B .Δx -6 C .-2 D .Δx -2答案 B解析 设y =f (x )=x 2-2x +1=(x -1)2,Δy =f (-2+Δx )-f (-2)=(-2+Δx -1)2-(-2-1)2=(-3+Δx )2-9=(Δx )2-6Δx , 所以ΔyΔx=Δx -6,所以函数y =x 2-2x +1在x =-2附近的平均变化率为Δx -6. 2.函数y =1在[2,2+Δx ]上的平均变化率是( ) A .0 B .1 C .2 D .Δx 答案 A 解析Δy Δx =1-1Δx=0. 3.如果某物体的运动方程为s =2(1-t 2)(s 的单位为m ,t 的单位为s),那么其在1.2 s 末的瞬时速度为( ). A .-4.8 m/s B .-0.88 m/s C .0.88 m/s D .4.8 m/s答案 A解析 物体运动在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得. 4.一质点按规律s (t )=2t 3运动,则t =1时的瞬时速度为( ) A .4 B .6 C .24 D .48 答案 B解析 ∵s ′(1)=lim t →1s (t )-s (1)t -1=lim t →1 2t 3-2t -1=lim t →12(t 2+t +1)=6. 5.已知函数y =2+1x,当x 由1变到2时,函数的增量Δy =________.答案 -12解析 Δy =⎝ ⎛⎭⎪⎫2+12-(2+1)=-12. 6.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是( ) A .甲 B .乙 C .相同 D .不确定答案 B解析 在t 0处,虽然W 1(t 0)=W 2(t 0),但是,在t 0-Δt 处,W 1(t 0-Δt )<W 2(t 0-Δt ),即⎪⎪⎪⎪⎪⎪W 1(t 0)-W 1(t 0-Δt )Δt <⎪⎪⎪⎪⎪⎪W 2(t 0)-W 2(t 0-Δt )Δt ,所以,在相同时间Δt 内,甲厂比乙厂的平均治污率小.所以乙厂治污效果较好. 7.利用定义求函数y =-2x 2+5在x =2处的瞬时变化率.解 因为在x =2附近,Δy =-2(2+Δx )2+5-(-2×22+5)=-8Δx -2(Δx )2,所以函数在区间[2,2+Δx ]内的平均变化率为Δy Δx =-8Δx -2(Δx )2Δx =-8-2Δx .故函数y =-2x 2+5在x =2处的瞬时变化率为lim Δx →0(-8-2Δx )=-8.二、能力提升8.过曲线y =x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率k =______,当Δx =0.001时,割线的斜率k =________. 答案 2.1 2.001解析 ∵Δy =(1+Δx )2+1-(12+1) =2Δx +(Δx )2,∴Δy Δx =2+Δx ,∴割线斜率为2+Δx ,当Δx =0.1时,割线PQ 的斜率k =2+0.1=2.1. 当Δx =0.001时,割线PQ 的斜率k =2+0.001=2.001.9.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是________. 答案 3解析 v 初=s ′|t =0=li m Δt →0 s (0+Δt )-s (0)Δt=li m Δt →0(3-Δt )=3. 10.求y =x 在x 0到x 0+Δx 之间的平均变化率. 解 因为Δy =x 0+Δx -x 0,所以y =x 在x 0到x 0+Δx 之间的平均变化率为Δy Δx =x 0+Δx -x 0Δx =1x 0+Δx +x 0.11.求函数y =f (x )=2x 2+4x 在x =3处的导数. 解 Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16ΔxΔx =2Δx +16. ∴y ′|x =3=lim Δx →0 Δy Δx =lim Δx →0(2Δx +16)=16.小初高试卷教案类K12小学初中高中 12.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值.解 ∵f (1+Δx )-f (1)=a (1+Δx )2+c -a -c=a (Δx )2+2a Δx . ∴f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx =lim Δx →0 a (Δx )2+2a Δx Δx=lim Δx →0(a Δx +2a )=2,即2a =2,∴a =1. 三、探究与拓展13.已知f (x )=x 2,g (x )=x 3,求满足f ′(x )+2=g ′(x )的x 的值. 解 由导数的定义知,f ′(x )=lim Δx →0 (x +Δx )2-x 2Δx=2x , g ′(x )=lim Δx →0 (x +Δx )3-x 3Δx=3x 2. ∵f ′(x )+2=g ′(x ),∴2x +2=3x 2.即3x 2-2x -2=0,解得x =1-73或x =1+73.。
课时作业2 导数的概念知识点一瞬时速度1.一质点运动的方程为s(t)=5-3t2(位移单位:m,时间单位:s),若该质点在t=1到t=1+Δt这段时间内的平均速度为-3Δt-6,则该质点在t=1时的瞬时速度是( ) A.-3 m/s B.3 m/sC.6 m/s D.-6 m/s答案 D解析当Δt趋近于0时,-3Δt-6趋近于-6,即t=1时该质点的瞬时速度为-6 m/s.2.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )A.圆B.抛物线C.椭圆D.直线答案 D解析当f(x)=b时,瞬时变化率limΔx→0ΔyΔx=limΔx→0b -bΔx=0,所以f(x)的图象为一条直线.3.物体的运动方程是s=-4t2+16t,在某一时刻的速度为零,则相应时刻为( ) A.t=1 B.t=2C.t=3 D.t=4答案 B解析设物体在t时刻的速度为零,则limΔx→0ΔsΔt=0,ΔsΔt=-4t+Δt2+16t+Δt+4t2-16tΔt=-8Δt·t-4Δt2+16ΔtΔt=-8t-4Δt+16,∴limΔx→0ΔsΔt=-8t+16=0,∴t=2.知识点二导数的定义4.函数f(x)在x0处可导,则limh→0f x0+h-f x0h( )A.与x0、h都有关B.仅与x0有关,而与h无关C.仅与h有关,而与x0无关D.与x0、h均无关答案 B解析由导数的概念可知,limh→0f x0+h-f x0h=f ′(x 0),仅与x 0有关,与h 无关,故选B.5.若f ′(x 0)=1,则lim Δx →0f x 0-Δx -f x 02Δx=( )A.12 B .-12C .1D .-1答案 B解析 f ′(x 0)=li m Δx →0f x 0-Δx -f x 0-Δx=1,∴lim Δx →0f x 0-Δx -f x 0Δx=-1,∴lim Δx →0f x 0-Δx -f x 02Δx =12×(-1)=-12.6.一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1. 答案114解析 Δs Δt=7t 0+Δt2+8-7t 20+8Δt=7Δt +14t 0,当lim Δx →0(7Δt +14t 0)=1时,t =t 0=114.知识点三 导数的实际意义7.一条水管中流过的水量y (单位:m 3)是时间t (单位:s)的函数y =f (t )=3t .求函数y =f (t )在t =2处的导数f ′(2),并解释它的实际意义.解 根据导数的定义,得Δy Δt=f2+Δt -f 2Δt=32+Δt -3×2Δt=3,所以,f ′(2)=lim Δt →0ΔyΔt=3. f ′(2)的意义是:水流在2 s 时的瞬时流速为3 m 3/s ,即如果保持这一速度,每经过1 s ,水管中流过的水量为3 m 3.一、选择题1.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是( )A .at 0B .-at 0 C.12at 0 D .2at 0答案 A解析 ∵Δs Δt =st 0+Δt -s t 0Δt =12a Δt +at 0,∴lim Δt →0ΔsΔt=at 0.2.若可导函数f (x )的图象过原点,且满足lim Δx →0f ΔxΔx=-1,则f ′(0)=( ) A .-2 B .-1 C .1 D .2答案 B解析 ∵f (x )图象过原点,∴f (0)=0, ∴f ′(0)=lim Δx →0f 0+Δx -f 0Δx =lim Δx →0f ΔxΔx=-1,∴选B.3.已知f (x )=2x ,且f ′(m )=-12,则m 的值等于( )A .-4B .2C .-2D .±2答案 D解析 f ′(x )=lim Δx →0f x +Δx -f x Δx =-2x 2,于是有-2m 2=-12,m 2=4,解得m =±2.4.设函数f (x )在点x 0处附近有定义,且f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x 0)=-aB .f ′(x 0)=-bC .f ′(x 0)=aD .f ′(x 0)=b答案 C解析 ∵f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2, ∴f x 0+Δx -f x 0Δx=a +b ·Δx .∴lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0(a +b ·Δx )=a .∴f ′(x 0)=a . 故选C.5.已知奇函数f (x )满足f ′(-1)=1,则lim Δx →0f Δx -1+f 1Δx等于( )A .1B .-1C .2D .-2答案 A解析 由f (x )为奇函数,得f (1)=-f (-1),所以lim Δx →0f Δx -1+f 1Δx=lim Δx →0f -1+Δx -f -1Δx=f ′(-1)=1.二、填空题6.已知自由落体的运动方程为s (t )=5t 2,则t 在2到2+Δt 这一段时间内落体的平均速度为______,落体在t =2时的瞬时速度为________.答案 20+5Δt 20解析 由题物体在t =2到t =2+Δt 这一段时间内的平均速度为v =52+Δt 2-5×22Δt=20+5Δt ,则当Δt →0时v →20,即t =2时的瞬时速度为20.7.设函数y =f (x )=ax 3+2,若f ′(-1)=3,则a =________. 答案 1解析 Δy =f (-1+Δx )-f (-1)=a (-1+Δx )3+2-a (-1)3-2=a (Δx )3-3a (Δx )2+3a Δx .∴Δy Δx=a Δx3-3a Δx2+3a ΔxΔx=a (Δx )2-3a Δx +3a .当Δx 无限趋近于0时,a (Δx )2-3a Δx +3a 无限趋近于3a . ∴f ′(-1)=3a =3,∴a =1.8.已知y =x +4,则y ′|x =1=________. 答案510解析 由题意知Δy =1+Δx +4-1+4=5+Δx -5,所以Δy Δx =5+Δx -5Δx .所以y ′|x =1=lim Δx →0Δy Δx =lim Δx →05+Δx -5Δx=lim Δx →05+Δx -55+Δx +5Δx 5+Δx +5=lim Δx →015+Δx +5=510. 三、解答题9.已知函数f (x )=⎩⎨⎧x ,x ≥0,1+x 2,x <0,求f ′(1)·f ′(-1)的值.解 当x =1时,Δy Δx=f1+Δx -f 1Δx =1+Δx -1Δx =11+Δx +1.由导数的定义,得f ′(1)=lim Δx →011+Δx +1=12.当x =-1时,Δy Δx=f-1+Δx -f -1Δx=1+-1+Δx 2-1--12Δx=Δx -2.由导数的定义,得f ′(-1)=lim Δx →0(Δx -2)=-2.所以f ′(1)·f ′(-1)=12×(-2)=-1.10.枪弹在枪筒中运动可以看作匀加速运动,如果它的加速度是5.0×105m/s 2,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度.解 位移公式为s =12at 2,∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2,∴Δs Δt =at 0+12a Δt , ∴lim Δt →0Δs Δt =lim Δt →0⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0,已知a =5.0×105m/s 2,t 0=1.6×10-3s , ∴at 0=800 m/s.所以枪弹射出枪口时的瞬时速度为800 m/s.。