列管式换热器结构设计示例.
- 格式:ppt
- 大小:930.50 KB
- 文档页数:53
一、设计任务二、设计方案简介2.换热器类型选择按照设计任务书的要求,冷却介质:水入口温度:10℃,出口温度:17℃;果浆: 入口温度:80℃,出口温度:20℃。
鉴于要冷却的材料是果浆,流体压力不大,温度变化为80—20℃,管程与壳程的温度差较大(相差50℃以上),加上考虑清洗要求高等因素,本次设计我决定采用浮头式换热器。
浮头式换热器的结构如下图所示。
这种换热器有一端的管板不与壳体相连,可沿管长方向自由伸缩,即具有浮头结构,当壳体与管束的热膨胀不一致时,管束连同浮头可在壳体内轴向上自由伸缩。
这种结构不但彻底消除热应力,而且整个管束可以从壳体中抽出,便与管内管间的清洗,维修。
因此,用材量大,造价高,结构复杂,但应用仍十分广泛。
考虑到水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下,综合考虑以上标准,确定果浆应走管程,水走壳程。
由于果汁有弱酸性,又因不锈钢管较碳钢管有较好的抗酸腐蚀性,故选用mm 225⨯Φ的不锈钢管。
由于增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
查阅资料管程一般液体流速0.5-3m/s ,易结垢液体>1m/s 。
故拟取流速为2m/s 。
三、工艺及设备设计计算3.1确定设计方案 3.1.1.换热器类型 浮头式换热器设计基本参数处理能力:5000kg/h设备型式:列管式换热器操作条件:冷却介质:水入口温度:10℃,出口温度:17℃;果浆: 入口温度:80℃,出口温度:20℃。
3.1.2.流体流动形式为了增大平均温差,节省操作费用,本次设计采用逆流的流动方式。
3.2确定物性数据定性温度:对于一般液体和水等低黏度流体,其定性温度可取流体进、出口温度的平均 值。
故:果浆的定性温度为 ℃5022080T =+=水的定性温度为 t = ℃13.521710=+果浆在50℃下的有关物性数据如下:密度 : 0ρ= 1058 kg/3m定压比热容: C po =3584 J/(kg·℃) 导热系数 : 0λ =0.61 W/(m·℃)黏度 : = 2×10-3 Pa·s水在13.5℃下的有关物性数据如下:密度 : i ρ = 999.7 kg/3m定压比热容:C pi = 4191 J/(kg·℃) 导热系数 : i λ= 0.58 W/(m·℃)黏度 : i μ= 1.2×10-3 Pa·s3.3计算总传热系数 3.3.1热负荷Kw h KJ 67.298/101.075220)-(803.5845000T C q Q 60P0m0T =⨯=⨯⨯=∆=3.3.2平均传热温差 所以m t ∆=2121ln t t t t ∆∆∆-∆=()()10-2017-80ln 10-201780--=28.8(℃)3.3.3水用量640P0i Q 1.075210 3.66510/C t 4.191(17-10)miq kg h ⨯===⨯∆⨯ μ 03.3.4总传热系数K (1)管程传热系数:43e 10499.3102.17.9992021.0R ⨯=⨯⨯⨯==-iii i u d μρ>4000 (湍流区) 对流传热系数:C/39.650458.0102.14191102.17.9992021.0021.058.0023.0)()(023.034.038.034.0ii 8.0i i i i i ︒⋅=⎪⎪⎭⎫⎝⎛⨯⨯⨯⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯==--m w C u d d p i i λμμρλα(2)壳程传热系数:假设壳程的传热系数10000=α W/(2m ·℃)污垢热阻 Rso=0.0003(m 2·℃)/WRsi=0.0002(m 2·℃)/W管壁的导热系数 λ=17.4W/(m·℃)0000011αλα++++=s m i si i i R d bd d d R d d K℃∙=++⨯⨯+⨯+⨯=2W/m 53.541100010003.00229.04.17025.0002.0021.0025.00002.0021.075.3735025.013.4计算换热面积2m T 2.198.2853.541298670t K Q 'm A =⨯=∆=考虑15%的面积裕度:208.22'15.1m A A ==3.5工艺尺寸计算 3.5.1 管径和流速取mm 225⨯Φ的不锈钢管,流速u=2m/s. 3.5.2 管程数和传热管数依据传热管内径和流速确定单程传热管数2242860/(36001058)180.7850.02114v s i q n d uπ⨯==≈⨯⨯(根)按单管程计算,所需的传热管长度为: 传热管长:m n d A s 63.1518025.014.308.22L 00=⨯⨯==π按单程管设计,传热管过长,宜采用多管程结构。
2.4 列管换热器设计示例某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。
试设计一台列管式换热器,完成该生产任务。
1.确定设计方案(1)选择换热器的类型两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。
该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。
(2)流动空间及流速的确定由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。
选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。
2.确定物性数据定性温度:可取流体进口温度的平均值。
壳程油的定性温度为(℃)管程流体的定性温度为(℃)根据定性温度,分别查取壳程和管程流体的有关物性数据。
油在90℃下的有关物性数据如下:密度ρo=825 kg/m3定压比热容c po=2.22 kJ/(kg·℃)导热系数λo=0.140 W/(m·℃)粘度μo=0.000715 Pa·s循环冷却水在35℃下的物性数据:密度ρi=994 kg/m3定压比热容c pi=4.08 kJ/(kg·℃)导热系数λi=0.626 W/(m·℃)粘度μi=0.000725 Pa·s3.计算总传热系数(1)热流量Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW)(2)平均传热温差(℃)(3)冷却水用量(kg/h)(4)总传热系数K管程传热系数W/(m·℃)壳程传热系数假设壳程的传热系数αo=290 W/(m2·℃);污垢热阻R si=0.000344 m2·℃/W , R so=0.000172 m2·℃/W管壁的导热系数λ=45 W/(m·℃)=219.5 W/(m·℃)4.计算传热面积(m2)考虑15%的面积裕度,S=1.15×S′=1.15×42.8=49.2(m2)。
化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
第一章列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。
列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。
目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。
例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。
1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。
为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。
(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。
这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。
其缺点为结构复杂,造价高。
(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。
但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。
列管式换热器设计说明书设计者:班级:姓名:学号:日期:指导教师设计成绩日期目录一、方案简介 (3)二、方案设计 (4)1、确定设计方案 (4)2、确定物性数据 (4)3、计算总传热系数 (4)4、计算传热面积 (5)5、工艺结构尺寸 (5)6、换热器核算 (7)三、设计结果一览表 (10)四、对设计的评述 (11)五、附图(主体设备设计条件图)(详情参见图纸)·································六、参考文献 (12)七、主要符号说明 (12)附图··········································································一、方案简介本设计任务是利用冷流体(水)给硝基苯降温。
列管式换热器的设计一、概述在化工、石化、石油炼制等工业生产中,换热器被广泛使用。
在一般化工的建设中,换热器约占总投资的11%。
在炼油厂的常、减压蒸馏装置中,换热器约占总投资的2 0%。
若按工艺设备重量统计,换热器在石油、化工装置中约占40%左右。
随着化工、石化、炼油工业的迅速发展,各种新型换热器不断出现,一些传统的换热器的结构也在不断改进、更新。
今后换热器的发展趋势将是不断增加紧凑性、互换性,不断降低材料消耗,提高传热效率和各种比特性,提高操作和维护的便捷性。
换热器的类型很多.特点各异,分类方法也不尽相同。
苦按其用途分,有加热器、冷却器、冷凝器、蒸发器和再沸器等。
技其结构类型分,有列管式、板式、螺旋板式、板翅式、板壳式利翅片管式等。
若按传热原理和热交换方式分,有直接混合式、蓄热式和间壁式三类,列管式换热器是间壁式换热器的主要类型,也是应用最普遍的一种换热设备。
列管式换热器发展较早,设计资料和技术数据较完整.目前在许多国家中都已有系列化标准产品。
虽然在换热效率、紧凑件、材料消耗等方面还不及一些新型换热器,但它具有结构简单、牢固、耐用,适应性强,操作弹性较大,成本较低等优点,因而仍是化工、石化、石油炼制等工业中应用最广泛的换热设备,也是各类换热器的主要类型。
二、列管式换热器的结构、固定及各种性能参数 1.列管式换热器的结构列管式换热器主要由壳体、换热管束、管板(又称花板)、封头(又称端盖)等部件组成,图1—1为它的基本构型,此式为卧式换热器,除此之外还有立式的。
在圆筒形的完体内装有换热管束,管束安装固定在壳体内两端的管板上。
封头用螺钉与壳体两端的法兰连接,如需检修或清洗,可将封头盖拆除。
图1—1 列管式换热器的基本结构冷、热流体在列管式换热器内进行换热时,一种流体在管束与壳体间的环隙内流动,其行程称为壳程;另一种流体在换热管内流动,其行程称为管程。
管内流体每通过一次管束称为一个管程。
如需要换热器较大传热面积时,则应排列较多的换热管束。
列管式换热器设计举例(一)一、设计任务书(一)已知条件 1. 气体工作压力: 管程:半水煤气 0.70MPa 壳程:变换气0.68MPa2. 壳、管壁温差 50℃,ta > ts 。
3. 由工艺计算求得换热面积为 130 2m 。
(二)设计任务1.列管热交换器结构及工艺尺寸;2.绘制列管热交换器结构图。
3.选用适合并满足换热任务的标准型换热器。
二、换热器设计计算1.确定管子数n选5.225⨯φ的无缝钢管,材质为20号钢,管长 3 m 因 n l d F 均π= 所以 6133022********=⨯⋅⨯⋅==L d A n 均π 根其中因安排拉杆需减少6 根,实际近数为607 根。
2.管子排列方式、管间距确定采用正三角形排列,由表 查得层数为 13 层,查表 ,取管间距 mm 32=α。
3.换热器壳体直径的确定壳体内径为: ()l b D i 21+-=α 式中 i D —— 换热器内径;mb —— 正三角形对角线上的管子数;查表 ,取27=b ; l —— 最外层管子的中心到壳壁边缘的距离;取02d l =。
因此 ()mm D i 932252212732=⨯⨯+-⨯=圆整后取壳体内径 mm D i 1000=4. 换热器壳体壁厚的计算 材料选用20R 钢,计算壁厚为 []PPD S ti-=φσ2式中 P —— 设计压力;取MPa P 01⋅=; mm D i 1000=850⋅=φ []MPa 101300=σ (设壳壁温度为300℃); 换热器壳体壁厚为: mm S 865018501012100001⋅=⋅-⋅⨯⨯⨯⋅=取mm C 212⋅=,由表 ,得mm C 801⋅=圆整后实取 mm S n 8=5.换热器封头选择上下封头均选用标准椭圆形封头,根据JB1154—73 标准,封头为81000⨯Dg ,曲面高度mm h 2501=,直边高度mm h 402=,如图7-48所示,材料选用20R 钢。
X X X X 大学《材料工程原理B》课程设计设计题目: 5.5×104t/y热水冷却换热器设计专业: -—----———-——---—————-—-—---—-班级:—--——-——-—-—-学号: —--——-----—姓名: -—--日期:——-—-—-———-——--指导教师: —---—-----设计成绩: 日期:换热器设计任务书1.设计方案简介2.工艺流程简介3.工艺计算和主体设备设计4.设计结果概要5.附图6.参考文献1。
设计方案简介1.1列管式换热器的类型根据列管式换热器的结构特点,主要分为以下四种。
以下根据本次的设计要求,介绍几种常见的列管式换热器。
(1)固定管板式换热器这类换热器如图1—1所示。
固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。
当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。
(2)U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。
管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力.U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。
其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。
此外,其造价比管定管板式高10%左右.(3)浮头式换热器浮头式换热器的结构如下图1-3所示。
其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。
浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。
列管式换热器课程结构设计一、化工原理课程设计任务书某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。
已知有机料液的流量为(2.5-0.01×24)×104 =2.26×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。
已知:定性温度下流体物性数据有机化合液 986 0.54*10-3 4.19 0.662水 994 0.728*10-3 4.174 0.626注:若采用错流或折流流程,其平均传热温度差校正系数应大于0.8 。
二、确定设计方案1.选择换热器的类型两流体的温度变化情况:热流体进口温度102℃,出口温度40℃;冷流体进口温度30℃,出口温度40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,故而初步确定选用带有膨胀节的管板式换热器。
2.管程安排已知两流体允许压强降不大于60kPa;两流体分别为有机料液和冷却水。
与有机料液相比,水的对流传热系数一般较大。
由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,考虑到散热降温方面的因素,应使循环冷却水走管程,而使有机料液走壳程。
三、确定物性数据定型温度:对于一般低粘度和水等粘度低流体,其定性温度可取流体进出口的平均值。
故壳程有机料液的定性温度为℃71240102=+=T 管程流体的定性温度为℃3524030=+=T 根据定性温度,分别查取壳程和管程流体的有关物性数据。
有机料液在71℃下的有关物性数据如下: 密度 31986kg/m =ρ 定压比热容 ℃)/(19.41⋅=kg kj C P 热导率 ℃)/(662.01⋅=m W λ 粘度 s Pa ⋅⨯=-311054.0μ 循环水在35℃下的物性数据:密度 32994kg/m =ρ 定压比热容 ℃)/(174.42⋅=kg kj C P 热导率 ℃)/(626.02⋅=m W λ 粘度 s Pa ⋅⨯=-3110728.0μ四、估算传热面积1.热流量W h kJ t c m Q p 6600001063.1/1087.5)40102(19.422600⨯=⨯=-⨯⨯=∆=2.平均传热温差暂按单壳程、多管程进行计算。